从<span style='color:red'>GaN</span> 到 SiC, 茂睿芯控制器释放宽禁带半导体潜能
  2025年3月28日,茂睿芯受邀参加充电头网在前海国际会议中心举办的2025(春季)亚洲充电展。茂睿芯华南区应用经理梁潮裕先生参加了同期举办的2025亚洲充电大会,并在现场带来了主题为《666:从GaN到SiC, 茂睿芯控制器释放宽禁带半导体潜能》的演讲。演讲主题中的3个6为茂睿芯即将推出的3款以6结尾新品:MK2706、MK2606S和MK1206H,此次演讲重点介绍了这3款产品的特点、优势以及实际测试效果。  MK2706是一款集成700V/170mΩ的氮化镓功率管AC/DC产品,采用了全新GaNControlTM技术,能做到Current Sense 无采样电阻损耗,采用小环路+miller钳位的方式达成安全驱动,以及主动SR短路保护提高可靠性,并且能省去4颗个1206采样电阻,低压90V转换效率能提升0.3~0.4%,真正为客户做到省钱、省损耗、省心!  MK2606S是截至目前为止,国内首发推出的小6pin直驱SiC的QR反激控制器,SiC本身具备高可靠性、高功率密度、高效率和耐高温的特点,MK2606能省去额外的SiC驱动器和驱动电路,具备全程QR/DCM以进一步提升转换效率、管脚抗扰加强能适用工业恶劣场景等产品优势。  MK1206H是茂睿芯针对PD应用低电压做的一款5.1A大电流SR同步整流芯片,支持65W PD应用,助力多口充市场,可放置在输出正端或负端,支持CCM/DCM/QR、<500kHz频率、低至 3V 输出电压(自供电),MK1206H能做到10ns极低关断延迟和4A关断电流,使得Vds应力尖峰电压能做得更低,同时具备25ns快速开通延迟进一步提升系统转换效率,适用于USB-PD快充、适配器及多口插排等应用场景。  自2017年成立之初以来,茂睿芯始终坚持自主研发和创新驱动的开发理念,持续聚焦PD快充、工业电源等场景,打造了系列一站式解决方案的高性能模拟芯片产品,目前产品已覆盖消费电子、工业与算力及汽车电子等应用场景。
关键词:
发布时间:2025-04-03 17:35 阅读量:183 继续阅读>>
江西萨瑞微电子SiC 和 <span style='color:red'>GaN</span>赋能AI服务器电源系统
  01AI服务器电源的核心挑战与技术需求  超高功率密度:单机架功率已从传统服务器的数千瓦提升至数十千瓦(如英伟达DGX-2需10kW,未来GB300芯片预计达1.4kW单芯片功耗),要求电源方案在有限空间内实现高效能量转换。  高频化与高效率:单个 GPU 的功耗将呈指数级增长,到 2030 年将达到约 2000 W,而 AI 服务器机架的峰值将达到惊人的 >300 kW。这些要求对数据中心机架的 AC 和 DC 配电系统进行新的架构更改,重点是减少从电网到核心的转换和配电功率损耗。为降低损耗并适配GPU/TPU的高频运算,电源转换频率逐步提升至MHz级,同时需将转换效率从传统的96%提升至98%以上,以减少散热成本与碳排放。  高压化与稳定性:输入电压向800V DC-HVDC(高压直流)演进,输出电压则需精准降至芯片级所需的0.8V-12V,要求器件具备宽电压范围适应性与低噪声特性。  02PSU的拓扑图及演变  图 2(a)显示了开放计算项目 (OCP) 机架电源架构的示例图。每个电源架由三相输入供电并容纳多个 PSU;每个 PSU 由单相输入供电。机架向母线输出直流电压(例如 50 V),母线还连接到 IT 和电池架。  AI 趋势要求 PSU 进行功率演进,如图 2(b)所示。让我们通过实施拓扑和设备技术建议的示例来介绍这些 PSU 的每一个代。  AI 服务器机架 PSU 的趋势和功率演进  第一代 AI PSU 高效电能转换基石  在第一代 AI PSU(2010-2018 年)的硅基架构框架下,实现5.5-8kW 功率、50V 输出、277V 单相输入  当前的AI服务器PSU大多遵循ORv3-HPR标准[9]。相较于先前的ORv3 3 kW标准[9],该标准的大部分要求(包括输入和输出电压以及效率)保持不变,但增加了与AI服务器需求相关的更新,例如,更高的功率和峰值功率要求(稍后详述)。此外,由于与BBU架的通信方式有所调整,输出电压的调节范围变得更窄。  尽管每个电源架都通过三相输入(400-480 Vac L-L)供电(见图2),但每台PSU的输入仍为单相(230-277 Vac)。图3展示了符合ORv3-HPR标准的第一代PSU的部署示例:PFC级可以采用两个交错的图腾柱拓扑结构,其中,650V CoolSiC™ MOSFET用于快臂开关,600V CoolMOS™ SJ MOSFET用于慢臂开关。DC-DC级可以选用650V CoolGaN™晶体管的全桥LLC,次级全桥整流器和ORing则使用80V OptiMOS™ Power MOSFET。  推荐使用萨瑞微电子800V-1000V整流桥  第二代AI PSU:增加线路电压  如上所述,随着机架功率增加到300kW以上,电源架的功率密度变得至关重要。因此,下一代PSU的设计方向是,在单相架构中实现8kW至12kW的输出功率。随着每个机架的功率增加,数据中心中的机架数量在某些情况下,可能会受配电电流额定值和损耗的约束。因此,为了降低交流配电的电流和损耗,部分数据中心可能会将机架的交流配电电压从400/480V提高到600Vac L–L(三相),同时将PSU的输入电压从230/277Vac 提高到347Vac(单相)。  对于DC-DC级来说,三相LLC拓扑结构是一种理想选择,其中,750V CoolSiC™ MOSFET用于初级侧开关,80V OptiMOS™ 5 Power MOSFET用于次级全桥整流器和ORing。由于增加了第三个半桥开关臂,该解决方案能够提供更高的功率,有效降低输出电流的纹波,并通过三个开关半桥之间的固有耦合实现自动电流分配。  推荐使用萨瑞微高频开关  高频开关(500V硅基MOS推荐)  高频开关(650V硅基MOS推荐)  硅基MOSFET: 500V/650V硅基MOS:采用沟槽式结构,适用于中低频(<500kHz)、中等功率场景,如辅助电源或低压侧开关,导通电阻低至30mΩ以下,支持快速开关响应。  高频开关(600V超结MOS推荐)  高频开关(650V超结MOS推荐)  超结MOSFET(600V/650V/800V):通过电荷平衡技术突破硅基材料限制,实现高耐压与低导通电阻的平衡(如650V型号Rds(on)≤15mΩ),适用于1MHz以上高频场合,可显著减小磁性元件体积,提升功率密度。  碳化硅MOSFET(650V/1200V/1700V): 针对800V高压输入与超高频率(>2MHz)场景,碳化硅器件展现出无可替代的优势:  材料特性:禁带宽度是硅的3倍,支持更高结温(175℃)与耐压,开关损耗降低70%以上,适用于全碳化硅LLC拓扑,转换效率可达98.5%。  第三代AI PSU:三相架构与400V配电  为了进一步提高机架功率,第三代 AI PSU 将采用更具颠覆性的机架架构,如下所示:  1PSU输入:从单相转为三相,以提高功率密度,并降低成本  2电源架PSU输出电压:从50V提升到400V,以降低母线电流、损耗和成本  三相输入和 400 V 输出 PSU 的示例实现,其中包含推荐的设备和技术。PFC 级是 Vienna 转换器,这是三相 PFC 应用的流行拓扑。它的主要优势在于,由于其分离总线电压,它允许使用 650 V 设备,使用两倍数量的背对背 CoolSiC MOSFET 650 V 和 CoolSiC 1200 V 二极管。由于 PFC 输出是分离电容器,因此每个电容器电压为 430 V,并向全桥 LLC 转换器供电,初级和次级侧均配备 CoolGaN 晶体管 650 V。两个 LLC 级在初级侧串联,在次级侧并联,以向 400 V 母线供电。  或者,两个背靠背的 CoolSiC MOSFET 650 V 可以用 CoolGaN 双向开关 (BDS) 650 V 代替,后者是真正的常闭单片双向开关。这意味着单个 CoolGaN BDS 可以取代四个分立电源开关,以获得相同的 RDS(on),因为它在 RDS(on)/mm2 方面具有高效的芯片尺寸利用率。  在DC-DC变换器的次级整流中,同步整流MOS管替代传统二极管,消除肖特基势垒电压,大幅降低导通损耗:  产品特性:低栅极电荷(Qg<10nC)与极低导通电阻(如40V耐压型号Rds(on)≤5mΩ),支持全负载范围高效运行。内置体二极管反向恢复电荷(Qrr)极低,减少振荡与EMI干扰,适配高频同步整流控制方案。  技术优势:配合驱动电路实现ZVS(零电压开关)或ZCS(零电流开关),在10kW以上功率模块中,可将整流效率从95%提升至99%以上。  WBG 对 AI PSU 的好处  宽带隙 (WBG) 半导体(例如 CoolGaN)成为 AI PSU 的最佳选择,因为它们在更高的开关频率下提供最佳效率,从而实现更高功率密度的转换器,而不会影响转换效率。  除了 AI PSU 的标称功率显著上升外,GPU 还会吸收更高的峰值功率并产生高负载瞬变。因此,DC-DC 级输出必须足够动态,而电压过冲和下冲必须保持在规定的限值内。可以通过提高开关频率来增加 DC-DC 级输出动态,从而增加控制环路带宽。  CoolGaN 器件因其卓越的 FoM 和 Si、SiC 和 GaN 器件中最低的开关损耗而轻松满足了更高开关频率的要求。尤其是在软开关 LLC 转换器中,CoolGaN 具有最低的输出电容电荷 (Qoss),这对于更轻松地实现 ZVS(零电压开关)起着至关重要的作用。随后,这有助于更精确地设置死区时间,从而消除不必要的死区时间传导损耗。  辅助电源LDO推荐  辅助电源LDO:为服务器监控芯片、传感器等提供稳定低压供电(如3.3V/5V),萨瑞微电子的LDO系列具备低静态电流(<1μA)、高PSRR(电源抑制比)与快速瞬态响应,确保核心器件在复杂电源环境下稳定运行。  负载开关MOS管推荐  负载开关MOS管:用于电源系统的通断控制与负载隔离,支持大电流(10A-50A)快速切换,内置过流/过热保护,避免浪涌电流对后级电路的冲击,提升系统安全性。  结论  与AI算力共成长,定义电源新高度 在AI服务器向更高功率、更高效率演进的征程中,电源系统的每一次优化都依赖于器件级的技术突破。萨瑞微电子以“全电压覆盖、全技术兼容、全流程可控”的产品矩阵,为AI服务器电源提供了从输入整流到精准供电的完整解决方案,助力客户在算力竞赛中抢占先机。
关键词:
发布时间:2025-04-03 14:50 阅读量:183 继续阅读>>
意法半导体65W <span style='color:red'>GaN</span>变换器为注重成本的应用提供节省空间的电源方案
  意法半导体的VIPerGaN65D反激式转换器采用SOIC16封装,可以用于设计体积较小的高性价比电源、适配器和USB-PD(电力输送)快速充电器,最大输出功率可达65W,输入电压为通用电网电压。  这款准谐振离线变换器集成一个700V GaN(氮化镓)晶体管和优化的栅极驱动器及典型的安全保护功能,降低了利用宽带隙技术提高功率密度和能效的技术门槛。GaN功率晶体管的最高开关频率为240kHz,开关损耗极小,可以搭配使用小体积的反激式变压器和无源元件,以及价格低廉的小电路板。  VIPerGaN65D采用较传统的SO16n窄体封装,而VIPerGaN系列其他成员则采用5mmx6mm DFN封装。  该变换器采用零电压开关技术,可以调整谷底同步延迟,确保GaN晶体管导通时间始终是在漏极谐振谷底。该转换器还具有动态消隐时间功能,在输入电压上升时可保持能效,并自适应任何线路和负载条件,以最大限度地提高整体能效。此外,在输入电压范围内,前馈补偿可最大限度地减少输入峰值功率变化。  VIPerGaN65D的极限电流为3.5A,当设计采用85V至265V的通用输入电压时,变换器最大输出功率可达65W,如果把输入电压提高到185V-265V,最大额定输出功率可达85W。待机功率不到30mW,符合最新国际能效标准的要求。  VIPerGaN65D可用于设计小巧又便宜的快速充电器和适配器,并可用作洗衣机、洗碗机、咖啡机、电视机、机顶盒、数码相机、便携式音频播放器、无线剃须刀等设备的辅助电源。它还用于台式电脑和服务器、楼宇和家庭自动化设备、电表、家用和建筑照明以及空调的辅助电源。  VIPerGaN65D集成了一个SENSEFET晶体管(电流检测功率MOSFET),为优化能效和触发系统安全保护机制提供精确的电流检测功能,最大限度减少物料清单成本。内置安全功能包括过流保护、输出过压保护、输入电压前馈补偿、输入高压/欠压保护、输入过压保护、输出过载保护、输出短路保护和热关断。所有安全保护功能均具有自动重启功能,变换器还采用频率抖动技术抑制EMI干扰。  参考设计EVLVIPGAN65DF有助于加速基于VIPerGaN65D的电源项目的开发进度。EVLVIPGAN65DF电路板集成变换器芯片、副边同步整流电路和意法半导体的SRK1001自适应控制器,为开发者提供一个24V、65W的电源,并配备完善的安全保护功能,峰值能效大于93%。  VIPerGaN65D现已上市,采用SOIC16窄体封装,可联系AMEYA360的销售代表垂询。
关键词:
发布时间:2025-04-01 09:28 阅读量:231 继续阅读>>
英飞凌Cool<span style='color:red'>GaN</span>™功率晶体管赋能SounDigital放大器,更小尺寸、更高保真
罗姆的Eco<span style='color:red'>GaN</span>™被村田制作所Murata Power Solutions的AI服务器电源采用
  ~650V耐压、TOLL封装的GaN HEMT有助于进一步提高电源效率~       全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)的650V耐压、TOLL封装的EcoGaN™产 品GaN HEMT,被先进的日本电子元器件、电池和电源制造商村田制作所Murata Power Solutions的AI(人工智能)服务器电源采用。罗姆的GaN HEMT具有低损耗工作和高速开关性能,助力Murata Power Solutions的AI服务器5.5kW输出电源单元实现小型化和高效率工作。预计该电源单元将于2025年开始量产。  近年来,随着AI(人工智能)和AR(增强现实)等在IoT领域的发展,数据通信量在全球范围内呈现持续增加趋势。其中,据说使用AI进行一次查询所消耗的电量比普通的网页搜索要高数倍,这就迫切需要为处理这些查询的高速运算设备等供电的AI服务器电源进一步提高效率。另一方面,具有低导通电阻和高速开关特性的GaN器件因其有助于电源的高效率工作和外围元器件(如电源电路中使用的电感器等)的小型化而备受瞩目。  Murata Power Solutions Technical Fellow Dr. Joe Liu表示:“很高兴通过使用罗姆的GaN HEMT,使我们能够设计出具有更高效率和更高功率密度的AI服务器电源单元。利用GaN HEMT的高速开关工作、 低寄生电容以及零反向恢复特性,可将对开关损耗的影响控制到最小,还可提高开关转换器的工作频率并削减磁性元器件的尺寸。罗姆的GaN HEMT在性能方面非常具有竞争力,且可靠性也很高,用在我们的AI服务器5.5kW输出电源单元中,取得了非常好的效果。未来,我们将通过继续与在功率半导体领域优势显著的罗姆合作,努力提高各种电源的效率,为解决电力供需紧张的社会课题贡献力量。”  罗姆 LSI事业本部 Power Stage产品开发部 部长 山口雄平表示:“罗姆的EcoGaN™能够被电源领域的全球领导者Murata Power Solutions的AI服务器电源单元采用,深感荣幸。这次采用的GaN HEMT具有行业先进的开关性能,而且使用的是散热性优异的TOLL封装,有助于Murata Power Solutions的电源单元实现更高功率密度和更高效率。另外,在“通过电子产品为社会做贡献”方面,Murata Power Solutions与罗姆的经营愿景一致,我们希望未来也继续与村田制作所合作,双方共同促进电源的小型化和效率提升,并为人们丰富多彩的生活贡献力量。  关于Murata Power Solutions的AI服务器电源单元  Murata Power Solutions的AC-DC电源“1U前端”系列包括高功率密度Short Version的M-CRPS封装3.2kW电源“D1U T-W-3200-12-HB4C”(输出12V版)和“D1U T-W-3200-54-HB4C”(输出54V版) ,另外还新增了AI服务器用的5.5kW“D1U67T-W-5500-50-HB4C”等产品。Murata Power Solutions的前端电源的转换效率很高,可以满足80 Plus Titanium和开放计算产品的最严格要求;还支持N+M冗余工作,可提高系统的可靠性,因此也适合为最新的GPU服务器供电。不仅能够为服务器、工作站、存储系统和通信系统提供可靠性高且效率高的电力,而且其低矮的1U尺寸还有助于削减系统面积。  关于罗姆的EcoGaN™  EcoGaN™是通过更大程度地发挥GaN的性能,助力应用产品进一步节能和小型化的罗姆GaN器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。  ・EcoGaN™是 ROHM Co., Ltd.的商标或注册商标。  与本文有关的罗姆官网页面  ・关于650V耐压的TOLL封装GaN HEMT(2025年2月发布时的新闻稿)  https://www.rohm.com.cn/news-detail?news-title=2025-02-13_news_gan&defaultGroupId=false  ・关于罗姆的GaN功率器件(EcoGaN™产品介绍)  https://www.rohm.com.cn/products/gan-power-devices  关于村田制作所  村田制作所是一家全球综合电子元器件制造商,主要从事以陶瓷为基础的电子元器件的开发、生产和销售。致力于通过自主开发并积累的材料开发、流程开发、产品设计、生产技术、以及支持它们的软件和分析、 评估等技术基础,村田制作所创造出独具创新的产品,为电子社会的发展做出贡献。  了解更多信息,请访问村田制作所官网(https://corporate.murata.com/zh-cn/)。  关于罗姆  罗姆是成立于1958年的半导体电子元器件制造商。通过铺设到全球的开发与销售网络,为汽车和工业设备市场以及消费电子、通信等众多市场提供高品质和高可靠性的IC、分立半导体和电子元器件产品。  在罗姆自身擅长的功率电子领域和模拟领域,罗姆的优势是提供包括碳化硅功率元器件及充分地发挥其性能的驱动IC、以及晶体管、二极管、电阻器等外围元器件在内的系统整体的优化解决方案。  了解更多信息,请访问罗姆官网(https://www.rohm.com.cn/)。
关键词:
发布时间:2025-02-26 09:24 阅读量:380 继续阅读>>
罗姆650V耐压<span style='color:red'>GaN</span> HEMT新增小型、高散热TOLL封装
  全球知名半导体制造商ROHM(总部位于日本京都市)已将TOLL(TO-LeadLess)封装的650V耐压GaN HEMT*1“GNP2070TD-Z”投入量产。TOLL封装不仅体积小,散热性能出色,还具有优异的电流容量和开关特性,因此在工业设备、车载设备以及需要支持大功率的应用领域被越来越多地采用。此次,ROHM将封装工序外包给了作为半导体后道工序供应商(OSAT)拥有丰富业绩的日月新半导体(威海)有限公司(ATX SEMICONDUCTOR (WEIHAI) CO., LTD.,以下简称“ATX”)。  为了实现无碳社会,“提高用电量占全球一大半的电源和电机的效率”已成为全球性的社会问题。功率元器件是提高其效率的关键,SiC(碳化硅)、GaN等新材料有望进一步提高各种电源的效率。ROHM于2023年4月将650V耐压的第1代GaN HEMT投入量产,并于2023年7月将栅极驱动器和650V耐压GaN HEMT一体化封装的Power Stage IC投入量产。为了应对大功率应用中的进一步小型、高效率化的市场要求,ROHM采取在以往的DFN8080封装基础上追加的形式来强化650V GaN HEMT的封装阵容。在TOLL封装中内置第2代元件并实现产品化。  新产品在TOLL封装内置第2代GaN on Si芯片,在与导通电阻和输入电容相关的器件性能指标 (RDS(ON)×Qoss*2) 方面,数值表现达到业界先进水平。这将有助于需要高耐压且高速开关的电源系统进一步节能和小型化。新产品已于2024年12月投入量产(样品价格 3,000日元/个,不含税),并已开始电商销售,通过电商平台均可购买。  关于新产品的量产,ROHM利用其在垂直统合型一体化生产体系中所积累的元器件设计技术和自有优势,进行了相关的设计和规划,并于2024年12月10日宣布作为与台积电(Taiwan Semiconductor Manufacturing Company Limited,以下简称“TSMC”)合作的一环,前道工序在TSMC生产,后道工序在ATX生产。另外,ROHM还计划与ATX合作生产车载GaN器件。预计从2026年起,GaN器件在汽车领域的普及速度将会加快,ROHM计划在加强内部开发的同时,进一步加深与这些合作伙伴之间的关系,以加快车载GaN器件投入市场的速度。  日月新半导体(威海)有限公司 董事兼总经理 廖弘昌 表示:  “ROHM拥有从晶圆制造到封装的全部生产设备,并拥有非常先进的制造技术,很高兴ROHM将部分生产外包给我们。我们从2017年开始与ROHM进行技术交流,目前正在继续探索更深合作的可能性。ATX在GaN器件后道工序制造方面的实际业绩和技术实力得到ROHM的认可,从而促成了本次合作。双方还计划针对ROHM目前正在开发的车载GaN器件也开展合作,未来也会继续加深双方的合作伙伴关系,以促进各领域的节能,为实现可持续发展的社会做出贡献。”  ROHM Co., Ltd. AP生产本部 本部长 藤谷 谕 表示:  “非常高兴ROHM 的TOLL 封装650V GaN HEMT能够以令人满意的性能投入量产。ROHM不仅提供GaN器件,还提供其与融入自身模拟技术优势的IC等元器件相结合的电源解决方案,而且还会再将这些设计过程中积累的专业知识和理念应用到元器件的设计中。通过与ATX等技术实力雄厚的OSAT合作,ROHM不仅能够跟上快速增长的GaN市场的步伐,同时还能不断向市场推出融入ROHM优势的产品。未来,我们将继续通过提高GaN器件的性能,促进各种应用产品的小型化和效率提升,为丰富人们的生活贡献力量。”  <什么是EcoGaN™>      EcoGaN™是通过更大程度地发挥GaN的性能,助力应用产品进一步节能和小型化的ROHM GaN器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。  ・EcoGaN™是ROHM Co., Ltd.的商标或注册商标。  <产品阵容>  <应用示例>      适用于服务器、AC适配器(USB充电器)、通信基站电源、工业设备电源、PV逆变器、ESS(Energy Storage System / 储能系统)等输出功率500W~1kW级的广泛电源系统。  <电商销售信息>      开始销售时间:2025年1月起  新产品在电商平台将逐步发售。  ・产品型号:GNP2070TD-ZTR  <关于日月新半导体(威海)有限公司>      ATX位于中国山东省威海市,是从事功率元器件的组装和测试的OSAT企业。公司可以生产MOSFET、IGBT、SiC、GaN等50多种封装,年产能超过57亿枚。目前产品已被广泛应用于工业设备、车载设备、可再生能源(太阳能发电等)、消费电子等领域,尤其是在电动汽车控制领域,在国际品牌市场拥有很高的市场份额。  ATX与全球排名前十的功率元器件企业建立了长期且紧密的合作关系,是一家拥有自主知识产权以及基于这些知识产权的核心技术的、下一代半导体元器件开发方面的先进企业。  如需了解更多信息,请访问ATX官网:http://www.atxwh.com/  <术语解说>     *1) GaN HEMT  GaN(氮化镓)是一种用于新一代功率元器件的化合物半导体材料。与普通的半导体材料——Si(硅)相比,具有更优异的物理性能,目前,因其具有出色的高频特性,越来越多的应用开始采用这种材料。  HEMT是High Electron Mobility Transistor(高电子迁移率晶体管)的英文首字母缩写。  *2) RDS(ON)×Qoss  评估元器件性能的指标,Qoss是指从输出端看的漏极源极间的总电荷量。另外,RDS(ON)(导通电阻)是使MOSFET启动(导通)时漏极和源极之间的电阻值。该值越小,运行时的损耗(电力损耗)越少。这两者相乘得到的值越低,开关工作效率越高,开关损耗越少。
关键词:
发布时间:2025-02-13 16:31 阅读量:357 继续阅读>>
茂睿芯推出无损电流检测,65W集成<span style='color:red'>GaN</span> 的AC/DC转换器MK2706
  一、背景  氮化镓(GaN)凭借着高效率、高功率密度和快速开关的优势,在消费类(快充、手机、LED)、汽车激光雷达、数据中心等领域迅速崛起。据TrendForce《2023 GaN功率半导体市场分析报告》显示,全球GaN功率元件市场规模将从2022年的1.8亿美金成长到2026年的13.3亿美金,复合增长率高达65%。在快充领域,Trendforce预计2025年氮化镓的渗透率也将超过50%。从技术演化的角度来看,在65W以下的快充和适配器领域GaN驱动技术经历了几个阶段:  1、初期:  使用硅基驱动器配合外部电路驱动GaN  2、过渡期:  采用专用的GaN PWM控制器驱动GaN  3、当前主流:  65W以下广泛采用PWM控制器与GaN集成的技术  然而,随着技术的不断发展,业界仍然面临着一些挑战:  1、驱动问题:  由于GaN的特性,驱动器的设计和驱动电路的布局变得非常关键。必须确保安全、高效的驱动方式,以避免驱动震荡引起可靠性和EMI问题。  2、散热问题:  系统在低电压输入(Low Line)时的散热瓶颈,需要进一步提升效率。  3、集成度问题:  进一步缩小体积,提高集成度,以满足小型化需求。  为了应对这些挑战,业界已经采取了一些技术措施:  1、设计专门的GaN PWM驱动器,并和GaN集成以最小化驱动环路;  2、引入电流无损检测电路;  3、提高集成度,将GaN驱动器、GaN功率器件和无损电流检测集成在一起。  二、五合一GaNControlTM PWM 芯片:MK2706  在这样的行业背景下,茂睿芯推出了集成化程度更高的五合一GaNControlTM PWM 芯片MK2706,进一步提升了集成度和功率密度,并且实现:无损检测、安全驱动。  三、MK2706 核心功能  准谐振(QR)PWM控制器  GaN驱动器  GaN功率器件  宽范围单VCC供电(8V-85V)  电流无损检测电路  MK2706是基于茂睿芯广受客户认可的四合一MK2789系列产品开发而成。MK2789系列已经集成了QR PWM控制器、驱动器、GaN功率器件和宽范围VCC供电。新一代产品MK2706在此基础上,最终实现高效率、高功率密度、高可靠性和低成本的PD解决方案。  四、MK2706 产品优势  1、节省损耗  显著提高Low Line工作效率:在65W@90V输入条件下,效率提升0.3%-0.4%;  90V输入时的热管理更加容易。  无损检测节省损耗和对效率影响计算:  节省采样电阻功耗,按65W计算,90V输入Ip_rms≈1.1A,Rcs=250mR,可节约Rcs损耗300mW;  当前65W 90V输入效率约92.5%,输入功率约为65/92.5%=70.27W;  效率提升=(65/(70.27-0.3))%-92.5%=0.39%。  2、安全驱动  驱动路径大幅缩短,减少了驱动回路寄生电感和寄生电容的影响;  创新性地集成了米勒钳位电路,进一步提高了驱动的可靠性和效率。  3、简化外围电路设计  宽范围VCC供电(9V-85V),对于PD调压输出(3.3V-20V),也可省去VCC LDO供电电路;  无损电流检测部分不需要外供电或者VCC电容,进一步简化外围设计;  整个芯片外围器件非常少,节省加工成本。  五、MK2706 系统板实测  为了验证GaNControlTM技术的实际表现,我们进行了系统板测试:  1、原理图与PCB布局  整个ACDC功率级原边只有11个贴片电阻、7个贴片电容。贴片原件都放置于PCB背面,外围电路十分简单明了。  2、效率测试  MK2706 输入电压90V时满载效率可达93%  结语  秉承"关注客户需求,寻求客户满意"的服务宗旨,茂睿芯始终致力于开发能够真正帮助客户的产品,这款65W集成GaN 的AC/DC转换器MK2706的设计初衷正是为了让客户能够更省钱、省事、省心!  茂睿芯坚信具有无损检测、安全驱动的高度集成五合一芯片方案将进一步推动PD快充工程技术发展。我们将以MK2706为起点持续挖掘客户需求,坚持创新,推出更多实惠、高效且可靠的芯片产品!
关键词:
发布时间:2024-09-14 17:48 阅读量:1008 继续阅读>>
AMEYA360:纳芯微<span style='color:red'>GaN</span> HEMT驱动芯片NSD2017助力解决激光雷达应用挑战
  自动驾驶是新能源汽车智能化的重要发展方向,而具备强感知能力的激光雷达则是L2+及以上级别自动驾驶不可或缺的硬件设备。纳芯微的单通道高速栅极驱动芯片NSD2017,专为激光雷达发射器中驱动GaN HEMT(高电子迁移率晶体管)而设计,助力应对激光雷达应用中的各项挑战。  1)激光雷达系统结构介绍  自动驾驶中使用的激光雷达通常采用DToF(Direct Time-of-Flight)测距方式,即通过直接测量激光的飞行时间来进行距离测量和地图成像。下图为DToF激光雷达系统的典型结构,其中信号处理单元通过记录激光发射器发出光脉冲的时刻,以及激光接收器收到光脉冲的时刻,根据时间间隔和光速即可计算出目标距离。  激光雷达为了实现高分辨率与宽检测范围,需要极窄的激光脉冲宽度、极快的激光脉冲频率和极高的激光脉冲功率,这对激光发射器中功率开关器件的性能提出了更高的要求。相比传统的Si MOSFET,GaN HEMT具有更优越的开关特性,非常适合DToF激光雷达应用。GaN HEMT的性能表现依赖于高速、高驱动能力和高可靠性的GaN栅极驱动芯片,NSD2017凭借其优异的产品特性,充分发挥了GaN HEMT在激光雷达中的优势。  2)NSD2017产品特性  - 推荐工作电压:4.75V~5.25V  - 峰值拉灌电流:7A/5A  - 最小输入脉宽: 1.25ns  - 传输延时: 2.6ns  - 脉宽畸变: 300ps  - 上升时间@220pF负载: 650ps  - 下降时间@220pF负载: 850ps  - 封装:DFN6(2mm*2mm),WLCSP(1.2mm*0.8mm)  - 满足AEC-Q100车规认证  - 同相和反相输入引脚可用于产生极窄脉宽  - 具备UVLO、OTSD保护  3) NSD2017关键性能应对激光雷达应用挑战  1. 大电流驱动能力,支持激光雷达远距离探测  激光雷达的远距离探测能力使自动驾驶车辆能够提前发现障碍物并及时避让,从而提升自动驾驶速度上限。为实现更远的探测距离,通常需要在保证不损伤人眼的前提下,采用更大功率的激光发射器,这就需要更大电流的GaN HEMT以及驱动能力更高的驱动芯片。纳芯微的NSD2017具备7A峰值拉电流和5A灌电流能力,可用于驱动大电流GaN HEMT,从而产生高峰值激光功率,实现远距离探测。  2. 极窄输入脉宽,满足激光雷达高测距精度要求  DToF激光雷达通过测量脉冲激光发射和接收的时间间隔来实现测距,但是如果来自两个相邻目标的反射光脉冲发生重叠,系统将无法分辨出这两个相邻目标的距离信息。为了满足厘米级别的距离分辨率的要求,激光雷达需要极窄的光脉冲宽度,通常低至几纳秒,并且具有快速的上升沿和下降沿。NSD2017的最小输入脉宽典型值仅为1.25ns,且开启和关断路径具有优异的延迟匹配,输入到输出的脉冲宽度失真低至300ps。此外在220nF负载下,NSD2017的上升时间典型值为650ps,下降时间典型值为850ps,也有利于产生更窄的脉冲激光。  3. 小封装和高频开关,优化激光雷达角分辨率与点频性能  激光雷达的角分辨率表示扫描过程中相邻两个激光点之间的角度差,点频则表示在三维视场内每秒发出的激光点数。一般来说,激光雷达的角分辨率越小,相邻点云之间越密集,往往点频越高,激光雷达的感知能力也就越强。为实现更高的角分辨率和点频,激光雷达需要布置更多的激光发射器,因而对驱动芯片的封装尺寸提出了更高的要求。NSD2017车规级芯片不但提供DFN (2mm*2mm) 封装,还可以提供更小尺寸的WLCSP (1.2mm*0.8mm) 封装。NSD2017支持最高60MHz开关频率,传输延时典型值低至2.6ns,确保了系统控制环路具有足够快的响应时间,也有利于提高激光雷达点频性能。  4. 强抗干扰能力,保证激光雷达的安全可靠  在激光发射器中,为了快速开关GaN HEMT,栅极驱动芯片外部的栅极串联电阻通常设置为零;栅极驱动芯片的峰值拉电流和灌电流,会通过芯片的封装寄生电感和PCB寄生电感,引起芯片内部的VDD和GND产生较大的抖动,从而可能导致驱动电路工作异常。NSD2017通过优化封装寄生电感,并且在芯片内部集成去耦电容,有效地滤除驱动电路抽载产生的高压毛刺,从而提升了抗噪声能力。此外,NSD2017具备过温保护和欠压保护功能,保证激光雷达安全可靠地工作。  4)总结  GaN HEMT栅极驱动芯片NSD2017具备高开关频率、低传输延时、极窄脉宽、低失真、强驱动能力和抗干扰等特性,采用小尺寸车规级封装,能够助力应对激光雷达各项应用挑战,提升感知能力,确保其安全可靠运行。
关键词:
发布时间:2024-07-17 13:10 阅读量:737 继续阅读>>
瑞萨电子:Transphorm <span style='color:red'>GaN</span>技术引领氮化镓革命
  *瑞萨电子已于2024年6月20日完成对Transphorm的收购,以下为中电网于收购完成之前对Transphorm的采访文章。  长期以来,宽禁带行业一直围绕两种不同架构氮化镓晶体管争论高下——常闭耗尽型(D-mode)和增强型(E-mode)氮化镓。在设计电路时,人们倾向于使用增强型(E-mode)晶体管,但其实无论从性能、可靠性、多样性、可制造性以及实际用途方面,常闭型(D-mode)都更优于前者。  D-mode GaN的优势  此前,GaN功率半导体产品的全球领先企业Transphorm发布了《Normally-off D-mode 氮化镓晶体管的根本优势》的最新白皮书。其中,介绍了normally-off D-mode GaN平台的几个关键优势,包括:  性能更高:优越的TCR(~25%),更低的动态与静态导通电阻比(~25%),从而降低损耗,获得更高的效率和更优越的品质因数(FOM)。  高功率级应用更加容易:Transphorm D-mode具有较高的饱和电流,而E-mode则必须通过并联才能提供相同的电流,但这会导致功率密度和可靠性下降。  稳健性且易驱动性:采用最稳健的硅MOSFET SiO2栅极,不受E-mode的p栅极限制,可兼容硅基驱动器和控制器。  Transphorm业务拓展及市场营销高级副总裁Philip Zuk  Transphorm在初入市场时,不断研究、探讨了两种不同的技术路线,最终决定采用常闭型D-mode。十多年来,Transphorm凭借最可靠的GaN平台成功引领行业,设计和制造用于新世代电力系统的高性能、高可靠性650V、900V和1200V(尚处于开发阶段)氮化镓器件。目前,Transphorm器件的现场运行时间已超过2000亿小时,覆盖了从低功率到高功率系统最广泛的应用领域。  Transphorm业务拓展及市场营销高级副总裁Philip Zuk接受了中电网的采访,深入探讨了Transphorm氮化镓(GaN)产品的独特特点、技术优势及其在高性能领域的应用前景。他称:“Transphorm的常闭耗尽型D-mode技术凭借一个GaN核心平台就能够涵盖整个功率范围,没有任何限制,而其他技术则兼需增强型GaN和SiC MOSFET才能达到同样的效果。”  SuperGaN的优势  Transphorm的SuperGaN技术是其产品线中的一大亮点。SuperGaN技术是一种共源共栅(cascode)结构的常闭耗尽型(normally-off D-mode)氮化镓平台。该平台特点使得SuperGaN具备了增强型(E-mode)氮化镓所不能比拟的优势,包括:  Transphorm积累了深厚的GaN专业知识和垂直整合使其能够快速开发出高性能、可靠并且强劲的产品。  SuperGaN可以保持GaN器件2DEG(即二维电子气,2DEG沟道的电子迁移率最高,可令开关性能达到当前任何其他化合物半导体技术都无法企及的水平。)的自然状态,充分利用2DEG的固有优势,将器件导通电阻降到最低。  业界最丰富的封装类型:从传统的标准TO封装,直至降低封装电感、提高工作频率和印刷电路板制造效率的顶部和底部冷却式表贴封装。  业界领先的可靠性:器件运行时间已超过3000亿小时,FIT故障率(每10亿小时发生的故障次数)只有不到0.05。  此外,SuperGaN还可以提供最高的灵活性:  直接替代E-mode增强型GaN分立器件解决方案以及Si和SiC MOSFET;  提供不同的栅极驱动阈值电压,能够匹配使用E-mode增强型分立器件、高压超结和SiC MOSFET的电路设计;  作为一个垂直整合的企业,能够实现系统级封装(SIP)合作。  Philip Zuk称,任何其他供应商都无法提供上述优势,这也是Transphorm的SuperGaN技术能够取得成功的关键所在。  助力快充市场  如上所述,SuperGaN技术的优势使Transphorm的高压氮化镓场效应晶体管产品组合能够满足当今广泛的市场应用。例如,在快充领域,尤其是智能手机和笔记本电脑的充电器中,GaN器件在提高效率的同时减小体积,使快充设备更快捷高效。Philip Zuk认为,快充行业需要1200V GaN器件,Transphorm是一个垂直整合的企业,自主拥有外延片生产工艺,我们的1200V平台采用的是蓝宝石基GaN,650V SuperGaN平台采用的是硅基GaN。Transphorm将于今年下半年启动首款1200V器件的试样,帮助提升设计能力和成果,助力快充及800V电动汽车制造。  汽车领域的新选择  在应用更为广泛的新能源汽车领域,同为宽禁带半导体的SiC被广泛采用,未来GaN在该领域的应用会否更优于SiC呢?Philip Zuk认为,与SiC相比,GaN具有更高的性能,并且GaN器件的制造与硅基制程平台兼容,衬底材料更便宜,因此制造成本也更低。Transphorm的GaN技术650V以及即将在下半年推出的1200V平台可以不断改进性能和降低系统成本,而SiC却做不到。目前,Transphorm的GaN技术已应用于电动汽车的DC-DC以及车载充电器,并将在2030年进一步应用于车载逆变器驱动和三相快充站。  与竞争技术相比毫不逊色  Transphorm的SuperGaN技术可以与众多其他技术开展竞争,包括硅超结、IGBT和碳化硅MOSFET等。  在可驱动性、可设计性和稳健性方面最接近SuperGaN的技术,是已上市近25年的硅超结MOSFET。SuperGaN不断仿效这些市场应用成熟技术的特性,方便客户尽快适应并接受新的技术。  同时,SuperGaN还为设计者提供独一无二的“GaN优势”,即2DEG,2DEG沟道的电子迁移率最高,可令开关性能达到当前任何其他化合物半导体技术都无法企及的水平。  高性能SuperGaN技术在良率和可靠性方面可与硅基技术媲美,并可将电源设计提升至一个全新的高度,基于其他技术望尘莫及的固有材料属性,实现性能和功率密度更高而成本更低的系统。  小结  全球功率半导体市场正在快速扩展,尤其是在能源效率和高性能需求驱动下,氮化镓技术的市场份额不断增加。随着全球各国推进碳中和目标,氮化镓技术在可再生能源、电动汽车、高效电源管理等领域的应用前景广阔。  凭借着全方位的产品平台,Transphorm的氮化镓器件已经成功应用于从数十瓦至7.5kW的设计及量产产品,应用领域涵盖计算、能源/工业以及消费类适配器/快充电源。同时,Transphorm还创造了氮化镓行业的众多“第一”,为整个氮化镓功率半导体行业树立新的标杆,帮助越来越多的客户认识氮化镓技术的优势,期待着Transphorm能为新一代电力系统带来更多的贡献。
关键词:
发布时间:2024-07-12 10:50 阅读量:627 继续阅读>>
蔡司:氮化镓<span style='color:red'>GaN</span>的特殊价值在多个领域持续释放
  自MU在2018年10月25日那场波澜壮阔的科技浪潮中,如同破浪前行的领航者,首次发布了全球首款GaN充电器,将这一前沿技术正式引入了消费电子的广袤天地。短短数载,GaN的浪潮便席卷了整个行业,各大厂商如雨后春笋般纷纷涉足,竞相推出相关产品。如今,GaN消费电子产品市场犹如一片璀璨的星海,繁星点点,竞争激烈。  然而,面对这片红海般的竞争态势,相关企业并未满足于现状,而是如同翱翔于天空的雄鹰,敏锐地捕捉到了更多的增量市场空间。于是,GaN技术的应用开始逐步向新能源汽车、光伏、数据中心等更为广阔的领域延伸,犹如一颗璀璨的星辰,照亮了前行的道路。  GaN的独特价值,不仅仅局限于消费电子的边界,它正在这些新兴的领域中持续释放着光芒。就像一块珍贵的宝石,GaN在不同领域的应用中闪耀着独特的光彩,为未来的科技发展注入了新的活力。  无刷直流电机(BLDC)在机器人、电动工具、家电和无人机中的应用越来越多。这些应用要求设备具备轻便、小巧、低转矩脉动、低噪音和极高的精度控制。为了满足这些需求,驱动电机的逆变器需要以更高频率运行,同时需要先进的技术来减少由此产生的更高功率损耗。  氮化镓(GaN)晶体管和集成电路能够在不显著增加损耗的情况下以更高频率运行,相比于基于硅的设备,它们能够显著降低成本、噪音、尺寸和重量。也正因此,GaN在电机驱动领域展现出了巨大的潜力。  同时,在快充市场,GaN早已被广泛使用,也证明了其足够的安全可靠性。  01 GaN正在加速“上车”  在汽车行业的电动化与智能化浪潮中,汽车的电子脉络如同藤蔓般蔓延生长,搭载的电子电力系统愈发繁密。而在这一革新的浪潮中,基于GaN材料的功率器件犹如璀璨的明星,其功率输出密度和能量转换效率均远超传统硅材料,更以其出色的性能引领系统向小型化、轻量化迈进,大幅缩减了电力电子零部件的体积与重量。新能源汽车的崛起,为GaN材料带来了前所未有的发展机遇。  随着新能源汽车市场的蓬勃发展,GaN已率先在车载激光雷达产品中大放异彩,并逐渐在车载充电器(OBC)、DC/DC转换器等核心部件中展露锋芒,预示着其未来无限的可能性。风口之下,整车厂商、零部件供应商、GaN相关厂商等纷纷将目光投向这一领域,竞相将GaN产品引入新能源汽车的广阔天地。  GaN器件凭借优越的开关性能,成为车载激光雷达领域的宠儿。随着激光雷达在新能源汽车中的广泛应用,GaN器件产品更是炙手可热。2023年,英诺赛科凭借其低压车规级GaN产品,已在头部车企的车载激光雷达中实现量产,并在年底推出通过AEC-Q101认证的100V车规级GaN器件新品,为自动驾驶及其他先进驾驶辅助系统提供了强大的支持。  在新能源汽车车载充电器(OBC)领域,GaN Systems凭借其11kW/800V氮化镓车载充电器参考设计,在APEC 2023电力电子会议上大放异彩。与SiC产品相比,其功率密度提升高达36%,整体物料清单(BOM)成本至少降低15%,展现了氮化镓技术的卓越性能。同时,GaNPower也在这一领域积极布局,与汽车电子公司加拿大麦格纳集团携手合作,共同推动GaN在OBC上的应用研发。  高压汽车应用领域的GaN解决方案供应商VisIC公司则将目光瞄准了电动汽车逆变器,与hofer powertrain共同开发的基于GaN的逆变器已开始应用于800V汽车,并与IQE合作,共同研发高可靠性D型GaN功率产品,为电动汽车逆变器领域带来新的突破。博世也在积极研发1200V氮化镓技术,为新能源汽车领域注入新的活力。  目前,GaN器件在新能源汽车领域主要占据400V以下的应用市场,在中低端汽车市场展现出巨大的发展空间。同时,GaN器件在高压应用领域的研发也在不断推进,预示着其在新能源汽车领域更为广阔的前景。总体来看,氮化镓在新能源汽车领域的发展潜力不容小觑,正在逐步登上应用大舞台的巅峰。  在电源转换领域,死区时间曾是设计师们必须面对的难题。然而,随着GaN FET技术的出现,这一问题得到了显著改善。GaN FET技术不仅降低了死区时间,还大幅提升了电机驱动器的性能,为电源转换领域带来了革命性的变革。凭借其高效能、高功率密度和优越的热管理特性,GaN技术在电机驱动领域展现出显著的优势和广阔的前景,为电机驱动系统带来了全新的变革和无限的可能性。  02 GaN在光伏领域持续渗透  在璀璨的光伏舞台上,GaN光伏逆变器以其超凡的才华,将功率密度的华丽乐章演绎得更为激昂,为GaN功率器件开辟了一片崭新的价值蓝海。  回溯至2022年11月,美国光伏界的璀璨之星Solarnative振翅高飞,旗下微型光伏逆变器Power Stick搭载了EPC的GaN器件,犹如镶嵌了一颗璀璨的明珠,实现了业内翘楚的功率效益——功率密度竟跃升了五倍之多。这一卓越性能如一道曙光,照亮了GaN器件在光伏逆变器领域的无限可能,吸引了众多厂商竞相追逐。  英诺赛科,作为行业内的佼佼者,于2023年7月挥毫泼墨,将GaN的艺术融入光伏的画卷,旨在进一步雕琢模块体积,雕琢出更为高效的系统性能。而在今年初春的APEC 2024展会上,英诺赛科更是展示了其精心打造的2KW微逆方案,搭配150V GaN与650V GaN的和谐交响,与传统Si方案相比,不仅体积减少了约20%,功率器件的损耗更是降低了35%。这一卓越表现,不仅让系统性能璀璨绽放,更在成本上实现了优雅的缩减。  而在合作的舞台上,EET公司亦与EPC携手共舞,选用了EPC的增强型氮化镓(eGaN®)功率晶体管,为其新型SolMate®绿色太阳能阳台产品注入了更为强大的生命力。英飞凌亦在今年初与Worksport携手并肩,在便携式发电站的转换器中舞动着GaN功率器件的旋律。这两大合作案例,犹如优美的双人舞,展现了GaN器件在提高效率、开关频率等方面的卓越才能,同时实现了体积重量和系统成本的轻盈化。  如今,GaN在光伏行业的应用案例如同繁星点点,汇聚成一幅璀璨的星图。它以其卓越的性能和广泛的应用前景,逐渐成为光伏行业的“主力军”之一,引领着行业迈向更加辉煌的未来。  03 GaN在数据中心领域应用进展  在数据中心的庞大运营图谱中,服务器电源及其冷却系统犹如一只饥饿的巨兽,吞噬着不菲的能源,成为运营成本的重要组成。然而,随着GaN技术的崛起,这只巨兽似乎找到了节制的钥匙。GaN,以其超凡的性能和效率,正逐步减轻数据中心对冷却系统的依赖,以更轻盈的姿态,迈向节能与成本效益的新纪元。因此,数据中心工程师们纷纷将目光投向搭载GaN器件的电源模块,期待其带来的革新。  在数据中心电源模块的创新之路上,英诺赛科如同一颗璀璨的明星,其推出的100V SolidGaN的1kW DCDC电源模块和搭载650V GaN的2kW PSU方案,犹如两把利剑,精准地满足了当前AI、云计算对数据中心供电高效高功率密度的渴求。而纳微半导体,则以其最新高功率氮化镓芯片GaNSafe™为基础,打造了CRPS185 3200W钛金Plus效率服务器电源,其98W/inch³的超高功率密度和96.52%的极高峰值效率,无疑为数据中心服务器电源领域树立了新的标杆。  与此同时,CGD与群光电能科技和英国剑桥大学技术服务部(CUTS)的强强联合,正在共同描绘一幅未来数据中心电源的宏伟蓝图。他们携手设计和开发的先进、高效、高功率密度数据中心电源产品,将GaN的潜力发挥到极致。GaN的开关损耗小,使其在数据中心的电源模块中如鱼得水,相关案例的落地更是证明了其强大的生命力。展望未来,GaN有望延伸至数据中心的其他部件,开启更为广阔的应用前景。  蔡司扫描电镜 助力半导体研发  蔡司用于高质量成像和高级分析显微镜的FE-SEM蔡司扫描电镜Sigma系列将场发射扫描电子显微镜(FE-SEM) 技术与出色的用户体验相结合。构建您的成像和分析程序并提高工作效率。研究新材料、用于质量检验的颗粒或生物或地质标本。在高分辨率成像方面毫不妥协-转向低电压并在1kV 或更低电压下受益于增强的分辨率和对比度。使用一流的EDS几何结构执行高级分析显微镜 ,并以两倍的速度和更高的精度获得分析数据。
关键词:
发布时间:2024-07-11 10:19 阅读量:666 继续阅读>>

跳转至

/ 4

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码