GigaDevice Achieves ISO/SAE 21434 Certification and ASPICE CL2 Assessment, Strengthening Automotive Cybersecurity Together with TÜV Rheinland
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has been awarded the ISO/SAE 21434 Road Vehicles Cybersecurity Engineering certification by TÜV Rheinland. In parallel, the MCAL (Microcontroller Abstraction Layer) software of GD32A7 automotive-grade MCUs successfully passed the ASPICE Capability Level 2 (CL2) assessment. These milestones demonstrate GigaDevice’s alignment with internationally recognized practices in automotive cybersecurity and software project management, reinforcing its competitiveness in the global automotive electronics market.  ISO/SAE 21434, jointly issued by ISO and SAE, defines a comprehensive cybersecurity risk-management framework that spans the entire vehicle lifecycle. As vehicles become increasingly connected and intelligent, cybersecurity has emerged as a foundational requirement for protecting user privacy and ensuring a secure, reliable mobility experience. Achieving this certification confirms that GigaDevice has established an end-to-end cybersecurity governance framework across the design, development, and mass-production phases of its automotive product portfolio—helping customers streamline compliance, accelerate program approvals, and enhance market competitiveness.  The ASPICE assessment model, governed by the German Association of the Automotive Industry (VDA), is one of the industry's most important standards for evaluating software development capability. ASPICE CL2 requires companies to adopt structured processes for project planning, monitoring, and traceability. Developed in full compliance with AUTOSAR, the GD32A7 MCAL software supports major compilers and debugging toolchains while meeting both functional-safety and cybersecurity requirements. Passing ASPICE CL2 affirms the maturity of GigaDevice’s software-development lifecycle and underscores its commitment to high-reliability automotive solutions.  Driven by new infrastructure such as 5G, AI, and the IoT, vehicles are evolving into interactive intelligent terminals. Automotive-grade chips play a central role in this transition, enabling continuous advancements in vehicle intelligence. Designed for next-generation automotive platforms, the GD32A7 series leverages the Arm® Cortex®-M7 core and offers multiple configurations, including single-core, multi-core, and lockstep architectures. With a maximum frequency of 320MHz and up to 1300 DMIPS of compute performance, the devices support 2.97V–5.5V operation and deliver stable performance across a –40°C to +125°C temperature range. The series are well suited for applications such as body electronics, intelligent cockpit systems, chassis control, and powertrain subsystems.  The GD32A71x/GD32A72x families comply with ISO 26262 ASIL B, while the GD32A74x series supports ASIL D requirements. All product lines integrate a Hardware Security Module (HSM) with TRNG, AES, HASH, ECC/RSA, and Chinese SM2/SM3/SM4 cryptographic engines, meeting the Evita Full information-security architecture and providing robust data protection for in-vehicle systems.  Wenxiong Li, Vice President of GigaDevice and General Manager of the Automotive BU, stated: “Achieving ISO/SAE 21434 certification and ASPICE CL2 capability assessment marks an important milestone in elevating our automotive-grade MCU development to higher standards of security and process maturity. GigaDevice will continue to expand the GD32 MCU automotive portfolio and deepen our collaboration with TÜV Rheinland to deliver higher-performance, higher-security products and a more complete ecosystem for our customers.”  Bin Zhao, General Manager of Industrial Services and Cybersecurity at TÜV Rheinland Greater China commented: “GigaDevice has demonstrated exceptional execution and technical competence in establishing automotive cybersecurity systems and software development processes. Obtaining ISO/SAE 21434 certification and ASPICE CL2 capability assessment provides strong validation for its entry into global automotive supply chains. We look forward to further collaboration to advance innovation and deployment in automotive electronics safety.”  GigaDevice and TÜV Rheinland also announced the establishment of a strategic partnership focused on functional safety, cybersecurity, personnel training, and certification services. The collaboration aims to integrate both parties' strengths to enhance competitiveness across automotive, industrial, and emerging markets—delivering safer and more reliable products and solutions to customers worldwide.
Key word:
Release time:2025-12-26 16:25 reading:390 Continue reading>>
Murata Launches World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate, Achieving Dk below 2.0, Contributing to 6G Realization
  Murata Manufacturing Co., Ltd announces the World’s First LCP (liquid crystal polymer) flexible substrate with an Inner Cavity structure, ULTICIRC, and has already begun mass production*. Murata’s proprietary design incorporates an Inner Cavity within the substrate to achieve a dielectric constant (Dk) below 2.0, dramatically reducing transmission loss.Cross-Section Image  With 6G expected to leverage the FR3 (Frequency Range 3) band—roughly 7–24 GHz—substrates with minimal transmission loss are essential to enable high-speed, high-capacity communications at high frequencies. At the same time, demand is growing for thin, space-saving flexible substrates that support free-form mechanical design to meet the ongoing miniaturization of smartphones and communication equipment. Murata has provided LCP flexible substrates with excellent high-frequency characteristics, featuring a proprietary high-performance resin that eliminates spring-back and an adhesive-free, one-shot press multilayer lamination process; building on this expertise for 6G readiness, Murata has developed and launched ULTICIRC. Conventional flexible substrates faced the challenge that making them thinner resulted in increased transmission loss, but this product incorporates an Inner Cavity structure within the substrate, achieving a dielectric constant (Dk) below 2.0, which is significantly lower than Murata's conventional products, enabling both thin profiles and ultra-low transmission loss simultaneously.  Furthermore, thanks to an adhesive-free proprietary manufacturing method and the excellent barrier properties of LCP, the Inner Cavity structure maintains high moisture resistance.  For inquiries regarding this product, please contact us.
Key word:
Release time:2025-12-18 16:00 reading:477 Continue reading>>
GigaDevice Launches GD25NX Series xSPI NOR Flash with Dual-Voltage Design Optimized for high-speed, low-power 1.2 V SoC applications
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, today announced the launch of its new generation of high-performance dual-voltage xSPI NOR Flash products – the GD25NX series. Featuring a 1.8 V core and 1.2 V I/O design, the GD25NX series connects directly to 1.2 V system on chips (SoCs) without an external booster circuit, significantly reducing system power consumption and BOM cost.  Building on the success of the 1.2 V I/O GD25NF and GD25NE series, the new GD25NX further extends GigaDevice's expertise in dual-voltage Flash design. With high-speed data transfer performance and outstanding reliability, the GD25NX series is ideal for demanding applications such as wearables, data centers, edge AI, and automotive electronics that require exceptional stability, responsiveness, and power efficiency.  The GD25NX xSPI NOR Flash supports an octal SPI interface with a maximum clock frequency of 200 MHz in both single transfer rate (STR) and double transfer rate (DTR) modes, delivering data throughput of up to 400 MB/s. It achieves a typical page program time of 0.12 ms and a sector erase time of 27 ms, offering 30% faster programming speed and 10% shorter erase time compared with conventional 1.8 V octal Flash products.  To safeguard data reliability, the GD25NX series integrates error correction code (ECC) algorithms and cyclic redundancy check (CRC) verification to enhance data integrity and extend product lifespan. In addition, the series supports a data strobe (DQS) functionality to ensure signal integrity in high-speed system designs, meeting the stringent data transfer stability requirements of SoCs use on data center and automotive applications.  Built on an innovative 1.2 V I/O architecture, the GD25NX series delivers outstanding performance while maintaining exceptional power efficiency. At a frequency of 200 MHz, the device achieves read currents as low as 16 mA in Octal I/O STR mode and 24 mA in Octal I/O DTR mode. Compared with the conventional 1.8 V Octal I/O SPI NOR Flash devices, the 1.2 V I/O design reduces read power consumption by up to 50%, significantly improving system energy efficiency while sustaining high-speed operation—an ideal choice for power-sensitive applications.  "The GD25NX series sets a new benchmark for combining low voltage with high performance in SPI NOR Flash," stated by Ruwei Su, GigaDevice Vice President and General Manager of Flash BU. "Its design aligns closely with mainstream SoC requirements for low-voltage interfaces, enabling higher integration and lower BOM costs for customers. Moving forward, GigaDevice will continue to expand its dual-voltage portfolio with broader density and package options to help customers build the next generation of efficient and reliable low-power storage solutions."  The GD25NX series is available in 64 Mb and 128 Mb densities, meeting diverse storage needs across various applications. These devices are supported on TFBGA24 8×6 mm (5×5 ball array) and WLCSP (4×6 ball array) packages. Samples of the 128 Mb GD25NX128J are now available for customer evaluation, while the 64 Mb GD25NX64J samples are currently being prepared. For detailed technical information or pricing inquiries, please contact your local authorized GigaDevice sales representative.
Key word:
Release time:2025-12-15 15:57 reading:565 Continue reading>>
ROHM launches SiC MOSFETs in TOLL package that achieves both miniaturization and high-power capability
  ROHM has begun mass production of the SCT40xxDLL series of SiC MOSFETs in TOLL (TO-Leadless) packages. Compared to conventional packages (TO-263-7L) with equivalent voltage ratings and on-resistance, these new packages offer approximately 39% improved thermal performance. This enables high-power handling despite their compact size and low profile. It is ideal for industrial equipment such as server power supplies and ESS (Energy Storage Systems) where the power density is increasing, and low-profile components are required to enable miniaturized product design.  In applications like AI servers and compact PV inverters, the trend toward higher power ratings is occurring simultaneously with the contradictory demand for miniaturization, requiring power MOSFETs to achieve higher power density. Particularly in totem pole PFC circuits for slim power supplies, often called “the pizza box type,” stringent requirements demand thicknesses of 4mm or less for discrete semiconductors.  ROHM's new product addresses these needs by reducing component footprint by approximately 26% and achieving a low profile of 2.3mm thickness – roughly half that of conventional packaged products. Furthermore, while most standard TOLL package products are limited by a drain-source rated voltage of 650V, ROHM's new products support up to 750V. This allows for lower gate resistance and increased safety margin for surge voltages, contributing to reduced switching losses.  The lineup consists of six models with on-resistance ranging from 13mΩ to 65mΩ, with mass production started in September 2025 (sample price: $37.0/unit, tax excluded).   Product Lineup  Application Examples  ・Industrial equipment: Power supplies for AI servers and data centers, PV inverters, ESS (energy storage systems)  ・Consumer equipment: General power supplies  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.• EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Totem Pole PFC Circuit  A highly efficient power factor correction circuit configuration that reduces diode losses by using MOSFETs as rectifier elements. The adoption of SiC MOSFETs enables high voltage withstand capability, high efficiency, and high-temperature operation for the power supply.
Key word:
Release time:2025-12-04 17:10 reading:524 Continue reading>>
Murata develops integrated passive device for Semtech’s SX126X family
  Murata Manufacturing Co., Ltd. has developed a new integrated passive device (IPD) for use with the Semtech LoRa Connect™ SX126x family, which includes the SX1261, SX1262, and LLCC68 products. Using a proprietary low-temperature co-fired ceramic (LTCC) process, Murata has successfully replaced a series of discrete matching components of the SX1261/2 reference design with a single 2.00mm x 1.25mm size LTCC component.  The IPD enables SX1261/2 radio designers to optimize for both size and performance using two dedicated parts. The LFB21892MDZ7F957 is optimized for US and European ISM bands, delivering the full output power for the US FCC bands. The LFB21892MDZ7F821 is optimized for Eurocentric designs that need to maximize the efficiency performance.  “The Murata IPD offers the most efficient development path to realizing the full performance of the SX1261/2, featuring a miniaturized form factor that can significantly reduce board space,” says Arthur Kiang, Product Manager, RF Components, Murata. “The reduction in the number of matching components enables lower material costs and simplifies the design process, leading to shorter lead times. This integration also lowers the probability of soldering and manufacturing issues, as there is only one component to monitor in production.”  “Semtech’s LoRa Connect™ SX126x family has become the trusted choice for LoRaWAN® networks and long-range IoT connectivity in applications from smart metering to industrial sensing,” says Carlo Tinella, product marketing director of wireless and sensing products at Semtech. “Murata’s IPD solution demonstrates the strength of our LoRa® ecosystem, helping radio engineers accelerate development while optimizing for both miniaturization and regulatory compliance. This partnership streamlines the path from design to deployment for millions of IoT devices being deployed globally.”  Product samples are currently available, with mass production of the IPD commencing shortly.
Key word:
Release time:2025-11-28 17:33 reading:490 Continue reading>>
ROHM’s Three-Phase Brushless DC Motor Gate Driver Achieving FET Heat Reduction while Suppressing EMI
  ROHM has developed the “BD67871MWV-Z” three-phase brushless DC motor gate driver for medium voltage applications (12 to 48V systems). By incorporating ROHM’s proprietary gate drive technology TriC3™, it greatly reduces FET’s switching loss while maintaining low EMI – traditionally a trade-off in motor driver ICs.  Motors account for approximately 60% of global electricity consumption, making control technology which affects energy efficiency, increasingly critical. In 12V to 48V motor drive applications, a simple configuration where an MCU controls three gate drivers has been the mainstream. However, in recent years, demands for high efficiency and precise control have grown, accelerating the adoption of solutions combining an MCU with an integrated three-phase motor driver. Further, a technical challenge in three-phase motor drivers has been the trade-off between “power consumption reduction” and “noise / EMI (electro-magnetic interference) reduction,”.  BD67871MWV-Z features ROHM's proprietary Active Gate Drive technology “TriC3™”, which rapidly senses voltage information from the external power FETs and adjust gate drive current accordingly in real-time. This greatly reduces FETs’ switching loss (and hence heat generation) FET power consumption during switching while simultaneously suppressing ringing to achieve low EMI.  Compared to ROHM's conventional constant-current drive products, TriC3™ gate drive has been demonstrated in actual motors that FET heat generation by approximately 35% while maintaining equivalent EMI levels. Furthermore, BD67871MWV-Z adopts UQFN28 package and pin layout which are commonly used in motor driver ICs for medium-voltage industrial equipment applications, contributing to reduced engineering effort required in circuit modifications and new designs.  Mass production of the new product commenced in September 2025 (sample price: $5.5/unit, tax excluded).  ROHM also offer general-purpose motor drivers (BD67870MWV-Z, BD67872MWV-Z) with the same package and pin configuration as the new product, designed for constant-voltage drive. From general-purpose types to the value-added types featuring the new TriC3™, we offer a comprehensive product lineup to supports a wide variety of applications and use cases. We are committed to contributing to improved motor efficiency, enhanced application functionality, and reduced power consumption.  Application Examples  •Industrial Equipment: Various motors such as electric drills/drivers and industrial fans  •Consumer Appliances: Various motors used in vacuum cleaners, air purifiers, air conditioners, ventilation fans and E-bikes (electric-assist sports bicycles)  TriC3™  A multi-step constant current drive technology developed by ROHM. By controlling gate current in three steps, it achieves high-speed, high-efficiency operation while minimizing EMI by suppressing ringing.  • TriC3™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  EMI (Electromagnetic Interference)  EMI is used as an indicator of how much noise a product generates during operation, potentially causing malfunctions in surrounding ICs or systems. “Low EMI” means the product generates less noise.  Ringing  High-frequency oscillations or overshoot occurring during switching. This arises from the resonation between inductance and capacitance, including parasitic elements in the circuit. In the context of motor driving, ringing happens when the power MOSFETs are turned on and off.
Key word:
Release time:2025-11-21 16:54 reading:537 Continue reading>>
GigaDevice GD32F5xx and GD32G5xx Software Test Libraries (STL) Receive TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, announced that its GD32F5xx and GD32G5xx Software Test Libraries have received IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland.  This milestone expands GigaDevice’s functional safety portfolio, which already includes the GD32H7 and GD32F30x STLs, and now covers a broad range of MCUs with Arm® Cortex®-M7, Cortex®-M4, and Cortex®-M33 cores. Building on this foundation, GigaDevice will continue to deliver high-performance and safety-focused hardware and software solutions for key applications such as industrial control, energy and power, and humanoid robotics.  With the growing emphasis on safety across industries like industrial automation, functional safety has become a critical consideration in embedded system design. The GD32F5xx and GD32G5xx MCUs, based on the Arm® Cortex®-M33 core, have become key solutions for high-performance applications requiring robust safety measures.  The GD32F5xx series is optimized for applications in energy and power management, photovoltaic energy storage, and industrial automation, where high precision and reliable control are essential.  The GD32G5xx series combines excellent processing performance with a wide range of digital and analog interfaces. It is available in compact packages such as 81-pin WLCSP81 (4x4mm), making it ideal for applications in humanoid robotics, digital power systems, charging stations, energy storage inverters, servo motors, and optical communications.  The GigaDevice STLs monitor GD32F5xx and GD32G5xx MCU modules in real-time to detect hardware faults. If a fault is detected, predefined safety mechanisms will be triggered to ensure the MCU always remains in a safe state, reducing potential risks and enhancing system reliability.  This certification highlights GigaDevice's deep expertise in functional safety system design and its commitment to meeting the highest international safety standards, reinforcing its position as a trusted provider of secure, high-performance solutions for mission-critical industries.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2025-11-04 17:01 reading:881 Continue reading>>
ROHM Develops Breakthrough Schottky Barrier Diode Combining Low VF and IR for Advanced Image Sensor Protection
  ROHM has developed an innovative Schottky barrier diode that overcomes the traditional VF / IR trade-off. This way, it delivers high reliability protection for a wide range of high-resolution image sensor applications, including ADAS cameras.  Modern ADAS cameras and similar systems require higher pixel counts to meet the demand for greater precision. This has created a growing concern – the risk of damage caused by photovoltaic voltage generated under light exposure during power OFF. While low-VF SBDs are effective countermeasures, low IR is also essential during operation to prevent thermal runaway. However, simultaneously achieving both low VF and IR has been a longstanding technical challenge. ROHM has overcome this hurdle by fundamentally redesigning the device structure – successfully developing an SBD that combines low VF with low IR which is ideal for protection applications.  The RBE01VYM6AFH represents a novel concept: leveraging the low-VF characteristics of rectification SBDs for protection purposes. By adopting a proprietary architecture, ROHM has achieved low IR that is typically difficult to realize with low VF designs. As a result, even under harsh environmental conditions, the device meets market requirements by delivering VF of less than 300mV (at IF=7.5mA even at Ta=-40°C), and an IR of less than 20mA (at VR=3V even at Ta=125°C.) These exceptional characteristics not only prevent circuit damage caused by high photovoltaic voltage generated when powered OFF, but also significantly reduce the risk of thermal runaway and malfunction during operation.  The diode is housed in a compact flat-lead SOD-323HE package (2.5mm × 1.4mm / 0.098inch × 0.055inch) that offers both space efficiency and excellent mountability. This enables support for space-constrained applications such as automotive cameras, industrial equipment, and security systems. The RBE01VYM6AFH is also AEC-Q101 qualified, ensuring suitability as a protection device for next-generation automotive electronics requiring high reliability and long-term stability.  Going forward, ROHM will focus on expanding its lineup with even smaller packages to address continuing miniaturization demands.  Key Specifications  Application Examples  Image sensor-equipped sets such as ADAS cameras, smart intercoms, security cameras, and home IoT devices.  Terminology  Photovoltaic Voltage  A term commonly used with optical sensors, referring to the voltage produced when exposed to light. In general, the stronger the light intensity or higher the pixel count the greater voltage generated.
Key word:
Release time:2025-10-27 16:49 reading:599 Continue reading>>
GigaDevice Deepens Commitment to Japan, Advancing Local Services and Global Collaboration
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has officially opened its new office in Minato City, Tokyo. This milestone reflects the company's deepening commitment to the Japanese market and marks a significant step in enhancing local customer support, strengthening regional collaboration, and advancing its global development efforts.  Japan has long served as a vital pillar of GigaDevice's global strategy. Over the years, the company has expanded its local team, refined operation to meet evolving customer needs, and established a responsive professional service system. This new office will further enhance GigaDevice's technical responsiveness and agility, foster closer collaboration with customers, and help accelerate product validation and commercialization in today's fast-changing market landscape.  Working closely with customers in Japan, GigaDevice has broadened the adoption of its solutions across key application sectors such as industrial, automotive, consumer electronics, and the Internet of Things. At the same time, the company continues to deepen cooperation with local partners in supply chain integration and ecosystem development, offering a comprehensive portfolio of Flash memory, MCU, sensor, and analog solutions that have earned broad market recognition.  "Japan has always been a vital component of our global strategy," said Jennifer Zhao, GigaDevice Global Business CEO. "We will continue to leverage our global synergy and strengthen local service capabilities to drive product innovation and industry advancement alongside our customers and partners."  "We greatly value the trust and long-term partnerships we have built with our customers in Japan," added Sam Li, GigaDevice Japan Regional GM, "In a market that's becoming increasingly complex, our goal is to consistently deliver exceptional service and competitive products that meet diverse business needs and create lasting value."  As one of GigaDevice's key customers, Nidec Corporation has been working closely with the company. Ryuji Omura, Head of Nidec Semiconductor Solutions Center, commented: "GigaDevice's rapid growth and technological innovation, along with its genuine commitment to customers, have built a solid foundation of trust between our companies and made it one of our most valued supplier partners. We look forward to seeing GigaDevice continue to lead the semiconductor industry and contribute to the advancement of society."  As a global leading fabless supplier, GigaDevice continues to combine global synergy with localized execution. Following the establishment of its global headquarters in Singapore, the company has strengthened its presence across Asia, Europe, and the Americas, building a responsive, demand-driven sales and service network. Looking ahead, GigaDevice will continue to invest in Japan, refining its product offerings, enhancing its service delivery, and expanding its collaborative mechanisms to drive a smarter, more efficient, and sustainable future together with its customers and partners.
Key word:
Release time:2025-10-21 16:49 reading:905 Continue reading>>
ROHM has Developed New Smart Switches Optimized for Zonal Controllers
  ROHM has developed six new high-side Smart Switches (Intelligent Power Devices, short: IPDs) BV1HBxxxEFJ series (BV1HB008EFJ-C, BV1HB012EFJ-C, BV1HB020EFJ-C, BV1HB040EFJ-C, BV1HB090EFJ-C, BV1HB180EFJ-C) with highly accurate current sensing capability and ON resistances from 9 mΩ to 180 mΩ. They are ideal for protecting loads and subsystems from abnormalities such as overcurrent, overvoltage, and overtemperature, ensuring reliable operation and safeguarding sensitive components in automotive lighting, body control such as, door locks and power windows. Extensive diagnostic capabilities, e.g., open load and reverse battery detection, further enhances safety and reliability.  Vehicle electronic control systems are becoming increasingly sophisticated with the advancement of autonomous driving and electric vehicles (EVs). This evolution has heightened the importance of electronic protection from a functional safety standpoint, driving the shift toward Zonal Controllers architecture that manages vehicle functions in designated zones. As a result, the use of smart switches for electronic load protection and control is rapidly growing.  Zonal controllers must each manage a large number of loads, but conventional smart switches often lack the drive capability required for high-capacitance loads. ROHM’s new smart switches address this challenge, delivering key performance attributes such as low ON resistance and high inductive energy clamp while significantly improving capacitive load drive capability. By commercializing high-performance smart switches tailored to zonal controllers’ requirements, ROHM is contributing to automotive electrification and the elimination of mechanical fuses.  The new products feature exceptional high-capacitance load driving capability, maximizing performance at the critical interface between Zonal Controllers and output loads (including various ECUs). Leveraging proprietary cutting-edge process technology makes it possible to achieve both low ON resistance and high inductive energy clamp – two characteristics typically involve a trade-off. The result is a well-balanced integration of three key performance metrics: drive capability, ON resistance, and energy tolerance. This enhances system design safety, efficiency, and reliability. The devices also incorporate a best-in-class* high-precision current sensing function (±5%) that provides effective protection for harnesses connected to output loads. At the same time, the compact, high heat dissipation HTSOP-J8 package ensures excellent design versatility.  Going forward, ROHM remains committed to improving safety, security, and energy efficiency in the automotive field by continuing to develop high reliability, high performance devices.  *ROHM study on high-side Smart Switches - September 30th, 2025  Application Examples  Body applications, powertrain/inverter systems, other switch-related circuits  Terminology  Zonal Controllers  An emerging design concept in automotive electronic architecture, zonal controllers represent a shift away from the conventional approach of assigning dedicated ECUs for each function, such as lighting, door locks, and power windows. Instead, the vehicle is divided into zones, with a zonal controller manages multiple functions in its zone.  Intelligent Power Devices (IPD) / Smart Switches  Smart power switches are semiconductor devices that electronically control the delivery of power by turning it on and off, while also providing integrated protection and diagnostic features such as overcurrent, overvoltage, thermal shutdown, current sensing, and open load detection to enhance system reliability and safety.  Capacitive Load Driving Capability  A technical term referring to the ability of an electronic circuit or semiconductor device to operate reliably when driving capacitive loads. It is especially important in circuit configurations involving zone ECUs and their output stages (including individual ECUs) where large electrolytic capacitors are commonly used. If this capability is inefficient, inrush current cannot be adequately suppressed, leading to overheating that can result in malfunctions or reduced operational lifespan.
Key word:
Release time:2025-09-30 16:29 reading:592 Continue reading>>

Turn to

/ 30

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code