Littelfuse推出新型1300V A5A沟槽分立式IGBT,专为800V电动汽车(BEV)应用而设计。这些IGBT具有优化的集电极-发射极饱和电压(VCE(sat))、强大的短路能力和更大的电流范围。特别适用于PTC加热器、放电电路和预充电系统等应用,这些应用的重点是更高的浪涌电流和低导通压降,而不是高开关频率。
背景
汽车行业正积极拥抱可持续发展,其中电动汽车(BEV)因其高效率和零尾气排放而走在前列。2023年,BEV和插电式混合动力电动汽车(PHEV)的全球销量达到1360万辆,比2022年增长了31%。据预测,这一数字在未来几年还将加速增长。
尽管有所增长,但挑战依然存在。过高的成本、过长的充电时间和有限的行驶里程继续阻碍着它的广泛应用。为了解决这些问题,制造商正在推出800V BEV系统。这种更高的电压架构可加快充电速度,大大减少充电时间和成本。
硅技术并未消亡
自电动汽车(EV)大规模应用的最初几年起,碳化硅(SiC)和其他宽带隙(WBG)技术就被认为是各种BEV子系统的理想候选材料。与硅相比,WBG材料具有更高的带隙和更大的击穿电压,因此可以实现更高的电流密度、更高的开关频率并降低总体损耗。这些优点使系统设计人员能够提高效率、缩小体积和减轻重量,特别是在允许高开关频率的应用中。因此,正如大量研究表明的那样,碳化硅已成为牵引逆变器的主流技术,但也有一些例外。
硅制造工艺的成熟性、丰富的可选项、较低的成本、较简单的栅极驱动方法以及器件的可靠性,使得硅功率MOSFET和IGBT仍然是WBG技术的可行替代品。选择合适的器件取决于技术娴熟的设计人员,而作为供应商,我们有责任提供全面的选择,以满足不同的需求和偏好。
在需要低开关频率的应用中,传导损耗和热设计的简易性都是至关重要的因素。WBG器件固有的高功率密度会给热管理带来挑战,而硅IGBT和MOSFET较大的芯片面积则有利于在这些情况下更轻松地进行热管理。
电动汽车有复杂的电路,包括一些对半导体开关频率要求不高的子系统。
应用
下图展示了电动汽车中的通用电池分配单元(BDU)。
热管理PTC子系统、预充电电路和放电电路中的并不一定需要更高的开关频率。相反,它们需要低传导损耗、高浪涌电流能力半导体器件,以实现高可靠性。
BEV的热管理
传统内燃机(ICE)汽车本身会产生大量的热能浪费,而电动汽车则不同,它的效率要高得多。但这种效率的后果是,它们不会产生足够的废热来加热。
电动汽车(EV)有两个与热管理相关的重要要求:
电动汽车电池调节
在寒冷环境条件下的车内空间加热
在寒冷的环境温度下,PTC加热器和热泵可用于调节电池以达到最佳性能,产生的热量还可用于车内空间加热。PTC加热器的典型电路配置如下所示。
在这种应用中,IGBT的开关频率从几十赫兹到几百赫兹不等。低导通压降、可靠耐用(短路能力)和良好的半导体热性能是这一应用的关键因素。
放电电路
800V BEV系统中直流母线电容器的放电要求,高压电池电动汽车的关键安全协议要求在两种不同的运行情况下对直流母线电容器进行放电:
正常运行关闭
紧急情况,如碰撞后或严重故障检测
这些放电机制是基本的安全功能,旨在降低车内人员和维修人员触电的风险,同时防止潜在的火灾危险。根据制造商的风险评估协议,这种应用通常被划分为汽车安全完整性B级(ASIL-B)。
在800V BEV架构中,标称电池电压属于B类电压(60V 1500V)。根据ISO 6469-4安全规定,系统必须确保在紧急情况下快速降低电压。具体来说,在碰撞后车辆停止后的5秒内,总线电压必须降至并保持在直流60V以下。
典型的放电电路如下图所示。
直流母线电容器可通过IGBT放电。需要时,打开IGBT,通过与IGBT串联的Rdis电阻器对电容器中的所有能量进行放电。具有高浪涌电流能力的可靠IGBT对于这种应用非常重要。
预充电电路
预充电电路通常用于电动汽车(EV),包括电池管理系统和车载充电器,以及电源和配电装置等工业应用。在电动汽车中,控制器不仅要处理高电容电气元件,还要通过控制电机的功率流来确保电机平稳高效地运行。预充电电路中的高压正负接触器可安全地连接和断开电容器的电源,防止启动时产生过大的浪涌电流。它们可确保充电受控,并在必要时通过隔离组件来维护系统安全。如果没有预充电电路,接触器在闭合过程中可能会发生熔化,导致短暂电弧和潜在损坏。
其中一种预充电电路拓扑结构如下图所示。
在上述电路中,有两个大电流、高电压接触器S1和S2,以及一个单独的预充电开关T1和一个直流链路电容器C1,它们与负载(如牵引逆变器)并联。起初,两个大电流接触器S1和S2都处于断开状态,将高压蓄电池与负载的两个端子隔离。预充电开始时,开关T1(1300V A5A IGBT)与高压负极接触器S1一起闭合,使直流链路电容器充电至与蓄电池相同的电压。预充电过程结束后,开关T1打开,高压正极接触器S2关闭。由于直流链路电容器在高压正极和负极接触器闭合之前已经充电,因此不会产生明显的浪涌电流。1300V A5A IGBT具有很高的浪涌电流能力,因此非常适合这种应用。
下图显示的是Littelfuse的BDU演示板,其中包含一个1300V A5A IGBT。
Littelfuse提供1300V A5A沟槽式IGBT
为了满足800V BEV不断发展的需求,Littelfuse推出了全新系列的1300V沟槽分立式IGBT,如下图6所示。这些器件专为需要降低传导损耗(Pcond)、良好热性能和可靠性的应用而设计。该系列的A级IGBT具有优化的低集电极-发射极饱和电压(VCE(sat)),从而提高了低频开关性能。这些IGBT具有高达10µsec的短路可靠性。这一特性尤其适用于关键的BEV系统,如对车内空间加热和电池调节至关重要的PTC加热器。此外,这些IGBT还可用于预充电和放电电路。
该系列包括集电极电流为15A、30A、55A和85A(外壳温度为110°C)的单通道IGBT。封装选项有SMD TO-263HV、TO-268HV和插件TO-247。与传统的三引脚TO-263和TO-268封装相比,SMD封装的HV版本具有更强的爬电和电气距离。
性能和优势
更高的击穿电压BVCES:1300V击穿电压专为800V BEV架构定制,适用于乘用车和重型卡车。1300V额定电压可为直流母线电压提供缓冲,直流母线电压会根据电池的充电状态而波动,然而1200V额定电压的器件可能会带来应用风险。
1300V的器件电流范围更广:集电极电流范围为15A至85A(110°C时),可满足乘用车和重型车辆的各种应用要求。
传导能量损耗最小化Econd:该系列是1300V IGBT中VCE(饱和)值最低的产品之一,有效地将传导损耗降至最低。这一特性不仅提高了效率,还缓解了热设计难题。
短路能力tSC:1300V IGBT可处理长达10微秒的短路能力,因此适用于需要更高可靠性的汽车应用。
封装:表面贴装分立封装包括TO-263HV、TO-268HV和插件TO-247。这些SMD封装的高压(HV)版本与标准3引脚版本相比,改善了爬电距离和电气距离。
结束语
随着汽车行业向更高电压架构的电动汽车转变,硅IGBT对于要求较低开关频率和最小传导损耗的应用仍然至关重要。Littelfuse的1300V A级沟槽式IGBT系列可满足800V BEV子系统的特殊需求,特别是在PTC加热器、放电电路和预充电应用中。这些IGBT具有低VCE(饱和)、短路能力和宽电流范围。同时提供SMD和插件封装,具有更强的爬电和电气距离,为设计提供了灵活性。
Previous: Littelfuse:PTS845轻触开关系列使用寿命延长至百万次满足高使用率应用
Next:一文读懂量子传感器
Online messageinquiry
model | brand | Quote |
---|---|---|
MC33074DR2G | onsemi | |
CDZVT2R20B | ROHM Semiconductor | |
BD71847AMWV-E2 | ROHM Semiconductor | |
TL431ACLPR | Texas Instruments | |
RB751G-40T2R | ROHM Semiconductor |
model | brand | To snap up |
---|---|---|
BP3621 | ROHM Semiconductor | |
ESR03EZPJ151 | ROHM Semiconductor | |
STM32F429IGT6 | STMicroelectronics | |
TPS63050YFFR | Texas Instruments | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
BU33JA2MNVX-CTL | ROHM Semiconductor |
Qr code of ameya360 official account
Identify TWO-DIMENSIONAL code, you can pay attention to
Please enter the verification code in the image below: