<span style='color:red'>开关电源</span>电路的工作过程分析
  开关电源(简称SMPS)因其高效率、小体积和轻重量等优点,广泛应用于各种电子设备中。相比传统的线性电源,开关电源通过控制开关器件的通断实现能量转换和调节,具有显著的节能效果。  一、开关电源的基本结构  开关电源主要由输入滤波、整流、储能(储能元件如电感和电容)、开关器件(如MOSFET、IGBT)、控制电路及输出滤波组成。其核心思想是通过高速开关将直流或交流电源转换成一定频率的脉冲电压,再经过变压和滤波,实现稳定的输出电压。  二、开关电源的工作过程  电源整流与滤波  开关电源通常先将输入的交流市电通过整流桥整流成脉动直流,再经过大容量电解电容滤波,得到直流电压,为后续电路提供稳定的直流电源。  开关元件的高速开关  控制电路根据设定的输出电压值,周期性地控制开关元件(如MOSFET)的导通和关断。开关频率通常在几十kHz到几百kHz之间。  能量储存与传递  当开关元件导通时,电流流入储能元件(如电感或变压器的初级绕组),储存磁能。当开关断开时,储存的能量通过二极管和输出滤波器送至负载,保持输出电流的连续稳定。  输出滤波稳定电压  输出侧电容器和电感组成低通滤波器,将高频脉冲信号滤掉,输出平滑的直流电压。  反馈调节  输出电压通过反馈电路送回控制器,实时监测输出变化,调节开关元件的占空比(导通时间与周期时间之比),保证输出电压稳定在预定值。  三、开关电源的特点和优势  高效率:由于开关元件工作于饱和开关状态,减少能量浪费,效率一般可超过80%。  体积小重量轻:工作频率高,所用变压器和滤波器尺寸大幅缩小。  宽输入电压范围:适应不同地区和场合的电源环境。  输出稳定:精确的反馈控制实现稳定电压输出。  开关电源通过高速开关控制、能量储存与释放、滤波与反馈调节的协调工作,实现高效稳定的电能转换。掌握其工作过程,有助于设计和优化电源系统,提高电子设备的整体性能和可靠性。
关键词:
发布时间:2025-04-23 16:56 阅读量:347 继续阅读>>
<span style='color:red'>开关电源</span>和变压器的区别是什么?
  开关电源和变压器的区别  开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源可分为AC/DC和DC/DC两大类;按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。开关电源具有过流、过热、短路等保护功能,电压输入范围宽,输入输出间隔离电压,隔离式的输入输出间隔离电压高。  变压器就是一种利用电磁感应的原理来变换电压,电流和阻抗的器件。变压器的主要应用于交变电路回路。  什么是开关电源  开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。  开关电源的优缺点  优点:  1、效率较高,体积小。由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整它的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。  2、电压输入范围宽。一般可达到160V-270之间。  缺点:  1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。  2、设计复杂,维护维修不方便。往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。  3、体积小是开关电源的优点,但设计不好就成为它的缺点了。为了追求更小,一大把元器件挤在一个小壳子里,散热不好,还会出现外壳变形的现象。  4、开关电源的元器件在选择上也不是很规范。国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。  5、最大的一点就是抗雷击能力非常低。在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。一旦220V的电压突然变高,开关电源在瞬间就被烧毁。前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。  什么是变压器  变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变压器、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头。例:T01, T201等。  变压器的优缺点  优点:  1、线性的看着笨重,功率完全取决于变压器和调整管,效率虽低但是不会引入额外的干扰,也就是说电磁干扰小,纹波系数很低,可忽略不计。对于监控来说,没有比这个优点还要好的了,图像质量的好坏与电源的关系非常大。尤其对于小幅值的模拟信号(音频源和视频源等)对电源的要求非常高,所以一些发烧音响中的电源都采用变压器而不用开关电源。  2、稳压率高、设计简单,维修维护非常方便,出现故障,稍懂电子的技术人员就能维修,维修成本比开关电源少得多。  3、抗雷击性能好。由于变压器的结构是两个线圈和铁芯,加在线圈两端的电压不能突变,故对瞬间的高压有很强的抑制性。所以在一次雷击事故中,变压器的电源存活了下来,而开关电源无一例外的烧毁了。  缺点:  1、效率低。由于变压器是一个“电——磁——电”的转换过程,避免不了存在铁损和铜损,效率低。  2、输入范围窄。一般只有200V—240V之间吧,小于这个范围,输出电压不够,大于这个范围,变压器可能就会烧毁。这个电压范围绝大多数的场合是够用的,不必去过多的考虑。再者变压器体积较开关电源大,笨重。
关键词:
发布时间:2025-04-18 17:16 阅读量:321 继续阅读>>
<span style='color:red'>开关电源</span>五大保护功能
         开关电源通常具备以下保护功能:  01过流保护  功能原理:当输出电流超过设定的安全阈值时,过流保护电路会被触发。这通常是通过检测输出电流大小来实现的,例如在电源输出线路中串联一个小阻值的采样电阻,利用欧姆定律,通过检测采样电阻两端的电压来获取电流信息。一旦检测到过流,电源会采取措施限制电流进一步增大。  例如,当连接的电子设备内部发生短路故障时,过流保护可以防止过大的电流损坏电源本身和其他正常的电路部分,保护电源和整个电子系统的安全。  02短路保护  功能原理:短路保护是过流保护的一种特殊情况,当输出端被直接短接时,输出电流会瞬间急剧增大。此时,短路保护电路会迅速动作,一般会立即切断输出,以避免电源在短路状态下持续大电流输出,从而防止电源内部元件因过热而损坏。在实际应用中,由于线路老化、接口松动或用户误操作等原因,可能会导致输出短路。短路保护能够有效应对这种突发状况,确保电源不会因为短路而损坏。  03过压保护  功能原理:过压保护主要是为了防止输出电压超过预定的最大值。电源内部通过电压检测电路实时监测输出电压,当输出电压超出设定范围时,过压保护机制启动。这可能涉及到调整开关电源的占空比(对于脉宽调制型开关电源)来降低输出电压,或者在极端情况下切断输出,以保护连接的负载设备免受过高电压的损害。在一些情况下,如电源内部反馈环路出现故障或外部干扰导致电压调节失控时,输出电压可能会异常升高。过压保护功能可以确保这些设备不会因为过高的电压而损坏。  04欠压保护  功能原理:欠压保护是当输入电压或输出电压低于某个设定的下限值时起作用。对于输入欠压保护,它可以防止电源在输入电压过低的情况下继续工作,因为此时电源可能无法正常稳定地输出所需电压,还可能会导致内部元件工作异常。在电网电压波动较大或者电池供电的设备中,输入欠压保护很重要。  05过热保护  功能原理:开关电源内部通常会安装温度传感器来监测关键元件(如开关管、变压器等)的温度。当温度超过设定的安全温度阈值时,过热保护电路会启动。这可能会导致电源降低输出功率,以减少元件的发热,或者直接切断电源,直到温度下降到安全范围内。在高负载运行、散热不良或者环境温度过高的情况下,电源内部元件的温度可能会快速上升。如果没有过热保护,元件可能会因为过热而损坏,甚至引发火灾等安全事故。
关键词:
发布时间:2025-04-10 14:00 阅读量:363 继续阅读>>
一文盘点<span style='color:red'>开关电源</span>MOS损耗
一文了解<span style='color:red'>开关电源</span>调试中的5个常见问题
  开关电源调试的5个常见问题,你遇到过吗?       01输出电压异常  输出电压过高或过低:可能是由于反馈回路故障、基准电压不准确、变压器匝数比不合适等原因引起。例如,反馈电阻阻值变化、光耦损坏等都可能导致输出电压偏离设定值。  电压不稳定:在负载变化或输入电压波动时,输出电压出现较大幅度的波动。这可能是由于稳压控制电路响应速度慢、滤波电容容量不足或损坏等原因造成。  02输出电流异常  输出电流不足:可能是由于功率开关管导通不良、变压器绕组短路、输出滤波电感饱和等原因导致。例如,功率开关管老化、驱动不足会使导通电阻增大,从而限制了输出电流。  过流保护频繁触发:当负载电流超过设定值时,开关电源应启动过流保护功能。但如果过流保护阈值设置不合理、检测电路故障或负载存在瞬间大电流冲击等情况,就会导致过流保护频繁触发,影响电源的正常工作。  03纹波噪声过大  高频纹波:主要由开关频率及其谐波引起,通常是由于输出滤波电容容量不足、电感值不合适或 PCB 布局不合理导致。例如,滤波电容的等效串联电阻(ESR)过大,会使高频纹波无法有效滤除。  低频纹波:一般是由输入电源的波动或负载变化引起的,可能是由于输入滤波不良、反馈回路响应慢等原因造成。  04发热严重  功率开关管发热:功率开关管在导通和截止过程中会产生较大的功耗,如果散热设计不合理,如散热片面积过小、风道不畅等,就会导致开关管温度过高。  变压器发热:变压器的磁芯损耗和绕组电阻损耗会产生热量,如果变压器设计不合理或工作在饱和状态,就会发热严重。此外,变压器的绕制工艺不良也可能导致局部过热。  05电磁干扰(EMI)问题  传导干扰:开关电源的高频开关动作会产生电磁干扰,通过电源线传导到其他设备。这可能是由于输入滤波器设计不合理、接地不良或 PCB 布线不合理等原因引起。  辐射干扰:开关电源的电磁场会向空间辐射电磁干扰,影响周围的电子设备。辐射干扰主要与开关频率、功率等级、PCB 布局和外壳屏蔽等因素有关。
关键词:
发布时间:2025-04-09 14:26 阅读量:405 继续阅读>>
工程师如何处理<span style='color:red'>开关电源</span>的磁芯损耗?
  在开关电源设计中,总会碰见各种各样的损耗,其中之一是磁芯损耗,由磁滞损耗和涡流损耗组成,难以直接估测,需要精确计算与合理选择磁芯材料来控制。  1知晓磁芯损坏的组成  磁滞损耗:与磁芯偶极子重新排列相关,正比于频率和磁通密度。  涡流损耗:由交变磁通在磁芯中产生的局部电流导致,表现为I²R损耗。  2选择合适的磁芯材料  优先选用低损耗磁芯:如铁镍钼磁粉芯(MPP),其损耗低于其他常见铁粉磁芯。  权衡成本与性能:虽然铁粉芯成本较低,但磁芯损耗较大,需根据具体应用需求选择。  3精确计算磁芯损耗  确定峰值磁通密度:利用公式B = (L * ΔI) / (N * A),其中L为电感,ΔI为电感纹波电流峰峰值,A为磁芯横截面积,N为线圈匝数。  查阅磁芯损耗曲线:根据磁芯制造商提供的磁通密度与磁芯损耗(和频率)图表,估算磁芯损耗。  4利用专业工具辅助设计  下载并使用制造商提供的计算软件:如某公司的在线电感磁芯损耗和铜耗计算公式,快速准确估算损耗。  模拟与验证:通过仿真软件模拟不同磁芯与电感参数下的损耗情况,进行验证与优化。  5实时热管理措施  设计有效的散热路径:确保磁芯及其周边组件的热能能够高效散出。  监控温度:在实际应用中,通过温度传感器监控磁芯温度,及时调整设计或增加散热措施。  6持续优化与迭代  收集应用数:在实际应用中收集磁芯损耗与温度数据,分析损耗来源。  迭代设计:根据数据分析结果,调整磁芯材料、电感参数或散热设计,持续降低磁芯损耗。
关键词:
发布时间:2025-03-28 14:43 阅读量:379 继续阅读>>
<span style='color:red'>开关电源</span>基础知识分享-一文搞懂什么是<span style='color:red'>开关电源</span>
  在现代电子设备中,开关电源已经成为主流的电源供应方式。相比传统的线性电源,开关电源更高效、更稳定,且能够适应不同输入电压范围。本文将深入探讨开关电源的基础知识,解释其工作原理、优势以及应用领域。  1. 开关电源的工作原理  开关电源是一种利用开关元件(如晶体管)进行快速切换的电源系统。其工作原理涉及将输入直流电压转换成高频交流电压,通过变压器和整流器输出所需电压。  主要组成部分  输入滤波器:用于减小输入电源中的噪声和干扰。  整流器:将输入电压转换为脉冲宽度调制(PWM)信号。  开关元件:负责控制电源开关状态,通常使用 MOSFET。  变压器:用于变换电压,提高或降低电压。  输出整流器和滤波器:将变换后的电压输出到负载。  2. 开关电源的优缺点  优点  1. 高效率:开关电源通常能够实现较高的转换效率,大多数设计可以达到90%以上的效率。相比线性电源,开关电源能更有效地转换输入电能为输出电能,节省能源并减少热量损耗。  2. 轻巧紧凑:由于开关电源内部使用高频开关进行电压转换,因此可以设计成体积小巧、重量轻的形式。这使得开关电源非常适合需要体积小型化的应用场景,如移动设备和便携式电子产品。  3. 稳定输出:开关电源能够提供稳定的输出电压和电流,即使在负载变化或输入电压波动的情况下也能保持输出稳定性。这使得开关电源在各种工作条件下都能提供可靠的电源供应。  4. 适应性强:开关电源能够适应不同的输入电压范围,通常支持广泛的输入电压(AC或DC)范围。这使得开关电源在国际通用和应对不同电网标准时具有很高的适用性。  5. 可靠性高:开关电源通常寿命长,工作稳定可靠。其设计和构造使得其在长时间运行和各种环境条件下能够保持高效、稳定的工作状态。  缺点  1. 电磁干扰:开关电源可能会产生电磁干扰,会影响其他设备的正常工作,特别是对于无线通信设备和灵敏的电子设备来说,这可能会成为一个问题。  2. 成本较高:相比传统的线性电源,开关电源的设计和制造成本通常较高。尤其是高功率的开关电源系统,在设计和组件选购方面需花费更多成本。  3. 复杂性:开关电源的设计和调试相对复杂,需要更深入的电路和控制知识。对于普通用户或不熟悉电子技术的人来说,维护和修理开关电源可能会有一定难度。  4. 电磁干扰:一些开关电源可能会产生高频噪音或振荡,这可能会对某些敏感设备或应用造成干扰。  5. 散热问题:一些高功率的开关电源系统可能会产生较多的热量,需要额外的散热设计来确保稳定运行。  3.开关电源的应用领域  开关电源作为一种高效、稳定的电源供应方式,在各个领域广泛应用,满足了不同领域对电源系统高效、可靠性和灵活性的需求。以下是开关电源主要的应用领域:  1. 工业自动化  工业控制系统中常用开关电源提供稳定的电源供应,并能适应复杂的工作环境。  用于驱动各种工业设备,如PLC(可编程逻辑控制器)、传感器、伺服马达等。  2. 通信和网络设备  在通信基站、网络设备和数据中心中广泛使用,提供稳定的电源以确保通信和数据传输的可靠性。  用于光纤通信设备、路由器、交换机、服务器等。  3. 医疗设备  用于医用电子设备,如医用成像设备、手术设备、监护仪器等。  提供清洁、稳定的电源,保证医疗设备的正常运行。  4. 汽车电子  在汽车电子系统中使用,如车载娱乐系统、导航系统、发动机控制单元等。  提供稳定的电源以支持各种车辆内部设备和功能。  5. 太阳能和风能转换  用于太阳能和风能发电系统中,将不稳定的太阳能或风能转换为稳定的电源输出。  提供高效能源管理和功率转换。  6. 消费类电子产品  在消费类电子产品中广泛应用,如手机充电器、笔记本电脑适配器、LED照明等。  提供小型、高效的电源解决方案。  7. 航空航天  在航空航天领域中使用,提供飞机、卫星等设备所需的高效、稳定的电源。  对轻量化、高效率和可靠性有严格要求。  4.开关电源的常见故障及维修技巧  1. 常见故障原因  1.1 电源无输出  可能原因:  输入电源故障。  输出端有短路。  控制芯片损坏。  解决方法:  检查输入电源是否正常。  排除输出端的短路情况。  更换损坏的控制芯片。  1.2 电源过载  可能原因:  过负载引起。  过放电保护功能触发。  解决方法:  检查负载是否超过额定值。  检查过放电保护电路,并适当降低负载。  1.3 电源噪音大  可能原因:  开关管损坏。  输出电容故障。  解决方法:  更换损坏的开关管。  更换故障的输出电容。  2. 维修技巧  2.1 安全第一:维修任何电子设备时务必确保安全。在处理开关电源时,首先断开电源并等待一段时间,以确保电容器中的电荷已经释放。  2.2 仔细检查:对于出现故障的开关电源,需要仔细检查各个部件和连接线路。检查元件是否有明显的烧损、漏液或变形情况,并用万用表测量元件的参数。  2.3 焊接技巧:在替换元件或修复焊接点时,需要使用正确的焊接工具和技术。确保焊接点牢固、无冷焊现象,并避免短路或打火。  2.4 替换元件:根据故障的具体原因,适时更换损坏的元件,如开关管、电容、电阻等。选择合适规格和品质的元件进行替换,确保与原件相匹配。  2.5 保养和清洁:定期对开关电源进行清洁和维护,确保通风良好、无灰尘堆积。定期检查电路板上的连线和焊接点是否松动,及时加固。
关键词:
发布时间:2025-02-12 13:40 阅读量:671 继续阅读>>
江西萨瑞微电子:入门<span style='color:red'>开关电源</span>必备:功率开关管指南
  开关电源是一种高频化电能转换装置,是电源供应器的一种。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。开关电源的核心部件是功率开关管,是一个至关重要的组件。它负责控制电流的导通和截止,实现电能的转换和调节。  在众多功率开关管中,MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)因其优异的性能而被广泛应用。本文将详细介绍 MOSFET 的工作原理、特性、选型以及在开关电源中的应用。  MOSFET的工作原理  MOSFET 是一种电压控制型器件,通过栅极电压来控制漏极和源极之间的电流。它主要由栅极(G)、漏极(D)和源极(S)三个电极组成,其中栅极与源极之间由一层绝缘层隔开。  当栅极电压为零时,MOSFET 处于截止状态,漏极和源极之间没有电流流过。当栅极电压超过一定阈值时,绝缘层下方会形成一个导电沟道,使得漏极和源极之间导通,电流可以流过 MOSFET。通过控制栅极电压的大小,可以调节导电沟道的宽度,从而控制漏极电流的大小。  功率MOSFET的内部结构与电气符号如图下所示。图(a)给出的是具有双扩散结构的垂直沟道 MOSFET示意图,这也是最成功的产品设计之一。MOSFET 的电气符号如图(b)所示,其极性有N沟道和P沟道两种,其中N沟道功率MOSFET应用最多、功率 MOSFET的内部结构使其寄生了一个一极管,称之为体二极管。这个二极管具有和MOSFET相同的工作频率,可以作为高频整流管来使用。现今的同步整流技术就利用了这个体二极管。正常工作时、体二极管处于反向截止状态,不影响MOSFET的开/关操作。  功率 MOSFET是增强型MOSFET,对于N沟道MOSFET,UGS施加正极性电压,产生漏极电流;对于P沟道MOSFET,UGS需要施加负极性电压才会产生极电流。  功率MOSFET属于电压控制型半导体元件,当UGS施加一定的电压时,在源极和漏之间会形成较大的电流,这就是功率MOSFET的放大效应。下面以N沟道功率MSFET为例、介绍其工作原理。  功率 MOSFET属于电压控制型半导体元件  功率MOSFET的工作原理与特性曲线如图下所示。其中图(a)为工作原理,图(b)为转移特性曲线,图(c)为输出特性曲线。如图(a)所示,功率MOSFET工作时,需要施加正极性的UGS和UDS,只要在栅极施加一定的电压,就会在漏极产生较大的电流ID。由于MOSFET的输入阻抗很高,栅极电流极小,因此极电流ID与源极电流IS相等,通常将流过源极的电流也称为漏极电流ID,并以此来计算电路参数。  功率MOSFET的栅极对源极电压(简称栅-源电压)UGS与漏极电流ID的关系曲线图(b)所示,该曲线称为MOSFET的转移特性。可以看出,当UGS从(0~UGSth)变时,漏极电流 ID始终为零、功率MOSFET 处于截止(关断)状态;当UGS大于 UGSth以后,随着UGS的增加漏极电流ID开始迅速增大,功率MOSFET处于导通状态。功率UGSth是功率MOSFET导通与关断的切换点电压,该电压叫做开启电压或值电压。MOSFET的开启电压通常在2~4V之间。  功率 MOSFET的输出特性曲线如图 (c)所示,图中描述了栅-源电压 UGS、漏极电流ID与漏极对源极电压(简称漏-源电压)UDS之间的关系曲线。输出特性曲线可分为截止区、饱和区和电阻区三个区域。当UGS小于开启电压UGsth的时候,MOSFET处于截止区(关断状态),此时漏极电流很小,并且不随UDS的大小变化,该电流被称为漏电流,通常用IDSS来表示。开关电源的功率开关管关断时就处于截止区。在电路分析计算时,可以认为漏电流为零。  随着UGS升高,功率MOSFET开始产生更大漏极电流,进入导通状态。此时,如果较大,MOSFET将工作在图(c)所示饱和区。在饱和区的时候,漏极电流只与UGS大小有关,而与UDS大小无关。也就是说,此时极漏电流ID处于恒定电流状态,因此,饱和区也称为恒流区。  功率 MOSFET的饱和区和双极型晶体管的放大区特性基本相同。如图(c)所示,通常用漏极电流ID的变化量ΔID与栅-源电压UGS的变化量ΔUGS的比值,来描述MOSFET的放大能力,称为正向跨导,常用gfs来表示。漏极电流ID越大的功率MOSFET,其正向跨导值gfs也越大。  功率MOSFET进入导通状态时,如果漏-源电压UDS较低,MOSFET将处于电阻区如图(c)所示,该区域位于UDS=UGS-UGS(th)边界线的左侧。在该区域 MOSFET的漏极与源极之间呈现为固定电阻,该电阻被称为导通电阻,常用RDS(ON)来表示。如果漏-源电压UDS为零,则无论栅-源电压UGS为多少,漏极电流ID也会变为零。RDS(ON)的阻值与UGS的大小有关,因此该区域也称为可变电阻区或欧姆区。开关电源的功率开关管导通时就处在该区域。因此,即使漏极电流ID很大,也可通过选择较低RDS(ON)的功率MOSFET,来保持较低的导通损耗。  功率MOSFET的使用注意事项  (1)关于漏极电压  在开关电源中,选择功率MOSFET时,首先要考虑击穿电压。由于MOSFET不存在二次击穿现象,电压余量可以选小一些,通常按MOSFET的击穿电压UDSS为功率开关管承受最大电压的1.2~1.4倍即可。  (2)关于漏极电流  由于多数功率MOSFET的最大漏极电流IDM为额定漏极电流ID的3~4倍,因此,电流余量也可以选小一些,通常选择MOSFET漏极电流ID为功率开关管的最大极电流的1.5~2倍即可。  需要说明:功率MOSFET参数表中给出的额定漏极电流ID,通常是在其外壳温度T为25℃时的参数值。当MOSFET外壳温度升高的时候,其额定漏极电流ID将会下降。图给出了IRF840的漏极电流和外壳温度的关系曲线。可以看出,T为25℃时,ID为8A;当T为75℃时,ID下降为6A;当T为100℃时,ID下降为5A。这表明当功率MOSFET工作在高温环境时,应该选择额定漏极电流ID更大MOSFET,以便满足高温时的漏极工作电流要求。  (3)关于导通电阻  通常额定漏极电流ID较小的 MOSFET,其导通电阻RDS(ON),较大。在漏极电流较大的时候,功率开关管的导通损耗也会较大,为了降低导通损耗,应该选择导通电阻RDS(ON)较小的功率MOSFET。  此外,导通电阻RDS(ON)还会随着漏极电流ID的增加而变大。图给出了IRF840的导通电阻和漏极电流的关系曲线。可以看出,当ID为5A时,RDS(ON)不到0.7Ω,当ID为10A时,RDS(ON)大约0.8Ω;当ID为20A时、RDS(ON)将达到1.2Ω 左右。  (4)关于栅极电压  前文说过,RDS(ON)的阻值与UGS的大小有关。但是,当UGS大到一定程度(一般为10V以上),RDS(ON)的阻值基本不再变化。图也给出了UGS为10V和20V时RDS(oN)的阻值曲线,可以看出其差异不大。因此,功率MOSFET驱动电路的输出电压应该大于10V,通常选择为12~15V。  (5)关于输入电容  虽然功率MOSFET的输入阻抗很高,但其栅极G与源极S之间存在较大的输入电容。根据生产厂家和制造工艺的不同,输入电容C的容量差异也较大。为了提高开关速度,减小驱动电路的负载,应选择输入电容C较小的功率MOSFET。  此外,为了提高开关速度,需要给输入电容快速的充放电,这就要求驱动电路能够提供很大的峰值电流,该电流通常可达1~2A,但持续时间通常不到100ns。这也说明,虽然功率MOSFET驱动电路的功耗很小,但仍然需要输出很大的峰值电流。  (6)关于管壳温度  和双极型晶体管一样。当功率MOSFET的管壳温度升高时,最大允许电流及功耗会明显下降。同时,高温也会使导通电阻RDS(ON)的增大,产生更大的导通损耗。因此,许多厂家在其器件参数表中直接给出了T为100℃时允许的漏极电流值或者给出了高温降额曲线。读者一定要根据功率开关管的实际工作温度来修正最大允许漏极电流ID的参数值。  MOSFET 在开关电源中的应用  MOSFET 在开关电源中有广泛的应用,主要包括以下几个方面:  1. 主开关管:在正激、反激、半桥、全桥等拓扑结构的开关电源中,MOSFET 作为主开关管,控制电能的转换。  2. 同步整流管:在一些高效率的开关电源中,采用同步整流技术,用 MOSFET 代替二极管作为整流管,以降低整流损耗,提高效率。  3. 辅助开关管:在一些开关电源中,需要使用辅助开关管来实现软开关、同步整流等功能。  4. 保护电路:MOSFET 可以用于过流保护、过压保护等保护电路中,当出现异常情况时,及时切断电路,保护开关电源和负载。  MOSFET 的驱动电路  MOSFET 的驱动电路是开关电源中的重要组成部分,它负责将控制信号转换为合适的栅极电压,以控制 MOSFET 的导通和截止。驱动电路的设计需要考虑以下几个因素:  1. 驱动能力:驱动电路需要提供足够的驱动电流,以确保 MOSFET 能够快速导通和截止。  2. 栅极电:驱动电路需要提供合适的栅极电压,以保证 MOSFET 能够可靠地导通和截止。  3. 隔离要求:在一些应用中,需要将驱动电路与控制电路进行隔离,以提高系统的安全性和可靠性。  4. 保护功能:驱动电路需要具备过流保护、短路保护等功能,以保护 MOSFET 和驱动电路本身。  结论  MOSFET 作为开关电源中的关键组件,其性能直接影响到开关电源的效率、可靠性和成本。在设计开关电源时,需要根据具体的应用要求,选择合适的 MOSFET,并设计合理的驱动电路和散热方案。通过对 MOSFET 的深入了解和合理应用,可以设计出高性能、高效率的开关电源。
发布时间:2024-12-17 15:06 阅读量:475 继续阅读>>
干货!<span style='color:red'>开关电源</span>中各元件拆解分析
  开关电源(Switch Mode Power Supply,简称SMPS),又称开关电源、开关变换器,是一种高频功率变换装置,是电源的一种。其功能是通过不同形式的架构,将某一电平的电压转换为用户所需的电压或电流。普通电源的作用是将输入的交流市电( AC110V /220V) 通过隔离开关降压电路转换成硬件所需的几种低压 直流电源:3.3V、5V、12V、-12V,并提供具有 5V 待机 (5VSB) 关闭功能的计算机 处于待机状态。因此,该电源同时配备了高压和大功率元件。  电源转换过程为 交流 输入→ EMI 滤波电路→整流电路→功率因数校正电路(有源或无源PFC)→功率级初级侧(高压侧)开关电路转换成脉冲电流→主变压器→功率级次级侧(低压侧)整流电路→电压调整电路(如磁放大电路或DC-DC 转换电路)→滤波器(平滑输出纹波,由电感和电容组成)电路→监控输出的电源管理电路。  下面介绍交流输入端EMI滤波电路的常用元件 。  交流输入插座此处首次检查外部交流电源输入。首先,在交流输入端 加装 二阶 EMI ,以阻挡来自电源线的干扰,防止电源工作时产生的开关噪声通过电源线传播并干扰其他用电设备。(EMI) (电磁干扰) (EMI) (电磁干扰) ( 滤波器(滤波器)的低通滤波目的是将交流电中包含的高频噪声旁路或引导至地线,只允许波形大约60Hz才能通过。  上图中间是一个集成 EMI 滤波器电源插座,滤波器电路完全包含在一个铁盒内,可以更有效地防止噪声泄漏。由于没有金属外壳,深埋式内置EMI滤波器的电源 会泄漏一些噪声,因此左侧插座上仅添加Cx和Cy电容(稍后介绍)。EMI 滤波器电路经常在主电路板上实现。如果 主电路板上的EMI电路区域是空的, 则该区域的元件已被移除。由于目前12cm风扇的电源内部面积不足以容纳集成 EMI 滤波器,因此大部分采用照片左右两侧的方案。  X电容(Cx,又称跨线滤波电容)该EMI滤波器电路的目标 是通过在火线 (L) 和中性线 (N) 之间桥接电容器来降低电源线的低正常噪声。  外观呈方形,如图所示,上面写有字母X或X2。  Y电容(Cy,又称线路旁路电容)为了最大限度地降低高常模和共模噪声,Y 电容器连接在浮动地 (FG) 和火线 (L)/零线 (N) 之间。  电脑 电源中的FG点 与图中的金属外壳、地线(E)、输出端0V/GND相连,所以当地线不接时,会通过两个串联连接——连接的电线。当人体接触Cy电容时,它会分压输入电源一半的电位差(Vin/2),可能会感应出电感。  共模扼流线圈(交联电感)  为了消除电源线的低通共模和射频噪声,共模扼流线圈与滤波器电路中的火线(L)和零线(N)串联。一些电源的输入线采用环绕磁芯的设计,可以将其视为基本的共模扼流圈。它有环形和方形的形状,类似于变压器,并且可以看到一些裸露的线圈。  L/N线和地线E之间的噪声被称为共态噪声,而L和N线之间的噪声被称为常态噪声。EMI滤波器的根本目的 是消除和阻挡这两类噪声。EMI滤波电路之后是瞬态保护电路和整流电路 ,常用元件 如下。  保险丝当流过保险丝的电流超过额定限值时,保险丝将熔断,保护与后端电路的连接。电源中使用的保险丝通常是快断型,但最好是防爆型。该保险丝与标准保险丝的主要区别在于,外管是米色陶瓷管,内含防火材料,可防止熔断时产生火花。  照片顶部的固定式(两端直接套上线座并焊接到电路板上)和图片中间的可拆卸式都是安装在电路板上的(用金属夹固定)。热熔断器是下面的方形 元件 。此保险丝连接在功率 元件的大功率水泥电阻或散热器上。主要用于防超温,防止 因过热而导致元件 损坏或故障。该保险丝还可与电流保险丝配合使用,提供针对电流和温度的双重保护。  负温度系数电阻(NTC)电源接通时,电源高压端的电解电容处于无电状态。充电过程中会出现过大的电流浪涌和线路压降,可能导致桥式整流器和其他组件超过其额定电流并烧毁。当 NTC 与L或N线串联时,其内阻可以在充电时限制电流,而负温度系数意味着其阻值随着温度升高而减小,因此当电流流过本体时,电阻减小。为了减少不必要的功耗,电阻值会随着温度升高而逐渐减小。  大部分成分是黑色和深绿色的球状饼状成分。然而,当电源在预热状态下启动时,其保护作用被忽略,即使阻抗可以随温度降低,仍然消耗少量的功率。因此,当今大多数高效电源都采用了更复杂的瞬时保护电路。  金氧压敏电阻(MOV)  在保险丝的背面,压敏电阻连接在火线和地线之间。当两端电压差小于其额定电压值时,本体呈现高阻抗;当电压差超过其额定电压值时,本体电阻迅速下降。估计LN和前端保险丝之间存在短路,由于短路产生的电流,前端保险丝将熔断以保护后端电路。当主体承受过大的电力时,它偶尔会自毁,以提醒用户设备出现问题。  它常见于电源的 交流 输入端。当输入交流过压时,保险丝能及时熔断 ,防止内部器件损坏。其颜色和外观与Cy电容非常相似,但元件上的文字和型号可以区分。  桥式整流器内部桥式整流器中有四个二极管交替连接。它的工作是对输入交流电进行全波整流, 供后端的开关电路使用。  其外观和尺寸将根据组件的额定电压和电流而变化。有些电源会将其安装在散热器上,以帮助散热并确保长期稳定性。整流后进入功率级原边开关电路。本节的元件定义了电源各通道的最大输出能力,是一个关键元件。  开关晶体管它根据控制信号导通和关断,决定电流是否流过,作为开关电路中的非接触式快速电子开关,在有源功率因数校正电路和功率级原边电路中起着至关重要的作用。  电源中的传统N MOSFET(N型金属氧化物半导体 场效应晶体管)如图上半部分所示,而NPN BJT如图下半部分所示(NPN型双结晶体管)。根据开关元件的电路组成,可以产生不同的功率级拓扑,例如双晶正激型、半桥型、全桥型、推挽型等。开关也用于要求高效率的电源。同步整流电路和DC-DC 降压电路均采用晶振。  变压器由于采用变压器分离高低压,利用磁能进行能量交换,故称为隔离开关降压电源。不仅可以避免高低压电路发生故障时的漏电危险,还可以轻松产生多种电压输出。由于工作频率高,变压器的体积比标准 交流变压器小。  由于变压器是电力传输通路之一,目前的大输出电源均采用多变压器设计,以防止单个变压器饱和而限制功率输出。辅助电源电路和用于信号传输的脉冲变压器显示在镜头的顶部,而主电源变压器和环形次级侧调节变压器显示在底部。  采用变压器作为隔离边界时,副边的输出电压远低于原边,但仍需经过整流、调整、滤波、平滑等电路后才变为原边。计算机部件所需的各种电压的直流电压 。  二极管根据各部分的电路要求和输出大小,电源内部采用不同的类型和规格。除传统的硅二极管外,还有 肖特基势 垒二极管(SBD)、快恢复二极管(FRD)和齐纳二极管(ZD)。等等。  插图描述了最常见的二极管封装。SBD用于功率级的次级侧,对变压器输出进行整流,ZD用作电压基准。FRD主要用于有源功率因数校正和功率级的初级侧电路;SBD用于功率级的次级侧,对变压器输出进行整流,ZD用作电压基准。  电感器根据磁芯的结构、电感值以及在电路上的安装位置,电感器可用作交流电路中的储能元件、磁放大器电路中的电压调节元件以及次级侧整流后的输出滤波。  图中的电感器有环形和圆柱形状,漆包线的匝数和厚度根据电感值和载流能力而变化。  电解电容电容器与电感器一样,可用作能量存储器件和纹波平滑器。电源原边电路采用高压电解电容,承受整流后的高压 直流;次级电路采用大量耐高温、长寿命、低阻抗电解电容,减少输出下电解电容持续充放电带来的损耗。  照片下部的高压电解电容用于初级侧,下部电压较低的部分用于次级侧和外围控制电路。由于电容器中化学物质(电解质)的关系,工作温度对电解电容器的寿命有显著影响。这样一来,所采用的品牌和系列的电解电容就能长期使用,同时还能保持电源良好的散热性能。决定电源的稳定性、可靠性以及使用寿命。  电阻器为了避免触电,使用电阻来限制流过电路的电流,并在电源关闭后释放电容器中存储的电荷。  左侧的大功率水泥电阻器可以承受显着的电涌,而右侧的普通电阻器有一个颜色代码来指示其电阻值和不准确度。如果没有控制电路,由上述部件组成的电路将无法执行其工作,并且必须随时监视和调节每个输出。为了保护计算机 部件的安全 ,如果出现任何异常情况,应立即关闭输出。  各控制IC例如PFC电路、功率级原边 PWM 电路、PFC/PWM集成控制、辅助电源电路集成器件、电源监控管理IC等,都是根据其安装位置和在电源中的应用等来分类的。  对于PFC电路来说,电源可以通过采用有源功率因数校正电路调节来维持指定的功率因数并限制高次谐波的发展。功率级原边 PWM 电路:作为功率级原边开关晶体驱动器,具有 PWM (脉宽调制)信号生成和功率输出状态占空比管理(Duty Cycle)。常见的PWM 控制IC有UC3842/3843系列等。集成PFC/PWM控制:通过将两个控制器组合在一个IC中,可以简化电路,减少元件数量,缩小体积,降低故障率。例如CM680X系列是一款PFC/PWM集成控制IC。  辅助电源电路集成组件:辅助电源电路在电源切断后必须继续输出,因此必须是一个独立的系统。由于输出瓦数不需要太高,所以采用业界低功耗集成器件,如PI的TOPSwitch系列作为核心。  电源管理和监控 每个输出的 UVP(低电压保护)、OVP(过压保护)、OCP(过流保护)、SCP(短路保护)和 OTP(过温保护)由我知道了。设定值后关闭并锁定控制电路,停止电源输出,待故障排除后恢复输出。  除了上述元件外,制造商还可以根据需要添加其他IC,例如风扇控制IC。  光耦光耦合器主要用于高压和低压电路之间的信号传输,它们保持电路隔离,以防止发生故障时两个电路之间出现异常电流,从而损坏低压组件。其想法是利用发光二极管和光电晶体管通过光发送信号,并且由于它们之间没有电路连接,因此两端的电路可以保持隔离。
关键词:
发布时间:2024-08-26 13:51 阅读量:924 继续阅读>>
<span style='color:red'>开关电源</span>电路中为什么需要串联小电阻,有什么用?
  开关电源电路中为何需要串联小电阻,起什么作用,在电源中会见到阻值特别小的电阻,通常是0.5-2.2欧姆,它们分别在不同的位置,起到不同的作用。  在电源输入端会串联一颗2.2欧左右的电阻,这样可以限制电容充电电流,还可以起到保险的作用,就是用电阻代替保险管了,节省了一个元件,有短路时,电阻不能通过大电流,就会烧断,不会造成起火。还用用PCB上的铜箔做的很细,代替保险管的,当有大电流时,铜箔很细,不同通过大电流,铜箔就会烧断,保护后级不会扩大故障,这种在小功率的电源中特别常见。  开关电源中还有一个电阻非常小,串联在MOS管的S极R89,这里串的电阻是检流电阻,就是检测变压器初级流过的电流,电源芯片没有检测电流的能力,只能检测电压,就要把流过变压器的初级绕组的电流通过串流的电阻产生电压,把这个电压信号输入到电源芯片中,控制开关电源的过流保护和短路保护。  这里为什么要串联很小的电阻呢,因为串联的电阻大,功率就要大,浪费不必要的电能,影响效率,根据电源芯片的输入保护电压是一定的,电阻越大,电源的过流保护点容易保护,这个电阻是根据电源的功率来设计的,功率越大,电阻越小,所以常见的电阻比较小。  在电磁炉路中也有一个2.2欧3W的电阻,也是起到保险的作用,都是厂家为了节省成本设计的。  还有的就是0欧姆电阻,一开始也不知道为什么要加一个0欧姆电阻,直接短上不就可以了吗?实际也是一个保险电阻,当后级电路有短路,电阻就会烧断,还有就是在单面PCB电路板的直插0欧姆电阻,是用作跳线的作用,单面板只能单面走线,有的地方绕不开,就需要跳线,有的用跳线,有的直接用0欧姆电阻。  还有就是0欧姆电阻在调试时使用,在每一个电路模块的电源串联一颗电阻,当调式时,断开其它的电阻,只连接这一颗电阻,就可以单独调试,尤其在批量的电路板时,某一点可以时断开,也可以是短路,据根据需要,是否焊接这个0欧姆电阻。  经常在电路中遇到小阻值的电阻,每个电阻在每个位置的不同,它的叫法和功能也不同,常见的小电阻就是用于保险的电阻,保险电阻,检测电流大小的电阻,检流电阻。
关键词:
发布时间:2024-07-25 11:33 阅读量:719 继续阅读>>

跳转至

/ 4

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码