Valeo & ROHM Semiconductor co-develop the next generation of power <span style='color:red'>electronic</span>s
  Valeo, a leading automotive technology company, and ROHM Semiconductor, a major semiconductor and electronic component manufacturer, collaborate to propose and optimize the next generation of power modules for electric motor inverters using their combined expertise in power electronics management. As a first step, ROHM will provide its 2-in-1 Silicon Carbide (SiC) molded module TRCDRIVE pack™ to Valeo for future powertrain solutions.  Valeo is broadening access to efficient, electrified mobility across various vehicle types and markets from the smallest one (ebikes), through the mainstream (passenger cars) to the biggest one (eTrucks). By combining Valeo’s expertise in mechatronics, thermal management and software development with ROHM’s power modules, Valeo drives the power electronics solution forward, contributing to the performance, efficiency, and decarbonization of automotive systems worldwide.  Valeo and ROHM have been collaborating since 2022, initially focusing on technical exchanges aimed at improving the performance and efficiency of the motor inverter – a key component in the propulsion systems of electric vehicles (EVs) and plug-in hybrids (PHEVs). By refining power electronics, both companies aim to offer optimized cost/performance by delivering higher energy efficiency, reducing heat generation thanks to an optimized cooling and mechatronic integration, and increasing overall reliability with a SiC packaging.  “This partnership marks, for Valeo Power Division, a significant step forward in delivering advanced and high-efficient power electronics,” says Xavier DUPONT, Valeo Power Division CEO. “Together, we aim to set new industry standards for high voltage inverters and accelerate the transition towards more efficient and affordable electric mobility.”  “We are pleased to support Valeo, a renowned automotive supplier, with our power semiconductors. ROHM’s TRCDRIVE pack™ provides high power density, leading to an improved power efficiency. Together, we contribute to the development of highly efficient powertrains by fostering the collaboration with Valeo,” says Wolfram HARNACK, President ROHM Semiconductor GmbH.  These evolutions are all essential to supporting the growing demand for longer range, faster charging capabilities, and, overall a high-performance and an affordable inverter for BEVs and PHEVs.  Valeo will start supplying a first series project in early 2026. Valeo and ROHM will contribute to the improvement of efficiency and downsizing of Valeo’s next generation of xEV inverters.  Background on the TRCDRIVE pack™  TRCDRIVE pack™ is a trademark for the SiC molded module developed for traction inverter drives. This product features high power density and a unique terminal configuration – solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours. Because SiC enables low-loss power conversion under high voltage conditions, combining Valeo's component technology, casing design and thermal management expertise with ROHM's power module creates a synergistic effect. Through both companies’ collaboration in automotive power electronics, they contribute to achieving a decarbonized society by enhancing the performance and efficiency of the motor inverter.  More information is available via:  https://www.rohm.com/news-detail?news-title=2024-06-11_news_trcdrive-pack&defaultGroupId=false  TRCDRIVE pack™ are trademarks or registered trademarks of ROHM Co., Ltd.  About Valeo  Valeo is a technology company and partner to all automakers and new mobility players worldwide. Valeo innovates to make mobility safer, smarter and more sustainable. Valeo enjoys technological and industrial leadership in electrification, driving assistance systems, reinvention of the interior experience and lighting everywhere. These four areas, vital to the transformation of mobility, are the Group's growth drivers.  Valeo in figures: 22 billion euros in sales in 2023 | 109 600 employees, 28 countries, 159 plants, 64 research and development centers and 19 distribution platforms at June 30, 2024.  https://www.valeo.com/  Valeo is listed on the Paris stock Exchange.
Key word:
Release time:2024-11-29 10:49 reading:361 Continue reading>>
ROHM at <span style='color:red'>electronic</span>a 2024: Empowering Growth, Inspiring Innovation
  Willich/Munich, Germany, October 10th, 2024 – ROHM Semiconductor Europe is looking forward to electronica 2024 – the world’s leading trade fair and conference for electronic components, systems, applications, and solutions. The event will take place between November 12th to 15th in Munich.  At booth C3-520, ROHM will showcase its advanced power and analog technologies designed to enhance power density, efficiency, and reliability in both automotive and industrial applications. These advancements are crucial for addressing the increasing demands of modern electronic systems, particularly in the context of sustainability and innovation.  Under the theme "Empowering Growth, Inspiring Innovation," ROHM will highlight via its various demo application stations in “tree style” how its high-quality semiconductor technologies contribute to solving critical social and ecological challenges. The focus will be on driving sustainability in electronic design and innovation, which aligns with the growing emphasis on creating environmentally responsible solutions within the industry.  At electronica 2024, the exhibition space has been greatly expanded and the number of items on display has been increased to 30 – more than three times compared to the previous show.  The latest solutions will be exhibited under the three themes of “for E-Mobility”, “for Automotive”, and “for Industrial”.  For E-Mobility  ・TRCDRIVE pack™ with 2-in-1 SiC Molded Module to improve the efficiency of traction inverters  ・New EcoIGBT™ products for electric compressors  ・New EcoSiC™ Schottky Barrier Diodes for onboard chargers  For Automotive  ・New configurable PMIC with supporting functional safety features for application processors, SoCs and FPGAs  ・LED Driver ICs for Exterior Lighting / Head Lamps  ・Advanced solutions on the ADAS cockpit demo  For Industrial Equipment  ・Industrial AC-DC PWM Controller ICs – support a wide range of power transistors from Si MOSFETs and IGBTs to SiC MOSFETs  ・The EcoGaN™ family of 150V and 650V class GaN HEMTs in several EVKs  ・Latest R&D project on Terahertz  In addition to product showcases, ROHM is committed to fostering technical exchange and collaboration at electronica 2024. "For us, electronica is more than just a showcase – it’s an opportunity to forge new connections, strengthen existing partnerships, and reunite with industry peers," says Wolfram Harnack, President of ROHM Semiconductor Europe. "We are excited to welcome our guests to Munich as we work together to shape the future of electronics."  For a sneak peek at which highlights ROHM will present during electronica 2024, visit our event preview page: https://www.rohm.com/electronica  TRCDRIVE pack™, EcoIGBT™, EcoSiC™ and EcoGaN™ are trademarks or registered trademarks of ROHM Co., Ltd.
Key word:
Release time:2024-11-05 15:56 reading:544 Continue reading>>
AMEYA360 invites you to attend Electronica Munich, Germany!
  The 2024 Munich International Electronic Fair (Electronica) will be held from November 12 to 15 at the Munich Trade Fair Center.Our booth location : B5-520.  Germany Munich Electronics Fair (Electronica), since its inception in 1964, has developed into Europe and even the world's largest and far-reaching electronic components professional exhibition. Every year, the elites of the global electronics industry gather in Munich to review the brilliant achievements of the electronics industry in the past two years and look forward to the future development of the electronics market.  As an excellent stage for industry elites to understand the market news and catch the latest information, the Munich Electronics Fair in Germany brings together the latest innovations of the world's leading electronics companies. Many professional visitors were not only attracted by the release of new products and technologies, but also gained a lot from finding partners and signing cooperation agreements.  The 2022 electronica was an even bigger success, with 14 specialized halls and 2,140 companies from 51 countries and regions, more than 60% of which came from outside Germany. At the same time, 69,783 visitors from 102 countries and regions attended the fair, making it a great success.  AMEYA360, as the industry's leading global one-stop procurement platform for electronic components, will be participated this exhibition. We sincerely invite you to visit Booth 520 in Hall B5 to discuss the development of the industry and participate in the industry big event, and sincerely cooperate with all sectors of society to create a brilliant future blueprint and write a new chapter in development!  Exhibition Overview  Time: November 12 - November 15, 2024  industry: Electronic components  Organizer:Messe Munchen International, Germany  Location: Munich Trade Fair Center, Germany  Holding cycle: every two years  Hall plan:  Range of exhibits  Cars; Display; Electromechanical and system peripherals; Electronic Design (ED/EDA); Embedded system; Electronic Manufacturing Services (EMS); Semiconductor; PCB and other circuit carriers; Test and measurement; Micro-nano system; Passive component; Sensor technology; The service industry; Power supply; System components/assemblies and subsystems; The radio.  About AMEYA360  AMEYA360 Mall (www.ameya360.com)is a one-stop procurement platform for electronic components, independently developed and designed by Shanghai Huanghua Information Technology Co.Ltd. The platform has secured cooperation and authorization from numerous renowned domestic and international brand manufacturers. With diverse range of material categories abundant inventory, and a commitment to quality,AMEYA360 ensures a reliable source for electronic component procurement.  In addition to the online platform, AMEYA360 has also introduced the user-friendly [AMEYA Store] app, which combines various function such as searching, ordering, price quote, making payments, tracking logistics, accessing resources, finding component references, and exploring material replcements.  With its comprehensive features, AMEYA360 caters to the varied demands of the electronic information-related industries. These include small-scale component procurement, ordering for future needs, applying for product samples, and receiving technical support to meet the diverse needs of businesses in the electronics sector.  AMEYA360 will participated in the 2024 Munich Electronica,Germany, hope to discuss industry trends and future development with all business partners & customers in the industry, and explore a new model of innovative cooperation in the supply chain that currently facing many challenges.  AMEYA team is looking forward to see you in Munich this November!  If you are sourcing for any electronics components, you can scan the QR code below for inquiry. For more information, please email dukelee@ameya360.com or call +86 13916138705.
Key word:
Release time:2024-09-02 17:17 reading:1172 Continue reading>>
What are TVS diodes in safeguarding <span style='color:red'>electronic</span>s
  In today’s interconnected world, electronic devices and systems are ubiquitous, powering our homes, workplaces, and communication networks. However, these devices are vulnerable to voltage transients—brief surges in voltage that can occur due to lightning strikes, electrostatic discharge (ESD), or switching transients in the electrical system.  To protect sensitive electronic components from such transients, Transient Voltage Suppressor TVS diodes play a crucial role. This article explores the functionality, applications, and importance of TVS diodes in safeguarding electronics.  What is a Transient Voltage Suppressor (TVS) Diode?A Transient Voltage Suppressor (TVS) diode is a semiconductor device used to protect sensitive electronic components from voltage spikes or transient voltages that could potentially damage them. These spikes can be caused by events such as lightning strikes, electrostatic discharge (ESD), or switching transients in the electrical system.  The TVS diode operates by providing a low-impedance path to divert excess voltage away from the protected components, thus limiting the voltage across them. When a transient voltage exceeds the breakdown voltage (also known as the clamping voltage or avalanche voltage) of the TVS diode, it starts to conduct, effectively shunting the excess current away from the protected circuit.  What are the features of TVS diodes?Fast Response Time: TVS diodes respond quickly to transient events, providing protection within nanoseconds to microseconds.  Low Clamping Voltage: The clamping voltage is the maximum voltage that the TVS diode allows to pass through to the protected circuit. It is typically lower than the voltage tolerance of the protected components, ensuring they remain safe.  High Surge Current Capability: TVS diodes are designed to handle high surge currents associated with transient events, protecting the circuit from damage.  Low Leakage Current: When not conducting, TVS diodes have low leakage current, minimizing power consumption and ensuring minimal impact on the protected circuit during normal operation.  Robustness: TVS diodes are robust devices, able to withstand multiple transient events without degradation in performance.  What are the applications of TVS diode?TVS diodes are commonly used in various applications, including:  Protection of integrated circuits (ICs), microcontrollers, and other semiconductor devices from ESD and voltage transients.  Protection of communication ports (such as USB, Ethernet, HDMI) and data lines in electronic equipment.  Surge protection for power supply lines, signal lines, and sensor inputs in industrial and automotive electronics.  Protection of sensitive electronic equipment against lightning-induced surges in telecommunications, power distribution, and other infrastructure.  What’s the difference between TVS Diodes and Zener Diodes?TVS (Transient Voltage Suppressor) diodes and Zener diodes are both semiconductor devices used for voltage regulation, but they serve different purposes and operate in different ways. Here are the key differences between TVS diodes and Zener diodes:  Purpose:  • TVS Diodes: TVS diodes are primarily used for transient voltage suppression, meaning they protect electronic circuits from voltage spikes or transients caused by events like lightning strikes, electrostatic discharge (ESD), or inductive switching. Their main function is to provide surge protection and prevent damage to sensitive components.  • Zener Diodes: Zener diodes are used for voltage regulation and voltage reference. They operate in the breakdown region and maintain a constant voltage across their terminals when reverse biased. Zener diodes are commonly used in voltage regulation circuits, voltage clamping circuits, and voltage reference circuits.  Operating Principle:  • TVS Diodes: TVS diodes operate by avalanche breakdown or Zener breakdown. When the voltage across a TVS diode exceeds its breakdown voltage, it starts to conduct heavily, providing a low-impedance path for excess current and diverting it away from the protected circuit.  • Zener Diodes: Zener diodes operate in the reverse-biased breakdown region, where they maintain a constant voltage (known as the Zener voltage) across their terminals. They regulate voltage by allowing current to flow in the reverse direction when the applied voltage exceeds the Zener voltage.  Voltage Characteristics:  • TVS Diodes: TVS diodes typically have a very low clamping voltage (Vc) and are designed to handle high surge currents associated with transient events. They are optimized for fast response times and high-energy absorption capabilities.  • Zener Diodes: Zener diodes have a well-defined breakdown voltage (Vz) at which they operate. The voltage across a Zener diode remains relatively constant over a wide range of currents when reverse biased, making them suitable for voltage regulation applications.  Applications:  • TVS Diodes: TVS diodes are used in applications requiring protection against voltage transients, such as in power supplies, communication ports (USB, Ethernet), data lines, and electronic equipment exposed to harsh environments or prone to ESD.  • Zener Diodes: Zener diodes find applications in voltage regulation circuits, voltage references, voltage clamping circuits, reverse voltage protection, and precision voltage measurement circuits.  How do TVS diodes work?  TVS diodes work by providing a low-impedance path for excess voltage, diverting it away from sensitive electronic components and limiting the voltage across them to safe levels. They operate based on two main mechanisms: avalanche breakdown and Zener breakdown. Here’s how TVS diodes work:  Avalanche BreakdownTVS diodes are typically fabricated with a highly doped semiconductor material that has a narrow depletion region. When the diode is reverse-biased (i.e., the voltage applied across it is in the opposite direction of its normal operation), the electric field across the depletion region increases.  If the applied reverse voltage exceeds a certain threshold known as the breakdown voltage (also called clamping voltage or avalanche voltage), the strong electric field can accelerate charge carriers (electrons and holes) to high energies.  These high-energy charge carriers collide with other atoms in the semiconductor lattice, generating additional charge carriers through impact ionization. This process cascades, resulting in a sudden increase in current flow through the diode.  As a result, the TVS diode effectively clamps the voltage across its terminals at the breakdown voltage, providing a low-impedance path for excess current and limiting the voltage seen by the protected circuit.  Zener BreakdownIn addition to avalanche breakdown, some TVS diodes may also utilize Zener breakdown to provide transient voltage suppression. Zener breakdown occurs when the reverse-biased diode operates in its Zener breakdown region.  In this region, the diode behaves as a voltage regulator, maintaining a relatively constant voltage (known as the Zener voltage) across its terminals. When the applied reverse voltage exceeds the Zener voltage, the diode starts conducting heavily, effectively clamping the voltage across it.  What causes a TVS diode to fail?TVS diodes are designed to withstand high levels of transient voltage and provide protection to sensitive electronic components. However, like any electronic component, TVS diodes can fail under certain conditions. Here are some common causes of TVS diode failure:  Overvoltage Conditions: If the transient voltage exceeds the maximum rated clamping voltage (avalanche or Zener breakdown voltage) of the TVS diode, it may fail to suppress the transient effectively. This can happen if the transient event is exceptionally severe or if the TVS diode is underspecified for the application.  Overcurrent Conditions: Excessive current flowing through the TVS diode, either due to a high-energy transient event or a sustained fault condition, can cause the diode to fail. Overcurrent can lead to thermal overstress, causing the diode to overheat and potentially short or open circuit.  Reverse Polarity: Applying a reverse voltage beyond the maximum reverse voltage rating of the TVS diode can cause it to fail. This can occur due to improper installation or incorrect wiring in the circuit.  End-of-Life Wear-Out: Like all semiconductor devices, TVS diodes have a limited lifespan, and their performance may degrade over time due to factors such as aging, temperature cycling, and electrical stress. As the diode approaches the end of its life, its ability to suppress transients effectively may diminish, leading to failure.  Excessive Power Dissipation: TVS diodes are specified with maximum power dissipation ratings. Exceeding these ratings, either due to sustained overvoltage conditions or prolonged exposure to transient events, can cause the diode to overheat and fail.  Manufacturing Defects: Rarely, TVS diodes may fail due to manufacturing defects such as material impurities, processing errors, or incomplete encapsulation. These defects can compromise the electrical and thermal performance of the diode, leading to premature failure.  Improper Handling or Installation: Mishandling or improper installation of TVS diodes, such as mechanical stress during assembly, soldering defects, or exposure to corrosive environments, can lead to physical damage or degradation of the diode, resulting in failure.  ConclusionTVS diodes are essential components in protecting electronic devices and systems from voltage transients. Their ability to clamp voltages and divert excess current away from sensitive components plays a vital role in ensuring the reliability and durability of modern electronics. As the demand for high-performance and reliable electronic products continues to grow, the importance of TVS diodes in safeguarding electronics will only increase, making them indispensable in today’s interconnected world.
Key word:
Release time:2024-07-16 13:08 reading:565 Continue reading>>
EMC Components : Guardians of Electronic Devices
  Electromagnetic interference (EMI) is a pervasive force in our modern world. It emanates from various sources such as radio waves, power lines, and even the devices we use daily. EMI can disrupt the operation of electronic devices, causing malfunctions, data corruption, or complete failure. This interference not only affects the device itself but can also radiate outward, potentially interfering with other nearby electronic systems.  Electromagnetic compatibility EMC components are crucial for addressing electromagnetic interference emissions and susceptibility issues. The correct selection and use of these components are prerequisites for electromagnetic compatibility design.  Therefore, we must have a deep understanding of these components in order to design electronic and electrical products that meet standard requirements and offer the best cost-effectiveness. Each electronic component has its own characteristics, so this article will discuss some common electronic components and circuit design techniques to reduce or suppress electromagnetic compatibility issues.  There are two basic groups of electronic components: leaded and lead-free components. Leaded components have parasitic effects, especially at high frequencies. The leads form a small inductance, approximately 1nH/mm/lead. The ends of the leads also produce a small capacitance effect, around 4pF. Therefore, the length of the leads should be kept as short as possible. Compared to leaded components, lead-free surface-mount components have smaller parasitic effects. Typical values are: 0.5nH parasitic inductance and around 0.3pF terminal capacitance.  EMC components are specialized electronic parts designed to mitigate the effects of electromagnetic interference. They act as shields, filters, and absorbers, safeguarding sensitive electronic circuits from unwanted electromagnetic disturbances. These components come in various forms, each serving a unique purpose in the quest for electromagnetic compatibility.  CapacitorsCapacitors are indispensable elements in EMC design, serving as robust tools for both filtering and bypassing unwanted noise and signals.  At their core, capacitors store and release electrical energy, but in the realm of EMC, they serve a dual purpose. Firstly, capacitors act as filters, blocking high-frequency noise and interference from entering sensitive circuits. By strategically placing capacitors in signal paths or power lines, designers can effectively attenuate EMI, preserving signal integrity and device performance.  Secondly, capacitors act as bypass components, providing a low-impedance path for high-frequency noise to dissipate harmlessly to ground. This prevents noise from propagating through the circuit and interfering with critical operations.  Ferrite Beads and ChokesFerrite beads and chokes are passive components commonly used to suppress high-frequency noise in electronic circuits. By introducing impedance to the flow of high-frequency signals, these components effectively filter out electromagnetic interference. They are often found in power lines, signal cables, and printed circuit boards, where they help maintain signal integrity and prevent interference from disrupting sensitive electronic components.  EMI FiltersEMI filters are active or passive devices that suppress conducted electromagnetic interference by attenuating noise on power lines and signal cables. These filters typically employ a combination of capacitors, inductors, and resistors to shunt high-frequency noise to ground, ensuring that only clean power reaches the electronic device. EMI filters are crucial in applications where strict electromagnetic compatibility standards must be met, such as medical devices, automotive electronics, and telecommunications equipment.  InductorsInductors, vital EMC components, establish a connection between magnetic and electric fields, offering sensitivity crucial for addressing electromagnetic interference (EMI). These components, akin to capacitors, tackle various EMC challenges effectively. There are two fundamental types: open-loop and closed-loop, distinguished by their magnetic field paths. Open-loop inductors, with magnetic fields traversing air, can induce radiation and EMI concerns. Axial winding is preferable over rod or coil designs to confine the magnetic field within the core.  Conversely, closed-loop inductors enclose the magnetic field entirely within a magnetic core, rendering them ideal for circuit design albeit pricier. Ferrite-core inductors are particularly suited for EMC applications due to their capacity to operate at high frequencies, ensuring efficient EMI suppression. In EMC endeavors, ferrite beads and clips emerge as specialized inductor types, catering to unique interference challenges.  Shielding MaterialsShielding materials, such as conductive foils, tapes, and coatings, create a barrier between sensitive electronic components and external electromagnetic fields. They prevent electromagnetic interference from penetrating or escaping from electronic enclosures, thereby minimizing the risk of interference-induced malfunctions. Shielding materials are widely used in consumer electronics, industrial machinery, and aerospace systems to ensure reliable operation in electromagnetic environments.  Surge SuppressorsSurge suppressors, also known as transient voltage suppressors (TVS), protect electronic circuits from voltage spikes and transient surges caused by lightning strikes, electrostatic discharge (ESD), or switching events. These components rapidly divert excess energy away from sensitive electronic components, preventing damage and ensuring the longevity of electronic devices. Surge suppressors find applications in power supplies, data communication systems, and automotive electronics, where robust protection against transient events is essential.  ConclusionThe role of EMC components in ensuring the reliability and performance of electronic devices cannot be understated. From ferrite beads and EMI filters to shielding materials and surge suppressors, these unsung heroes silently guard our electronic world against the invisible forces of electromagnetic interference. As technology marches forward, the importance of EMC components will only continue to grow, shaping the future of electronics in an interconnected world.
Key word:
Release time:2024-06-03 15:43 reading:764 Continue reading>>
ROHM Group Company SiCrystal and STMicro<span style='color:red'>electronic</span>s Expand Silicon Carbide Wafer Supply Agreement
  Kyoto, Japan and Geneva, Switzerland, April 22, 2024 – ROHM (TSE: 6963) and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, announced today the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.  Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.  “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”. said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.  Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.  About STMicroelectronics  At ST, we are over 50,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An integrated device manufacturer, we work with more than 200,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of cloud-connected autonomous things. We are committed to achieving our goal to become carbon neutral on scope 1 and 2 and partially scope 3 by 2027.  Further information can be found at www.st.com .  About ROHM  Founded in 1958, ROHM provides ICs and discrete semiconductor devices characterized by outstanding quality and reliability for a broad range of markets, including automotive, industrial equipment and consumer market via its global development and sales network.  In the analog power field, ROHM proposes the suitable solution for each application with power devices such as SiC and driver ICs to maximize their performance, and peripheral components such as transistors, diodes, and resistors.  Further information on ROHM can be found at www.rohm.com .  About SiCrystal  SiCrystal, a ROHM group company, is one of the global market leaders for monocrystalline silicon carbide wafers. SiCrystal’s advanced semiconductor substrates provide the basis for the highly efficient use of electrical energy in electric vehicles, fast charging stations, renewable energies and in various fields of industrial applications.  Further information on SiCrystal can be found at www.sicrystal.de .
Key word:
Release time:2024-04-24 11:10 reading:1057 Continue reading>>
Understanding Moisture Sensitive Levels (MSL) in Electronic Components
  Moisture Sensitive Levels (MSL) play a crucial role in the handling and reliability of electronic components, especially those that are sensitive to moisture-induced damage.  The MSL designation provides valuable information about the susceptibility of a component to moisture absorption and outlines guidelines for proper storage and handling.  In this article, we explore the significance of Moisture Sensitive Levels, the risks associated with moisture exposure, and best practices for mitigating potential issues.  The Impact of Moisture on Electronic Components  Moisture can have detrimental effects on the performance and reliability of electronic components, particularly those with moisture-sensitive materials like ceramics and certain plastics. When exposed to high humidity or moisture, these materials can absorb water, leading to various issues such as:  Popcorn Effect:  One common consequence of moisture absorption is the “popcorn effect,” where trapped moisture turns into steam during the solder reflow process. This can cause internal delamination, cracks, or even physical damage to the component.  Electrochemical Migration:  Moisture can facilitate the formation of conductive paths between metal traces, leading to electrochemical migration. This can cause short circuits and compromise the functionality of the component.  Reduced Electrical Performance:  Moisture absorption may alter the electrical properties of certain materials, affecting the overall performance and reliability of the electronic device.  Decreased Solderability:  Moisture-sensitive components may experience reduced solderability, making it challenging to achieve proper solder joints during assembly.  Moisture Sensitive Levels (MSL)Moisture Sensitive Levels are a classification system defined by the Joint Electron Device Engineering Council (JEDEC) to categorize electronic components based on their susceptibility to moisture damage. The MSL rating is represented by a numerical value, ranging from MSL 1 to MSL 6, with MSL 1 being the least sensitive and MSL 6 the most sensitive.  ● MSL 1:  Components with MSL 1 designation are considered the least sensitive to moisture. They have a long floor life and are less prone to moisture-related issues during assembly.  ● MSL 2-3:  Components classified as MSL 2 or MSL 3 have moderate sensitivity to moisture. They may require additional precautions during storage and handling to prevent moisture absorption.  ● MSL 4-5:  Components with MSL 4 or MSL 5 designations are highly sensitive to moisture. Strict guidelines, including vacuum-sealed packaging and rapid assembly, are necessary to minimize the risk of damage.  ● MSL 6:  MSL 6 represents the highest level of moisture sensitivity. Components in this category are extremely susceptible to moisture, and special precautions, such as baking before use, are essential.  Best Practices for Handling Moisture-Sensitive Components● Storage Conditions:  Store moisture-sensitive components in a controlled environment with low humidity levels. Use desiccant packs or dry storage cabinets to maintain dry conditions.  ● Monitoring Shelf Life:  Keep track of the shelf life of components with MSL ratings. Components should be used or baked before the expiration of their floor life.  ● Baking Before Use:  For components with higher MSL ratings, a pre-bake process may be necessary before assembly to remove absorbed moisture. Follow the manufacturer’s guidelines for baking conditions.  ● Vacuum-Sealed Packaging:  Use vacuum-sealed packaging for components with higher MSL ratings to prevent moisture ingress during storage.  ● Humidity Indicator Cards (HIC):  Employ Humidity Indicator Cards to visually monitor the humidity levels inside sealed packages. This helps assess the effectiveness of moisture protection measures.  ● Reflow Profile Considerations:  Adjust reflow profiles to minimize the exposure of moisture-sensitive components to high temperatures during soldering.  ● Training and Awareness:  Ensure that personnel involved in handling electronic components are trained on MSL classifications and proper handling procedures to prevent moisture-related issues.  Conclusion  Moisture Sensitive Levels are critical indicators that guide the handling and processing of electronic components in the manufacturing and assembly processes. Understanding the MSL rating of components allows for the implementation of effective moisture protection measures, ensuring the reliability and longevity of electronic devices. By following best practices in storage, handling, and assembly, manufacturers can mitigate the risks associated with moisture-induced damage and deliver high-quality products to the market.
Key word:
Release time:2024-03-26 15:28 reading:591 Continue reading>>
CG Power and Industrial Solutions Limited, Renesas and Stars Micro<span style='color:red'>electronic</span>s, to Jointly Build Outsourced Semiconductor Assembly and Test Facility in India
  CG Power and Industrial Solutions Limited (“CG”), a part of Tube Investments of India Limited and the Murugappa Group; Renesas Electronics Corporation, a premier supplier of advanced semiconductor solutions; and Stars Microelectronics (Thailand) Public Co. Ltd (“Stars Microelectronics”), a Thailand-based Outsourced Semiconductor Assembly and Test (OSAT) provider; had recently signed a Joint Venture Agreement (JVA) to establish a Joint Venture (JV) to build and operate an OSAT facility in India. The Union Cabinet, chaired by Prime Minister Shri Narendra Modi, approved the project of the JV under India’s Semiconductor scheme on February 29, 2024.  The JV brings together unique capabilities of the partners with a vision to “Make in India for the World.” CG, with around 86 years of manufacturing expertise, is keen to build semiconductor capabilities and ecosystem in India. Renesas, a leading semiconductor company headquartered in Japan, will provide advanced semiconductor technology and expertise. Stars Microelectronics, a Thai based OSAT, will provide both technology for legacy packages and training and enablement.  The JV will be 92.3% owned by CG, with Renesas and Stars Microelectronics each holding equity capital of approximately 6.8% and 0.9%, respectively. The JV plans to invest INR 7,600 crores over a five-year period, which will be financed through a mix of subsidies, equity, and potential bank borrowings as required.  The JV will set up a state-of-the-art manufacturing facility in Sanand, Gujarat, with a capacity that will ramp up to 15 million units per day. The JV will manufacture a wide range of products – ranging from legacy packages such as QFN and QFP to advanced packages such as FC BGA, and FC CSP. The JV will cater to industries such as automotive, consumer, industrial, 5G, to name a few.  Commenting on this new venture, Mr. S. Vellayan, Chairman, CG Power and Industrial Solutions Limited, said, “CG’s entry into the semiconductor manufacturing marks a strategic diversification for us. Our partners, Renesas and Stars Microelectronics, will make our learning curves steeper and help us focus on innovation and excellence.  This is a very exciting phase for the entire nation, and we are very keen to build out India’s semiconductor capability and ecosystem.”  Mr. Natarajan Srinivasan, Managing Director, CG Power and Industrial Solutions Limited, added, “It is a matter of great pride for CG to implement this project of National importance.”  Commenting on the partnership, Mr. Hidetoshi Shibata, CEO of Renesas said, “India is a critical part of Renesas’ business. We value its innovative landscape and robust potential growth and are committed to accelerating our investment in India. By partnering with the Murugappa Group and Stars Microelectronics, we will bolster India’s semiconductor ecosystem and address the growing semiconductor demand for the customers worldwide.”  Mr. Prompong Chaikul, Chairman of Executive Committee of Stars Microelectronics (Thailand) Public Co., Ltd added, "We are deeply honored to join forces in this thrilling venture. Leveraging our expertise and experience in OSAT, we are committed to providing robust support to ensure the success of this project in India."  About CG Power and Industrial Solutions Limited  CG Power and Industrial Solutions Limited is an engineering conglomerate headquartered in Mumbai, India. The Company is a leader in the Electrical Engineering Industry and has two business lines—Industrial Systems and Power Systems. It manufactures Traction Motors, Propulsion systems, Signaling Relays etc., for the Indian Railways, and wide range of Induction Motors, Drives, Transformers, Switchgears, and other allied products for the Industrial and Power sectors. Recently, the Company also made a foray into the business of Consumer Appliances such as Fans, Pumps and Water Heaters.  The Company has world-class manufacturing plants across 9 locations in India and one in Sweden, and a Pan India network of 4 Regional and 15 Branch offices, with around 3000 employees. The Company’s consolidated revenue for FY23 was Rs 6,973 crores (USD 838 million).  The Company continues to excel and maintain its leadership position across its businesses, backed by its outstanding expertise, customer-centric approach, and enhanced focus on innovation and sustainability.  Since November 2020, the Company has become a part of the renowned Murugappa Group.  About Murugappa Group  A 123-year-old conglomerate with presence across India and the world, the INR 742 billion Murugappa Group has diverse businesses in agriculture, engineering, financial services and more.  The Group has 9 listed companies under its umbrella — Carborundum Universal Limited, CG Power & Industrial Solutions Limited, Cholamandalam Financial Holdings Limited, Cholamandalam Investment & Finance Company Limited, Cholamandalam MS General Insurance Company Limited, Coromandel International Limited, EID Parry (India) Limited, Shanthi Gears Limited, Tube Investments of India Limited and Wendt India Limited. Brands such as Ajax, Hercules, BSA, Montra, Montra Electric, Mach City, Gromor, Paramfos, Parry’s are part of the Group’s illustrious stable.  Abrasives, technical ceramics, electro minerals, electric vehicles, auto components, fans, transformers, signaling equipment for railways, bicycles, fertilizers, sugar, tea and several other products make up the Group’s business interests.  Guided by the five lights — integrity, passion, quality, respect and responsibility — and a culture of professionalism, the Group has a workforce of over 73,000 employees.  About Renesas Electronics Corporation  Renesas Electronics Corporation  empowers a safer, smarter and more sustainable future where technology helps make our lives easier. The leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live.
Key word:
Release time:2024-03-05 13:10 reading:2537 Continue reading>>
NOVOSENSE's isolated driver with protection function helps enhance the safety and stability of the <span style='color:red'>electronic</span> control system in the new energy vehicle
  The main drive electronic control system is an important part of a new energy vehicle. This article will start from the system block diagram of the electronic control system, introduce the components of the system and their functions, and focus on the use of NOVOSENSE's single-channel isolated driver with protection function NSI6611, in the electronic control system: its Miller clamp function can well prevent short circuits; and the DESAT function can shut down IGBT / SiC in time when a short circuit occurs, protecting IGBT / SiC from damage and ensuring safe and stable operation of the system.  Contents  1)Introduction to the main drive electronic control system driver and the NSI6611-based driver board  1. Composition of the main drive electronic control system  2. Main chips on the driver board  3. Interface definition  4. NSI6611 application circuit  2)Introduction to Miller clamp and the active Miller clamp function of NSI6611  1. Miller effect  2. Active Miller clamp  3. Short circuit detection of power devices  3)Introduction to the DESAT protection function of NSI6611  1. DESAT detection peripheral circuit configuration and parameters  2. DESAT protection timing  3. Soft turn-off function  1) Introduction to the main drive electronic control system driver and the NSI6611-based driver board  1.1 Composition of the main drive electronic control system  The main drive electric control system consists of low voltage battery, VCU, MCU, high voltage battery and resolver three-phase motor. As shown in Figure 1 below, inside the blue dotted line is the main drive motor controller part and inside the red dotted line is the driver board that will be highlighted in this article.  Functionally, the low voltage battery provides low voltage power supply for the system, and the VCU sends instructions to the electronic control system via the CAN bus and reads the status of the electronic control system; the high voltage battery provides high voltage power supply, and the Flyback circuit provides positive and negative voltages for the IGBT driver to drive the three-phase motor; the LDO (low dropout linear regulator) provides +5V power supply for the driver chip. NOVOSENSE's high voltage isolated driver NSI6611 is used to drive the IGBT and SiC modules; the current sampling circuit and resolver-to-digital converter are used to control motor operation.  In the main drive electronic control system, NOVOSENSE provides a variety of chips, including the CAN interface chip, resolver-to-digital converter, power supply chip and high voltage isolated driver chip.  1.2 Main chips on the driver board  Figure 2 below is a three-phase drive circuit board designed based on NOVOSENSE's single-channel smart isolated driver NSI6611. The six chips in the blue boxes are all NSI6611. The driver board also uses NOVOSENSE's Flyback power control chip NSR22401 to provide positive and negative voltages for the high voltage drive side of NSI6611; the LDO chip NSR3x provides 5V power supply for the low voltage side of NSI6611.  NSI6611 is an automotive-grade, high voltage isolated gate driver with protection function that can drive IGBTs and SiCs, and it supports a peak voltage of up to 2121V and a maximum drive current of 10A without the need for an external drive circuit; CMTI (common-mode transient immunity) can be as high as 150kV/μs. In addition, it integrates active Miller clamp and DESAT (desaturation) protection, soft turn-off and ASC (active short circuit) functions internally, with an operating temperature range of -40°C to +125°C.  1.3 Interface definition  As shown in Figure 3 below, the left side of the driver board is the signal interface between the driver board and the control board, including 6 input signals provided by the control board for PWM control; 6 FAULT output signals provided to the control board when NSI6611 detects IGBT overcurrent or undervoltage; 6 Ready output signals used to indicate whether the NSI6611 power supply is undervoltage; and 2 RESET input signals that control 3 high sides and 3 low sides respectively. The right side of the driver board is the power interface, and the power supply voltage range is 9V to 16V.  1.4 NSI6611 Application Circuit  Figure 4 below is the drive circuit of NSI6611. The left side is the low voltage control side. The 100Ω resistor connected in series on the signal line can effectively reduce signal reflection; since the Fault and Ready signals have an internal Open Drain structure, a 5.1kΩ pull-up resistor needs to be added. In addition, the RC circuit composed of the PWM signal and a 1nF capacitor can filter out high-frequency signals, and a 0.1μF decoupling capacitor is added to VCC1.  The right side is the high voltage drive side. Two 1206 package gate resistors are connected in parallel. The gate has a 10k pull-down resistor. The gate capacitance can be adjusted for different applications. The CLAMP pin is connected to the GATE through a 0Ω resistor.  2) Introduction to Miller clamp and the active Miller clamp function of NSI6611  2.1 Miller effect  The Miller effect refers to the phenomenon in a transistor or field effect tube that the capacitance at the output of the amplifier increases due to the interaction between the input capacitance and the gain of the amplifier. It can not only increase switching delay, but also cause parasitic turn-on.  Due to the inherent characteristics of semiconductors, there are various parasitic capacitances inside the IGBT. The capacitance between the gate and collector is called Miller capacitance. It is often seen in tests that the gate voltage does not rise directly to the VCC voltage, but rises to a voltage plateau, maintains for a period of time and then rises again. This voltage plateau is the Miller plateau, which is generated by Miller capacitance.  Miller capacitance may also cause false turn-on of the low side. Typically, motor drives require the use of the high and low sides. When Q2 is turned off and Q1 is turned on, a certain current will be generated due to the high dv/dt and Miller capacitance. We can calculate the current by using the formula I=C * dv/dt. The current flowing through the gate resistor will generate a VGE voltage. When this voltage exceeds the turn-on threshold of Q2, Q2 will turn on, and at this time, Q1 is already in the ON state, thus causing a shoot-through short circuit.  2.2 Active Miller clamp  In order to solve the problem of shoot-through caused by the Miller effect, negative voltage turn-off can be used, but this will increase the complexity of the power supply design and increase the BOM cost; the second option is to use a driver chip with Miller clamp function to control the IGBT turn-off process.  The IGBT turn-off process controlled by a driver chip with Miller clamp function is shown in Figure 6 below. First, the OUTL pin is turned on, causing the gate voltage to drop; when the gate voltage drops below the CLAMP threshold, the CALMP pin is turned on, causing the OULT pin to turn off. The resulting path can effectively bypass the gate resistor, thus avoiding the phenomenon of shoot-through. It is worth noting that the Miller clamp module only works when the IGBT is turned off.  2.3 Short circuit detection of power devices  IGBT and SiC devices vary in their short circuit capabilities. Before using a power device to design a drive system, you must first understand its basic parameters such as maximum voltage, maximum current and Rdson (on-resistance). Short-circuit capability is also a parameter worthy of focus, since the short circuit characteristics of the device need to be known when short circuit protection is designed.  Take the short circuit characteristic parameters of the IGBT as an example. At 25°C, its maximum short circuit time is 6μs, which means that the IGBT needs to be turned off in time within 6μs. When the short circuit current reaches 4800A, the value is already several times the normal operating current. Once a short circuit occurs, a large amount of heat will be generated instantly, causing the junction temperature to rise sharply. If it is not turned off in time, the device will be burned and there is even a risk of fire. This must be avoided in system design.  Generally, the short circuit time of IGBT can reach up to 10μs, while the short circuit time of SiC is only 2~3μs, which brings great challenges to short circuit protection. Therefore, short circuit must be detected and turn-off must be performed in time.  Method 1 is current detection. A resistor is connected in series with the IGBT, or a current sensor is used to directly detect the overcurrent condition. However, this will increase the cost significantly and make the circuit system more complex.  Method 2 is desaturation detection, also known as DESAT protection. As shown in Figure 7 below, we can see from the graph of VCE voltage and collector current that when VCE is less than 0.4V, no current flows through the cut-off region; as the VCE voltage increases, the current also increases and a saturation region appears, and then it enters the linear region, i.e., the desaturation region.  Usually, when the IGBT works in the saturation region, it will enter the desaturation region once a short circuit occurs. It can be seen that the VCE voltage generally does not exceed 2V in the saturation region; if it enters the desaturation region, VCE will rise rapidly and even reach the system voltage. Desaturation detection is to detect whether the IGBT has entered the desaturation region by detecting the VCE voltage.  3) Introduction to the DESAT protection function of NSI6611  3.1 DESAT detection peripheral circuit configuration and parameters  DESAT detection consists of NSI6611 and external DESAT capacitor, resistor and high voltage diode. The NSI6611 chip integrates a 500μA constant current source and comparator internally.  When the IGBT is turned on normally, the VCE voltage is very low, basically below 2V, and the diode is in a forward turn-on state. The voltage value of VDESAT is equal to the voltage drop of the resistor plus the voltage drop of the diode, plus the VCE voltage. Assuming that the resistance of the resistor is 100Ω, the forward voltage drop of the diode is 1.3V, and VCE is 2V, then, according to the formula in Figure 8, we can get: When the IGBT is turned on normally, the voltage detected by DESAT is basically less than 3.35V.  When the IGBT is short-circuited, the VCE voltage will rise rapidly. At this time, the diode is in the OFF state, and the current will flow to the DESAT capacitor and charge it. Since the DESAT current of NSI6611 is 500μA and the DESAT threshold is 9V, this means that a capacitor needs to be matched to charge the DESAT capacitor to 9V at 500μA within the short circuit time.  Assuming that the DESAT capacitance is 56pF, according to the capacitor charging formula in Figure 8: the charging time of the capacitor is about 1μs; plus the blanking time of 200ns and the filtering time of 200ns, the total short circuit protection response time is 1.4μs. This time is not only shorter than the safe short circuit time of IGBT, but also shorter than the safe short circuit time of SiC.  3.2 DESAT protection timing  Figure 9 below is the DESAT protection timing diagram. It can be seen from the figure that in step 1, GATE rises and DESAT starts the blanking time; in step 2, the blanking time ends and the DESAT current is turned on, and if the IGBT is short-circuited, the diode enters the cut-off state and the DESAT current charges the capacitor; in step 3, when the DESAT capacitor is charged to the threshold of 9V, the filtering time of DESAT protection starts; in step 4, the filtering time ends and GATE is turned off.  Figure 9: DESAT protection timing diagram  3.3 Soft turn-off function  As mentioned above, GATE is turned off when a DESAT fault is detected. So, is it enough to just turn it off normally? Not really. When a short circuit occurs, the IGBT current is at least 6 to 8 times the normal current. According to the formula, the voltage is equal to the stray inductance of the system multiplied by di/dt (V=Ls*di/dt). If such a large current is turned off quickly, a large VCE voltage will inevitably be generated, which is enough to damage the IGBT. There are only two ways to reduce VCE overshoot: one is to reduce stray inductance, and the other is to reduce di/dt.  Firstly, due to the parasitic parameters of the device, PCB routing, structural design, etc., there is inevitably a certain amount of stray inductance; secondly, to reduce di/dt, under the premise of a certain current, the only way is to increase the turn-off time, that is, let the IGBT turn off slowly for safe turn-off. NSI6611 can provide 400mA soft turn-off, thereby suppressing VCE overshoot and effectively solving the problem of device protection.
Key word:
Release time:2024-02-29 14:26 reading:3437 Continue reading>>
Analog-to-digital converter RS1461 from Jiangsu Runic Technology Co., Ltd. won the annual
  ecently, the "2023 World Electronics Achievement Award" award ceremony hosted by ASPENCORE was held in Shenzhen, and the low-power, single-channel, single-ended input 12-bit analog-to-digital converter RS1461 from Runic Technology was awarded the "Amplifier/Data Converter of the Year" of the World Electronics Achievement Award.  RS1461 is a low-power, single-channel, single-ended input 12-bit analog-to-digital converter with a sampling rate of 1MSPS, which can meet most of the low-latency, high-speed industrial application scenarios. RS1461 supports a variety of serial interface standards, such as SPI、QSPI、MICROWIRE, and many common DSP serial interfaces. RS1461 uses the supply voltage as a reference, with a signal-to-noise ratio of 71.5dB and a maximum INL/DNL of 1LSB, with a dynamic power consumption of 4.5mw or 11mw in 3V and 5V power supply scenarios, respectively. RS1461 is suitable for a wide range of applications such as medical devices, vehicle navigation, instrumentation and control systems.  Functional characteristics  Power supply voltage: 2.7-5.25V  Resolution: 12Bit  Sampling rate: 1MSPS  Communication interface: SPI, QSPI, MICROWIRE, and DSP serial interface  Number of channels: 1  Input type: single ended input  Signal to noise ratio: 71.5dB  Integral nonlinear INL: 1LSB (max)  Differential nonlinear DNL: 1LSB (max)  Power consumption: 3V Power supply: 4.5mW (TYP)  5V power supply: 11mW (TYP)  Temperature range: -40 ℃ to -125 ℃  Packaging : SOT23-6  RS1461 Product Advantages  ☆ Possess excellent DC accuracy and dynamic performance.  The sampling rate of 1 MSPS can meet the vast majority of low latency and high-speed industrial application scenarios.  Adopting a single ended input type, the signal only needs one routing line from the source to the ADC, reducing system complexity and reducing the power consumption of the total signal chain.  ☆ The serial interface is compatible with multiple standards, such as SPI, QSPI, MICROwire, and many common DSP serial interfaces.  Provide 6-pin SOT23 packaging, suitable for applications with high space requirements.
Key word:
Release time:2024-01-17 15:06 reading:1972 Continue reading>>

Turn to

/ 10

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code