Now Standard in Siemens’ Flotherm™! ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors
  ROHM has expanded its lineup of EROM (Embeddable BCI-ROM) models for shunt resistors and has made them available on ROHM’s website. In addition, these models are now standard in Siemens’ electronic thermal design software, Simcenter™ Flotherm™*.  ROHM’s shunt resistors are widely used in automotive and industrial equipment applications, where their high-accuracy current detection and superior reliability are highly valued. We have added the PMR series to the EROM lineup, alongside the previously available PSR series.  The EROM models achieve high accuracy with a measurement deviation within ±5% for both surface temperature (ΔT) and thermal resistance, enabling thermal analysis that closely reflects actual operating conditions. This contributes to improved simulation accuracy in the thermal design phase and enhances overall development efficiency.  Furthermore, by standard implementation in Simcenter™ Flotherm™, these models make it easier for component manufacturers and set manufacturers to share thermal analysis data. This allows for highly accurate and efficient simulations while maintaining the confidentiality of proprietary information.  Going forward, ROHM will continue to enhance the support for customers’ design and development activities through both its high-performance components and advanced simulation models.  *Standard in Simcenter™ Flotherm™ 2510 and later.  Terminology  EROM (Embeddable BCI-ROM)  A reduced-order model that can be used within Simcenter™ Flotherm™ to perform thermal simulations. It allows sharing while keeping internal component structures (confidential design data) hidden, enabling fast and highly accurate analysis.  Simcenter™ Flotherm™  A CFD (Computational Fluid Dynamics) simulator developed by Siemens, specialized in thermal and cooling design for electronic devices. It enables fast and accurate thermal analysis from the early design stage through validation, supporting exceptionally reliable thermal design.  Simcenter™ Flotherm™ is a registered trademark of Siemens.
Key word:
Release time:2025-11-21 16:50 reading:299 Continue reading>>
Renesas’ Industry-First Gen6 DDR5 Registered Clock Driver Sets Performance Benchmark by Delivering 9600 MT/s
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first sixth-generation Registered Clock Driver (RCD) for DDR5 Registered Dual In-line Memory Modules (RDIMMs). The new RCD is the first to achieve a data rate of 9600 Mega Transfers Per Second (MT/s), surpassing the industry standard. This breakthrough marks a significant leap from the 8800 MT/s performance of Renesas’ Gen5 RCD, setting a new standard for memory interface performance in data center servers.  Key Features of Renesas’ Gen6 DDR5 RCD  10% Bandwidth Increase over Renesas’ Gen5 RCD (9600 MT/s versus 8800 MT/s)  Backward Compatibility with Gen5 Platforms: Provides seamless upgrade path  Enhanced Signal Integrity and Power Efficiency: Enables AI, HPC, and LLM workloads  Expanded Decision Feedback Equalization Architecture: Offers eight taps and 1.5mV granularity for superior margin tuning  Decision Engine Signal Telemetry and Margining (DESTM): Improved system-level diagnostics provides real-time signal quality indication, margin visibility, and diagnostic feedback for higher speeds  The new DDR5 RDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. Renesas has been instrumental in the design, development and deployment of the new RDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers. Renesas is the leader in DDR5 RCDs, building on its legacy of signal integrity and power optimization expertise.  “Explosive growth of generative AI is fueling higher SoC core count. This is driving unprecedented demand for memory bandwidth and capacity as a critical enabler of data center performance,” said Sameer Kuppahalli, Vice President of Memory Interface Division at Renesas. “Our sixth generation DDR5 Registered Clock Driver demonstrates Renesas’ continued commitment to memory interface innovation, path-finding and delivering solutions to stay ahead of market demand.”  "Samsung has collaborated with Renesas across multiple generations of memory interface components, including the successful qualification of Gen5 DDR5 RCD and PMIC5030,” said Indong Kim, VP of DRAM Product Planning, Samsung Electronics. “We are now excited to integrate Gen6 RCD into our DDR5 DIMMs, across multiple SoC platforms to support the growing demands of AI, HPC, and other memory-intensive workloads."  Availability  The RRG5006x Gen6 RCD is designed to meet the stringent requirements of next-generation server platforms, offering robust performance, reliability, and scalability. Renesas is sampling the new RRG5006x RCD to select customers today, including all major DRAM suppliers. Production availability is expected in the first half of 2027.
Key word:
Release time:2025-11-13 16:33 reading:443 Continue reading>>
Panasonic Industry Commercializes Conductive Polymer Tantalum Solid Capacitors (POSCAP) with The Industry's Lowest Profile*1 to Support High-Output Power Delivery Required for USB Type-C Connections
  Panasonic Industry Co., Ltd., a Panasonic Group company, announced  that it will begin commercial production of its two models of Conductive Polymer Tantalum Solid Capacitors (POSCAP), 50TQT33M and 63TQT22M. These capacitors are incorporated into power circuits used for information and communication equipment, including laptops and tablets. They offer an ultra-high withstand voltage and high capacitance in a body with the industry’s lowest profile of 3 mm, supporting high-output power delivery through USB Type-C connectors. Mass production for these models is planned to start in December 2025.  These capacitors are ideal for voltage stabilization and noise reduction in power supplies compliant with USB Power Delivery (USB-PD)[1] 3.1. While previous USB-C connectors supplied up to 100 W (20 V/5 A), USB-PD 3.1 expands this to 240 W (48 V/5 A). This enables widespread use of USB-C connectors for high-speed data transfer and rapid charging, and is expected to further expand applications to larger equipment requiring high power output, such as displays.  On the other hand, information and communication equipment such as laptops are increasingly required to be thinner and more compact. Capacitors therefore must combine an ultra-high withstand voltage, high capacitance, and a low profile in order to fit into limited space. Panasonic Industry began mass production of Conductive Polymer Tantalum Solid Capacitors (POSCAP) in 1997 and, as an industry leader, has continuously delivered first-of-their-kind products. Leveraging proprietary powder molding technology and film formation technologies, the company has newly developed two models that achieve both an ultra-high withstand voltage and high capacitance in a package with the industry's lowest profile of 3 mm.  Through these unique device technologies, Panasonic Industry will continue to contribute to enhancing the functionality of electronic equipment, including laptops, while also reducing the environmental impact through smaller, lighter devices and lower material usage.  Key features:  1. Achieves both an ultra-high withstand voltage and high capacitance*2 to support high-output USB Type-C power delivery, in a 3 mm profile—the lowest in the industry*1—enabled by proprietary powder molding and film formation technologies  2. Lineup of USB-PD 3.1-compliant models rated at 50 V and 63 V  3. Contributes to reduced material usage lower environmental impact through low-profile design  *1 As of September 18, 2025, Conductive polymer tantalum solid capacitors with rated voltages of 50 V and 63 V and capacitance of 22 μF or higher (Panasonic Industry data)  *2 USB-Power Delivery 3.1 (180 W/240 W output) compliant high-capacitance conductive polymer tantalum solid capacitors with rated voltages of 50 V and 63 V, and a capacitance of 22 μF or higherDetailed features:  1. Achieves both an ultra-high withstand voltage and high capacitance to support high-output USB Type-C power delivery, in a 3 mm profile—the lowest in the industry—enabled by proprietary powder molding and film formation technologies  To achieve capacitor performance required for USB-PD 3.1 power supplies in a low-profile body, both high capacitance and a high withstand voltage must be ensured, despite their trade-off relationship. High-capacitance tantalum powder is necessary for electrode materials, but its fine particle size makes molding difficult, creating challenges for stable production. Forming a uniform dielectric film on the surface of the electrodes is important for enhancing the withstand voltage. However, since electrodes made with high-capacitance tantalum powder contain extremely small internal pores, dielectric oxide films tend to develop imperfections.  Panasonic Industry overcame these challenges by establishing proprietary technology to mold high-capacitance tantalum powder with uniform density, and by optimizing the film deposition process to create flawless dielectric films. This enabled the development of two new models that combine an ultra-high withstand voltage and high capacitance, meeting the USB-C high-output power delivery requirements in a 3 mm low-profile package.Cross-sectional view of POSCAP and enlarged view of the inside of the electrode body  2. Lineup of USB-PD 3.1-compliant models rated at 50 V and 63 V  Until now, Panasonic Industry’s POSCAP lineup extended only up to 35 V, with no models compatible with USB-PD 3.1, which extends the rated voltage specification to 36 V (180 W) and 48 V (240 W). The two new models, rated at 50 V and 63 V, each achieve a high capacitance of 22 μF or higher in a package with the industry's lowest profile of 3 mm. The full lineup provides flexibility to meet diverse applications and equipment specifications.  3. Contributes to reduced material usage lower environmental impact through low-profile design  Compared to the industry standard size*3, the new models reduce volume by 25%, contributing to a lower environmental impact through reduced material usage.  *3 Comparison with the industry standard size (7.3 mm × 4.3 mm × 4 mm) of conductive polymer tantalum solid capacitors used in USB-PD 3.1 compliant power suppliesApplications:  Voltage stabilization and noise reduction of USB-PD 3.1-compliant power supplies for laptops, displays, and peripheral equipment  Arc discharge[2] countermeasures for USB-PD 3.1-compliant connectors  Specifications:  Life: 2,000 hours at 105°C; guaranteed operating temperature range: -55°C to 105°C  Ripple current[3]: 100 kHz, 105°C  ESR[4]: 100 kHz, 20°C  *4 Product dimensional tolerance:  Length (L): ±0.3 mm; Width (W): ±0.2 mm; Height (H): ±0.2 mmTerm descriptions:  [1] USB-PD  The power delivery standards established by the standard-setting organization USB Implementers Forum, Inc. (USB-IF). With the launch of USB-PD 3.1 in 2021, USB Type-C cables and connectors can now deliver up to 240 W of power, supporting a wide range of applications—from smartphones and laptops to larger equipment such as monitors.  [2] Arc discharge  An electric spark or discharge phenomenon that occurs when a high current flows at low voltage in electrical circuits.  [3] Ripple current  When a voltage fluctuation is applied to a capacitor, a corresponding charging or discharging current flows through the capacitor. The current applied to this capacitor is referred to as a ripple current. The higher the ripple current, the higher the allowable current.  [4] ESR (Equivalent Series Resistance)  Represents the value of an internal resistance component that can cause heat generation. Capacitors with lower ESR allow higher ripple currents and provide excellent noise absorption.
Key word:
Release time:2025-11-06 15:35 reading:455 Continue reading>>
GigaDevice GD32F5xx and GD32G5xx Software Test Libraries (<span style='color:red'>ST</span>L) Receive TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, announced that its GD32F5xx and GD32G5xx Software Test Libraries have received IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland.  This milestone expands GigaDevice’s functional safety portfolio, which already includes the GD32H7 and GD32F30x STLs, and now covers a broad range of MCUs with Arm® Cortex®-M7, Cortex®-M4, and Cortex®-M33 cores. Building on this foundation, GigaDevice will continue to deliver high-performance and safety-focused hardware and software solutions for key applications such as industrial control, energy and power, and humanoid robotics.  With the growing emphasis on safety across industries like industrial automation, functional safety has become a critical consideration in embedded system design. The GD32F5xx and GD32G5xx MCUs, based on the Arm® Cortex®-M33 core, have become key solutions for high-performance applications requiring robust safety measures.  The GD32F5xx series is optimized for applications in energy and power management, photovoltaic energy storage, and industrial automation, where high precision and reliable control are essential.  The GD32G5xx series combines excellent processing performance with a wide range of digital and analog interfaces. It is available in compact packages such as 81-pin WLCSP81 (4x4mm), making it ideal for applications in humanoid robotics, digital power systems, charging stations, energy storage inverters, servo motors, and optical communications.  The GigaDevice STLs monitor GD32F5xx and GD32G5xx MCU modules in real-time to detect hardware faults. If a fault is detected, predefined safety mechanisms will be triggered to ensure the MCU always remains in a safe state, reducing potential risks and enhancing system reliability.  This certification highlights GigaDevice's deep expertise in functional safety system design and its commitment to meeting the highest international safety standards, reinforcing its position as a trusted provider of secure, high-performance solutions for mission-critical industries.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2025-11-04 17:01 reading:524 Continue reading>>
Renesas Adds Two New MCU Groups to Blazing Fast RA8 Series with 1GHz Performance and Embedded MRAM
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA8M2 and RA8D2 microcontroller (MCU) groups. Based on a 1 GHz Arm® Cortex®-M85 processor with an optional 250 MHz Arm® Cortex®-M33 processor, the new MCUs are the latest Renesas offerings to deliver an unmatched 7300 Coremarks of raw compute performance, the industry benchmark for MCUs. The optional Cortex-M33 processor enables efficient system partitioning and task segregation.  Both RA8D2 and RA8M2 devices are ultra-high performance MCUs as part of the second generation of the RA8 Series – the RA8M2 are general-purpose devices, and the RA8D2 MCUs are packed with a variety of high-end graphics peripherals. They are built on the same high-speed, low-power 22-nm ULL process used for the RA8P1 and RA8T2 devices introduced earlier this year. The devices include single and dual core options, and a specialized feature set to address the needs of a broad base of compute intensive applications. They take advantage of the high performance of the Arm Cortex-M85 processor and Arm’s Helium™ technology to offer a significant performance boost for digital signal processor (DSP) and machine learning (ML) implementations.  The RA8M2 and RA8D2 devices offer embedded MRAM that has several advantages over Flash technology - high endurance & data retention, faster writes, no erase needed, and byte addressable with lower leakage and manufacturing costs. SIP options with 4 or 8 MB of external flash in a single package are also available for more demanding applications. Both the RA8M2 and RA8D2 MCUs include Gigabit Ethernet interfaces and a 2-port TSN switch to address industrial networking use cases.  Both of the MCU Groups provide a combination of the high performance of the Cortex-M85 core, together with large memory and a rich peripheral set, making them particularly suitable for a wide range of IoT and industrial use cases. The lower power CM33 core can act as a housekeeping MCU, executing system tasks while the high performance CM85 core stays in sleep mode, to be woken up only as needed for high compute tasks, thus lowering the system power consumption.  “The RA8M2 and RA8D2 complete Renesas’ new generation of RA8 MCUs, purpose-built for the high-performance microcontroller market,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “This portfolio empowers Renesas to deliver scalable, secure and AI-enabled embedded processing solutions that accelerate customer innovation and time-to-market across a broad spectrum of industrial, IoT and select automotive applications. Renesas’ commitment to innovation is reflected in the RA8 Series’ ability to address complex processing requirements while maintaining lower power consumption and minimizing total cost of ownership to future-proof customers’ designs.”  RA8D2 Feature Set Optimized for Graphics and HMI Applications  The RA8D2 MCUs provide a plethora of features and functions for graphics and HMI applications:  High resolution Graphics LCD Controller supports up to 1280x800 displays with both parallel RGB and 2-lane MIPI DSI interfaces  Two-Dimensional Drawing Engine offloads the graphics rendering tasks from the CPU and supports graphics primitives  Multiple camera interface options enable camera and vision AI applications,  16-bit camera interface (CEU) with support for image data fetch, processing and format conversion  MIPI CSI-2 interface offers a low pin-count interface with 2 lanes, each up to 720Mbps  A VIN module performs vertical and horizontal scaling and format and color space conversions of YUV and RGB data inputs received from the MIPI CSI-2 interface  Audio interfaces such as I2S and PDM support digital microphone inputs for audio and voice AI applications  Comprehensive graphics solution with industry-leading embedded graphics GUI packages from SEGGER emWin and Microsoft GUIX, integrated into Renesas’ FSP  Software JPEG decoder optimized for Helium, available with both emWin and GUIX solutions, allows decode of JPEG images with up to 27fps end-to-end graphics performance with Helium acceleration  Multiple graphics ecosystem partners such as Embedded Wizard, Envox, LVGL and SquareLine Studio are offering solutions that employ RA8D2 using Helium to accelerate graphics functions and JPEG decoding  Key Features of the RA8M2 and RA8D2 Group MCUs  Core: 1 GHz Arm Cortex-M85 with Helium; Optional 250 MHz Arm Cortex-M33  Memory: Integrated 1MB high-speed MRAM and 2MB SRAM (including 256KB TCM for the Cortex-M85 and 128KB TCM for the M33). 4MB and 8MB SIP devices coming soon.  Analog Peripherals: Two 16-bit ADC with 23 analog channels, two 3-channel S/H, 2-channel 12-bit DAC, 4-channel high-speed comparators  Communications Peripherals: Dual Gigabit Ethernet MAC with DMA, USB2.0 FS Host/Device/OTG, CAN2.0 (1Mbps)/CAN FD (8Mbps), I3C (12.5Mbps), I2C (1Mbps), SPI, SCI, Octal serial peripheral I/F  Advanced Security: RSIP-E50D Cryptographic engine, robust secure boot with FSBL in immutable storage on-chip, secure debug, secure factory programming, DLM support, tamper protection, DPA/SPA protection,  The new RA8M2 and RA8D2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS (FreeRTOS and Azure RTOS) with FSP, thus providing full flexibility in application development. In addition, Zephyr support is now included. Using the FSP will ease migration of existing designs to the new RA8 Series devices.  Winning Combinations  Renesas has combined the new RA8 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including the Smart Glasses and Pet Camera Robot for the RA8M2, and both Ki Wireless Power Transceiver System (Tx) and Ki Wireless Power Receiver System (Rx) for the RA8D2. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.   Availability  The RA8M2 and RA8D2 Group MCUs are available now, along with the FSP software. The RA8M2 devices are available in 176-pin LQFP, 224-pin and 289-pin BGA packages. The RTK7EKA8M2S00001BE Evaluation Kit is also available. The RA8D2 MCUs are offered in 224-pin and 289-pin BGA packages. The RTK7EKA8D2S01001BE Evaluation Kit supports the RA8D2 devices.
Key word:
Release time:2025-10-30 15:45 reading:537 Continue reading>>
ROHM Publishes White Paper on Power Solutions for Next-Generation 800 VDC Architecture Aligned with the Industry's 800 VDC Roadmap to Enable Gigawatt-Scale AI Infrastructure
  ROHM has released a new white paper detailing advanced power solutions for AI data centers based on the novel 800 VDC architecture, reinforcing its role as a key semiconductor industry player in driving system innovation.  As part of the collaboration announced in June 2025, the white paper outlines optimal power strategies that support large-scale 800 VDC power distribution across AI infrastructure.  The 800 VDC architecture represents a highly efficient, scalable power delivery system poised to transform data center design by enabling gigawatt-scale AI factories. ROHM offers a broad portfolio of power devices, including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN), and is among the few companies globally with the technological expertise to develop analog ICs (control and power ICs) capable of maximizing device performance.  Included in the white paper are ROHM’s comprehensive power solutions spanning a wide range of power devices and analog IC technologies, supported by thermal design simulations, board-level design strategies, and real-world implementation examples.  [Access the white paper here]  Key Highlights of the White Paper• Rising Rack Power Consumption: Power demand per rack in AI data centers is rapidly increasing, pushing conventional 48V/12V DC power supply systems to their limits.  • Shift to 800 VDC: Transitioning to an 800 VDC architecture significantly enhances data center efficiency, power density, and sustainability.  • Redefined Power Conversion: In the 800 VDC system, AC-DC conversion (PSU), traditionally performed within server racks, is relocated to a dedicated power rack.  • Essential Role of SiC and GaN: Wide bandgap devices are critical for achieving efficient performance. With AC-DC conversion moved outside the IT rack, higher-density configurations inside the IT rack can better support GPU integration.  • Optimized Conversion Topologies: Each conversion stage—from AC to 800 VDC in the power rack and from 800 VDC to lower voltages in the IT rack—requires specialized solutions. ROHM’s SiC and GaN devices contribute to higher efficiency and reduced noise while decreasing the size of peripheral components, significantly increasing power density.  • Breakthrough Device Technologies: ROHM’s EcoSiC™ series offers industry-leading low on-resistance and top-side cooling modules ideal for AI servers, while the EcoGaN™ series combines GaN performance with proprietary analog IC technologies, including Nano Pulse Control™. This allows for stable gate drive, ultra-fast control, and high-frequency operation–features that have earned strong market recognition.  The shift to 800 VDC infrastructure is a collective industry effort. ROHM is working closely with NVIDIA, data center operators, and power system designers to deliver essential wide bandgap semiconductor technologies for next-generation AI infrastructure. Through strategic collaborations, including a 2022 partnership with Delta Electronics, ROHM continues to drive innovation in SiC and GaN power devices, enabling powerful, sustainable, and energy-efficient data center solutions.  ROHM’s EcoSiC™  EcoSiC™ is ROHM’s brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-10-15 11:50 reading:633 Continue reading>>
ROHM and Infineon collaborate on silicon carbide power electronics packages to enhance flexibility for customers
  ROHM and Infineon Technologies AG have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems, and AI data centers. Specifically, the partners aim to enable each other as second sources of selected packages for SiC power devices, a move which will increase design and procurement flexibility for their customers. In the future, customers will be able to source devices with compatible housings from both ROHM and Infineon. The collaboration will ensure seamless compatibility and interchangeability to match specific customer needs.  "We are excited about working with ROHM to further accelerate the establishment of SiC power devices," said Dr. Peter Wawer, Division President Green Industrial Power at Infineon. "Our collaboration will provide customers with a wider range of options and greater flexibility in their design and procurement processes, enabling them to develop more energy-efficient applications that will further drive decarbonization."  "ROHM is committed to providing customers with the best possible solutions. Our collaboration with Infineon constitutes a significant step towards the realization of this goal, since it broadens the portfolio of solutions," said Dr. Kazuhide Ino, Member of the Board, Managing Executive Officer, in charge of Power Devices Business at ROHM. "By working together, we can drive innovation, reduce complexity, and increase customer satisfaction, ultimately shaping the future of the power electronics industry."Dr. Peter Wawer, Division President Green Industrial Power at Infineon (left)and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  As part of the agreement, ROHM will adopt Infineon’s innovative top-side cooling platform for SiC, including TOLT, D-DPAK, Q-DPAK, Q-DPAK dual, and H-DPAK packages. Infineon's top-side cooling platform offers several benefits, including a standardized height of 2.3 mm for all packages. This facilitates designs and reduces system costs for cooling, while also enabling better board space utilization and up to two times more power density.  At the same time, Infineon will take on ROHM’s DOT-247 package with SiC half-bridge configuration to develop a compatible package. That will expand Infineon’s recently announced Double TO-247 IGBT portfolio to include SiC half-bridge solutions. ROHM's advanced DOT-247 delivers higher power density and reduces assembly effort compared to standard discrete packages. Featuring a unique structure that integrates two TO-247 packages, it enables to reduce thermal resistance by approximately 15 percent and inductance by 50 percent compared to the TO-247. The advantages bring 2.3 times higher power density than the TO-247.  ROHM and Infineon plan to expand their collaboration in the future to include other packages with both silicon and wide-bandgap power technologies such as SiC and gallium nitride (GaN). This will further strengthen the relationship between the two companies and provide customers with an even broader range of solutions and sourcing options.  Semiconductors based on SiC have improved the performance of high-power applications by switching electricity even more efficiently, enabling high reliability and robustness under extreme conditions, while allowing for even smaller designs. Using ROHM’s and Infineon’s SiC products, customers can develop energy-efficient solutions and increase power density for applications such as electric vehicle charging, renewable energy systems and AI data centers.  About ROHM  ROHM, a leading semiconductor and electronic component manufacturer, was established in 1958. From the automotive and industrial equipment markets to the consumer and communication sectors, ROHM supplies ICs, discretes, and electronic components featuring superior quality and reliability through a global sales and development network. Our strengths in the analog and power markets allow us to propose optimized solutions for entire systems that combine peripheral components (i.e., transistors, diodes, resistors) with the latest SiC power devices as well as drive ICs that maximize their performance.  Further information is available at https://www.rohm.com  About Infineon  Infineon Technologies AG is a global semiconductor leader in power systems and IoT. Infineon drives decarbonization and digitalization with its products and solutions. The company has around 58,060 employees worldwide and generated revenue of about €15 billion in the 2024 fiscal year (ending 30 September). Infineon is listed on the Frankfurt Stock Exchange (ticker symbol: IFX) and in the USA on the OTCQX International over-the-counter market (ticker symbol: IFNNY).
Key word:
Release time:2025-09-29 14:53 reading:585 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:725 Continue reading>>
ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current
  ROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current. This IC is optimized to be applied as a measurement sensing amplifier in size-constrained applications such as handheld measurement instruments, wearable devices, and indoor motion detectors.  As the demand continues to grow for more sophisticated control in battery-driven devices, the importance of sensors that detect parameters such as temperature, humidity, vibration, pressure, and flow rate – along with the op amps used to amplify these sensor signals – continues to rise. At the same time, greater miniaturization and energy savings in applications is a necessary step to realizing a sustainable society –placing similar demands on individual devices as well.  In response to these evolving market needs, ROHM has advanced its process, packaging, and proprietary Nano Energy™ circuit technologies to develop an op amp that addresses three key requirements: lower power consumption, higher accuracy, and compact size. The newly developed TLR1901GXZ achieves an ultra-compact footprint of less than 1mm2 by adopting a WLCSP (Wafer Level Chip Scale Package) with a fine ball pitch of 0.35mm while delivering an industry-leading low operating current of 160nA (typ.). This not only contributes to high-density mounting in space-constrained applications, but also to a significantly extended battery life.  Moreover, the TLR1901GXZ features an exceptionally low input offset voltage of just 0.55mV (max.), one of the best among ultra-low current op amps. This represents an approximate 45% reduction compared to typical products on the market. A maximum input offset voltage temperature drift of 7uV/°C ensures high accuracy operation over the operating temperature range.  Design flexibility can be further enhanced by pairing the op amp with ROHM’s ultra-compact general-purpose resistors, such as the MCR004 (0402 metric / 01005 inch) and MCR006 (0603 metric / 0201 inch), for applications like gain adjustment. The MCR004 series lineup includes the MCR004E –an environmentally friendly, fully lead-free option designed to support sustainable designs. Adapter boards featuring SSOP5 package ICs are offered as well to support initial evaluation and replacement assessments.  Going forward, ROHM will continue to pursue further power savings in op amps by advancing both miniaturization and original ultra-low power technologies. At the same time, we are committed to improving device performance by reducing noise and offset, expanding power supply voltage ranges, and contributing to solving social issues through more precise application control.  Key Product Characteristics  Application Examples  • Consumer devices: wearables, smart devices, motion sensors, etc.  • Industrial equipment: gas detectors, fire alarms, handheld measurement instruments, environmental sensors for IoT, etc.  Online Sales Information  Sales Launch Date: Now  Pricing: $2.1/unit (samples, excluding tax)  Online Distributors: AMEYA360  • Applicable Part No: TLR1901GXZ-E2  • IC-Mounted Adapter Board: TLR1901GXZ-EVK-001  What is Nano Energy™ Technology?  Nano Energy™ refers to proprietary ultra-low current consumption technology that achieves a current consumption on the order of nano ampere (nA) by combining advanced analog technologies covering circuit design, layout, and processes utilizing ROHM’s vertically integrated production system.  This contributes not only to extending operating time of battery operated IoT and mobile devices, but also improving efficiency in industrial and automotive equipment where increased power consumption is problematic.  https://www.rohm.com/support/nano   Nano Energy™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from wafers and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  Input Offset Voltage  The small voltage difference that must be applied between the inverting and non-inverting inputs of the operational amplifier to make the output voltage exactly zero.  Input Offset Voltage Temperature Drift  Refers to how much an op amp's input offset voltage changes as the temperature changes.
Key word:
Release time:2025-09-12 17:23 reading:573 Continue reading>>
ROHM at electronica India 2025: Power and Analog Devices Contributing to the Evolution of Industrial and E-Mobility applications
  From September 17th to 19th, ROHM will exhibit at electronica India 2025, South Asia's leading trade fair for electronic components, systems, applications, and solutions, taking place at the Bangalore International Exhibition Centre (BIEC). At booth H3-E25, ROHM will showcase its latest SiC and GaN technologies, featuring reference designs and evaluation systems that address today’s power and thermal challenges in both industrial equipment and automotive drive systems. Additionally, we will also showcase analog solutions such as power ICs for industrial equipment and automotive LED drivers.  "electronica India 2025 will be the right place to explore real-world applications powered by ROHM’s advanced power semiconductors. With our local design expertise and close cooperation with key players in the Indian market, we are uniquely positioned to support the country’s shift toward more sustainable and efficient electronics," says Makoto Terada, Managing Director, ROHM Semiconductor India.  Highlights of ROHM’s presence at electronica India 2025 include:  For Industrial Applications  ・Locally co-developed reference designs, as part of ROHM’s 'Made in India' initiative, emphasizing faster prototyping and region-specific design optimization, which will be unveiled for the first time.  ・A full lineup of GaN reference designs ranging from 45W to 5.5kW, including compact AC adapters, Totem Pole PFC designs, and server power supplies.  ・ROHM’s 2kV SiC MOSFETs, adopted in SEMITRANS® 20 modules by Semikron Danfoss, powering SMA Solar Technology’s Sunny Central FLEX for utility-scale PV and battery systems.  * SEMITRANS® is a trademark or registered trademark of Semikron Danfoss Elektronik GmbH  For Automotive and E-Mobility  ・TRCDRIVE pack™, a molded SiC module designed for the traction inverter of EVs.  ・New 2-in-1, 4-in-1 and 6-in-1 molded SiC modules for compact and cost-optimized drive solutions.  ・TO-247 discrete SiC MOSFETs shown through practical 3-phase inverter boards for affordable traction systems.  More Information  For additional highlights of ROHM at electronica India 2025, please visit:  www.rohm.com/electronica-india  ROHM’s Power Eco Family: Reliable Solutions Across a Wide range of Applications  ROHM will also feature its Power Eco Family, a branding concept that unites its key power device lines: Each product line will be represented through live demonstrations, adoption cases, and hands-on evaluation tools available at the booth.
Key word:
Release time:2025-09-01 15:11 reading:629 Continue reading>>

Turn to

/ 81

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code