Renesas Introduces 64-bit RZ/G3E MPU for High-Performance HMI Systems Requiring AI Acceleration and Edge Computing
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, announced the launch of its new 64-bit RZ/G3E microprocessor (MPU), a general-purpose device optimized for high-performance Human Machine Interface (HMI) applications. Combining a quad-core Arm® Cortex®-A55 running at up to 1.8GHz with a Neural Processing Unit (NPU), the RZ/G3E brings high-performance edge computing with AI inference for faster, more efficient local processing. With Full HD graphics support and high-speed connectivity, the MPU targets HMI systems for industrial and consumer segments including factory equipment, medical monitors, retail terminals and building automation.  High-Performance Edge Computing and HMI Capabilities  At the heart of the RZ/G3E is a quad-core Arm Cortex-A55, a Cortex-M33 core, and the Ethos™-U55 NPU for AI tasks. This architecture efficiently runs AI applications such as image classification, object recognition, voice recognition and anomaly detection while minimizing CPU load. Designed for HMI applications, it delivers smooth Full HD (1920x1080) video at 60fps on two independent displays, with output interfaces including LVDS (dual-link), MIPI-DSI, and parallel RGB. A MIPI-CSI camera interface is also available for video input and sensing applications.  “The RZ/G3E builds on the proven performance of the RZ/G series with the addition of an NPU to support AI processing,” said Daryl Khoo, Vice President of Embedded Processing at Renesas. “By using the same Ethos-U55 NPU as our recently announced RA8P1 microcontroller, we’re expanding our AI embedded processor portfolio and offering a scalable path forward for AI development. These advancements address the demands of next-generation HMI applications across vision, voice and real-time analytics with powerful AI capabilities.”  The RZ/G3E is equipped with a range of high-speed communication interfaces essential for edge devices. These include PCI Express 3.0 (2 lanes) for up to 8Gbps, USB 3.2 Gen2 for fast 10Gbps data transfer, and dual-channel Gigabit Ethernet for seamless connectivity with cloud services, storage, and 5G modules.  Low-Power Standby with Fast Linux Resume  Starting with the third-generation RZ/G3S, the RZ/G series includes advanced power management features to significantly reduce standby power. The RZ/G3E maintains sub-CPU operation and peripheral functions while achieving low power consumption around 50mW and around 1mW in deep standby mode. It supports DDR self-refresh mode to retain memory data, enabling quick wake-up from deep standby for running Linux applications.  Comprehensive Linux Software Support  Renesas continues to offer the Verified Linux Package (VLP) based on the reliable Civil Infrastructure Platform, with over 10 years of maintenance support. For users requiring the latest versions, Renesas provides Linux BSP Plus, including support for the latest LTS Linux kernel and Yocto. Ubuntu by Canonical and Debian open-source OS are also available for server or desktop Linux environments.  Key Features of RZ/G3E  CPU: Quad-core Cortex-A55 (up to 1.8GHz), Cortex-M33  NPU: Ethos-U55 (512 GOPS)  HMI: Dual Full HD output, MIPI-DSI / Dual-link LVDS / Parallel RGB, 3D graphics, H.264/H.265 codec  Memory Interface: 32-bit LPDDR4/LPDDR4X with ECC  Connectivity for 5G Communication: PCIe 3.0 (2 lanes), USB 3.2 Gen2, USB 2.0 x2, Gigabit Ethernet x2, CAN-FD  Operating Temperature: -40°C to 125°C  Package Options: 15mm square 529-pin FCBGA, 21mm square 625-pin FCBGA  Product Longevity: 15-year supply under Product Longevity Program (PLP)  System-on-Module Solutions from Renesas and Ecosystem Partners  Renesas has also introduced system-on-module (SoM) solutions featuring the RZ/G3E. A broad range of SoM solutions will be available from Renesas’ ecosystem partners such as a SMARC module from Tria, an OSM (Size-M) from ARIES Embedded, and an OSM (Size-L) from MXT.  Winning Combinations  Renesas combined the RZ/G3E with other compatible devices to develop Full HD Dual-Display HMI Platform and Digital Otoscope solutions. These Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RZ/G3E is available today, along with the Evaluation Board Kit. The kit includes a SMARC v2.1.1 module board and a carrier board.If you want to buy related products, you can contact AMEYA360's customer service.
Key word:
Release time:2025-07-30 15:09 reading:987 Continue reading>>
Renesas Strengthens Power Leadership with New GaN FETs for High-Density Power Conversion in AI Data Centers, Industrial and Charging Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, introduced three new high-voltage 650V GaN FETs for AI data centers and server power supply systems including the new 800V HVDC architecture, E-mobility charging, UPS battery backup devices, battery energy storage and solar inverters. Designed for multi-kilowatt-class applications, these 4th-generation plus (Gen IV Plus) devices combine high-efficiency GaN technology with a silicon-compatible gate drive input, significantly reducing switching power loss while retaining the operating simplicity of silicon FETs. Offered in TOLT, TO-247 and TOLL package options, the devices give engineers the flexibility to customize their thermal management and board design for specific power architectures.  The new TP65H030G4PRS, TP65H030G4PWS and TP65H030G4PQS devices leverage the robust SuperGaN® platform, a field-proven depletion mode (d-mode) normally-off architecture pioneered by Transphorm, which was acquired by Renesas in June 2024. Based on low-loss d-mode technology, the devices offer superior efficiency over silicon, silicon carbide (SiC), and other GaN offerings. Moreover, they minimize power loss with lower gate charge, output capacitance, crossover loss, and dynamic resistance impact, with a higher 4V threshold voltage, which is not achievable with today’s enhancement mode (e-mode) GaN devices.  Built on a die that is 14 percent smaller than the previous Gen IV platform, the new Gen IV Plus products achieve a lower RDS(on) of 30 milliohms (mΩ), reducing on-resistance by 14 percent and delivering a 20 percent improvement in on-resistance output-capacitance-product figure of merit (FOM). The smaller die size reduces system costs and lowers output capacitance, which results in higher efficiency and power density. These advantages make the Gen IV Plus devices ideal for cost-conscious, thermally demanding applications where high performance, efficiency and small footprint are critical. They are fully compatible with existing designs for easy upgrades, while preserving existing engineering investments.  Available in compact TOLT, TO-247 and TOLL packages, they provide one of the broadest packaging options to accommodate thermal performance and layout optimization for power systems ranging from 1kW to 10kW, and even higher with paralleling. The new surface-mount packages include bottom side (TOLL) and top-side (TOLT) thermal conduction paths for cooler case temperatures, allowing easier device paralleling when higher conduction currents are needed. Further, the commonly used TO-247 package provides customers with higher thermal capability to achieve higher power.  “The rollout of Gen IV Plus GaN devices marks the first major new product milestone since Renesas’ acquisition of Transphorm last year,” said Primit Parikh, Vice President of the GaN Business Division at Renesas. “Future versions will combine the field-proven SuperGaN technology with our drivers and controllers to deliver complete power solutions. Whether used as standalone FETs or integrated into complete system solution designs with Renesas controllers or drivers, these devices will provide a clear path to designing products with higher power density, reduced footprint and better efficiency at a lower total system cost.”  Unique d-mode Normally-off Design for Reliability and Easy Integration  Like previous d-mode GaN products, the new Renesas devices use an integrated low-voltage silicon MOSFET – a unique configuration that achieves seamless normally-off operation while fully capturing the low loss, high efficiency switching benefits of the high- voltage GaN. As they use silicon FETs for the input stage, the SuperGaN FETs are easy to drive with standard off-the-shelf gate drivers rather than specialized drivers that are normally required for e-mode GaN. This compatibility simplifies design and lowers the barrier to GaN adaptation for system developers.  GaN-based switching devices are quickly growing as key technologies for next-generation power semiconductors, fueled by demand from electric vehicles (EVs), inverters, AI data center servers, renewable energy, and industrial power conversion. Compared to SiC and silicon-based semiconductor switching devices, they provide superior efficiency, higher switching frequency and smaller footprints.  Renesas is uniquely positioned in the GaN market with its comprehensive solutions, offering both high- and low-power GaN FETs, unlike many providers whose success in the field has been primarily limited to lower power devices. This diverse portfolio enables Renesas to serve a broader range of applications and customer needs. To date, Renesas has shipped over 20 million GaN devices for high- and low-power applications, representing more than 300 billion hours of field usage.
Key word:
Release time:2025-07-04 15:04 reading:796 Continue reading>>
Renesas Introduces Highly Integrated LCD Video Processor that Enables Next-Generation ASIL B Automotive Display Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RAA278830 Video Diagnostics Bridge IC, a highly integrated dual Low-Voltage Differential Signal (LVDS) LCD video processor. The new IC integrates many of the features necessary to design ISO 26262-compliant ASIL B automotive display systems such as heads-up-displays (HUD), digital instrument clusters, camera monitor systems (CMS), and electronic mirrors.  As automotive safety systems are increasingly dependent on display systems, it has become more critical that clear, uncorrupted images be presented to the driver. Missing frames, frozen images, and even incorrect warning icons can seriously compromise driver safety. The RAA278830 addresses these concerns with Functional Safety features built into the device specifically to avoid any corruption of images through monitoring of the signal integrity as well as the video content itself. The internal diagnostics and measurement engines can detect frozen video, incorrect colors, broken or corrupt video images, as well as flashing, flickering, and video images that could obstruct the driver’s view of the road (in the case of HUD systems).  Renesas’ Automotive Video Signal Processing Expertise  Renesas has a long and successful track record of providing video signal processing solutions for the automotive market. In addition to standard analog video decoders, Renesas offers the award-winning Automotive HD-Link (AHL) family of products that enables high-resolution images to be transported over low-cost cables and connectors. The RAA278830 adds to Renesas’ leading line of integrated LCD controllers that have been implemented worldwide.  Key Features of the RAA278830  Dual Open-LDI Input/Output  ISO 26262 Functional Safety ASIL B rating  CRCs, parity, BIST, and redundancy safety mechanisms implemented throughout the entire data path  Video Diagnostic Capabilities  Input/Output monitoring of video timing, signal integrity, and content  Flickering, flashing, occlusion, and glare detection  Spread Spectrum for lower system level EMI profile  Image enhancement engine for superior image quality  Dual host interface: I2C & SPI (configurable)  SPI-Flash based OSD as well as an embedded font based OSD  SPI boot capability (boot from SPI Flash, no MCU needed)  Supports multi-bank for fail-safe OTA updates  Space-efficient 72SCQFN, 10mm x 10mm  AEC-Q100 Grade 2 qualified  “Our automotive customers have consistently asked us to add functional safety features to our industry-leading video processing technology,” said Jason Kim, Vice President and General Manager of the Configurable Mixed-Signal Division at Renesas. “The RAA278830 delivers all of the features needed to create safe, easy-to-implement and economical LCD display for all types of passenger vehicles.”
Key word:
Release time:2025-04-01 14:36 reading:705 Continue reading>>
ROHM’s New TVS Diodes: Supporting High-Speed CAN FD In-Vehicle Communication Systems for Autonomous Driving
  ROHM has developed bidirectional TVS (ESD protection) diodes compatible with CAN FD (CAN with Flexible Data rate) high-speed in-vehicle communication. Such protocols are seeing an increased demand in line with the ongoing advancement in autonomous driving and advanced driver assistance systems (ADAS). CAN FD is a crucial communication technology for safe, real-time data transmission between ECUs (Electronic Control Units) in vehicles. The new products achieve high-quality in-vehicle transmission by protecting electronic devices such as ECUs from surges and electrostatic discharge (ESD) while maintaining signal integrity in high-speed communication systems such as CAN FD.  The rapid evolution of autonomous driving technology and ADAS is boosting the demand for faster, more reliable automotive communication. Autonomous driving in particular requires quick and accurate processing of vast amounts of data from sensors such as cameras, LiDAR and radar - leading to the adoption of CAN FD that enables faster, higher capacity data transfer compared to traditional CAN used in automotive communication.  At the same time, to achieve high-speed in-vehicle communication, it is necessary to ensure stable transmission even under harsh environments. This has led to a growing demand for protection components that offer low terminal capacitance along with superior surge current rating and clamping voltage performance. As a result, the market for TVS diodes for automotive communication is expected to continue to grow in the future.  To meet market needs, ROHM developed the ESDCANxx series that combines low terminal capacitance with excellent surge tolerance. Two package types are available: SOT-23 (2.9mm × 2.4mm) and DFN1010 (1.0mm × 1.0mm), both supporting standoff voltages (VRWM) of 24V and 27V. The SOT-23 package includes four models: 24V ESDCAN24HPY / ESDCAN24HXY and 27V ESDCAN27HPY / ESDCAN27HXY. Similarly, the DFN1010 package is also offered in four models: 24V ESDCAN24YPA / ESDCAN24YXA and 27V ESDCAN27YPA / ESDCAN27YXA, totaling 8 products in the lineup.  The new products feature an optimized element structure that reduces terminal capacitance to a maximum of 3.5pF, preventing signal degradation during high-speed communication. High surge tolerance is also achieved, significantly improving the protection of electronic devices in automotive environments. For example, the 27V products of the DFN1010 package delivers approx. 3.2 times higher surge current rating and 16% lower clamping voltage compared to standard CAN FD-compatible products. This effectively safeguards expensive surge-sensitive electronic devices such as in-vehicle ECUs, ensuring high reliability even under harsh automotive environments. Going forward, ROHM will continue to develop products that support even faster in-vehicle communication in autonomous driving and communication environments - contributing to realizing a safer, more advanced mobility society.  Application Examples        • Autonomous driving and Advanced Driver Assistance Systems (ADAS)  • Automotive electric powertrain systems  • In-vehicle infotainment systems  Online Distributor Information        Sales Launch Date: December 2024  Pricing: $0.9/unit (excluding tax)  Target Products  SOT23 Package: ESDCAN24HPY, ESDCAN24HXY, ESDCAN27HPY, ESDCAN27HXY  DFN1010 Package: ESDCAN24YPA, ESDCAN24YXA, ESDCAN27YPA, ESDCAN27YXA  Terminology         CAN FD (CAN with Flexible Data Rate)  An extension of the CAN (Controller Area Network) standard, CAN FD offers faster data transfer speeds compared to conventional CAN, enabling the exchange of large volumes of data. Real-time communication between multiple in-vehicle electronic units (ECUs) is essential in systems like autonomous driving and ADAS.  TVS Diode (Transient Voltage Suppression Diode)  A semiconductor device designed to protect circuits from overvoltage, surges, and electrostatic discharge (ESD). TVS diodes absorb sudden voltage and current spikes (surges) to prevent circuit damage and malfunction. In automotive environments, safeguarding against severe electrical fluctuations is crucial.  Terminal Capacitance  Unwanted capacitance components that arise in electronic parts. When terminal capacitance is high, signal degradation occurs during high-speed transmission, making it important to reduce terminal capacitance for in-vehicle communication  Surge Current Rating  The maximum surge current a TVS diode can withstand. The higher the surge current rating, the stronger the protection against severe electrical fluctuations in automotive environments.  Clamping Voltage  The voltage maintained in the circuit when the TVS diode suppresses overvoltage caused by surges or other transient events. A lower clamping voltage provides more effective protection for circuits and devices, increasing the reliability of automotive equipment.
Key word:
Release time:2025-03-11 09:29 reading:641 Continue reading>>
ROHM’s New SiC Schottky Barrier Diodes for High Voltage xEV Systems: Featuring a Unique Package Design for Improved Insulation Resistance
  ROHM has developed surface mount SiC Schottky barrier diodes (SBDs) that improve insulation resistance by increasing the creepage distance between terminals. The initial lineup includes eight models - SCS2xxxNHR - for automotive applications such as onboard chargers (OBCs), with plans to deploy eight models - SCS2xxxN - for industrial equipment such as FA devices and PV inverters in December 2024.  The rapidly expanding xEV market is driving the demand for power semiconductors, among them SiC SBDs, that provide low heat generation along with high-speed switching and high-voltage capabilities in applications such as onboard chargers. Additionally, manufacturers increasingly rely on compact surface mount devices (SMDs) compatible with automated assembly equipment to boost manufacturing efficiency. Compact SMDs tend to typically feature smaller creepage distances, fact that makes high-voltage tracking prevention a critical design challenge.  As leading SiC supplier, ROHM has been working to develop high-performance SiC SBDs that offer breakdown voltages suitable for high-voltage applications with ease of mounting. Adopting an optimized package shape, it achieves a minimum creepage distance of 5.1mm, improving insulation performance when contrasted with standard products.  The new products utilize an original design that removes the center pin previously located at the bottom of the package, extending the creepage distance to a minimum of 5.1mm, approx. 1.3 times greater than standard products. This minimizes the possibility of tracking (creepage discharge) between terminals, eliminating the need for insulation treatment through resin potting when surface mounting the device on circuit boards in high voltage applications. Additionally, the devices can be mounted on the same land pattern as standard and conventional TO-263 package products, allowing an easy replacement on existing circuit boards.  Two voltage ratings are offered, 650V and 1200V, supporting 400V systems commonly used in xEVs as well as higher voltage systems expected to gain wider adoption in the future. The automotive-grade SCS2xxxNHR are AEC-Q101 qualified, ensuring they meet the high reliability standards this application sector demands.  Going forward, ROHM will continue to develop high-voltage SBDs using SiC, contributing to low energy consumption and high efficiency requirements in automotive and industrial equipment by providing optimal power devices that meet market needs.  Application Examples◇ Automotive applications: Onboard chargers (OBCs), DC-DC converters, etc.  ◇ Industrial Equipment: AC servo motors for industrial robots, PV inverters, power conditioners, uninterruptible power supplies (UPS), and more  Online Sales InformationAvailability: The SCS2xxxxNHR for automotive applications are available now.  The SCS2xxxN for industrial equipment are scheduled in December 2024.  Pricing: $10.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  EcoSiC™ BrandEcoSiC™ is a brand of devices that leverage silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  TerminologyCreepage Distance  The shortest distance between two conductive elements (terminals) along the surface of the device package. In semiconductor design, insulation measures with such creepage and clearance distances must be taken to prevent electric shocks, leakage currents, and short-circuits in semiconductor products.  Tracking (Creepage Discharge)  A phenomenon where discharge occurs along the surface of the package (insulator) when high voltage is applied to the conductive terminals. This can create an unintended conductive path between patterns, potentially leading to dielectric breakdown of the device. Package miniaturization increases the risk of tracking by reducing creepage distance.  Resin Potting  The process of encapsulating the device body and the electrode connections between the device and circuit with resin, such as epoxy, to provide electrical insulation. This provides durability and weather resistance by protecting against water, dust, and other environmental conditions.  AEC-Q101 Automotive Reliability Standard  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Q101 is a standard that specifically applies to discrete semiconductor products (i.e. transistors, diodes).
Key word:
Release time:2024-11-20 14:00 reading:739 Continue reading>>
NOVOSENSE Launches NSI22C1x Series Isolated Comparators to Help Create More Reliable Industrial Motor Drive Systems
  NOVOSENSE announced the launch of its NSI22C1x series isolated comparators based on capacitive isolation technology, which include NSI22C11 isolated single-ended comparators for overvoltage and overtemperature protection and NSI22C12 isolated window comparator for overcurrent protection. The NSI22C1x series can be used for overvoltage, overtemperature and overcurrent protection of industrial motor drives, solar inverters, uninterruptible power supplies and on-board chargers. While improving system reliability, it supports higher power density system designs and simplifies peripheral circuits to reduce the size of system protection circuits by 60% compared to the traditional discrete scheme.  Industrial motor drive systems, for example, are developing towards higher efficiency, higher power density and higher reliability. At the same time, with the application of wide bandgap semiconductors represented by SiC and GaN in power devices, higher requirements are placed on system reliability, especially the response time of overcurrent and short-circuit protection. The NSI22C1x series isolated comparators launched by NOVOSENSE can meet the growing demand for high reliability, high efficiency and compact design in industrial motor systems.  Ultra-low propagation delay and ultra-high CMTI support higher power density designs  The application environment of industrial motor drive systems is complex and harsh. Unexpected conditions such as bridge arm shoot-through, phase-to-phase short-circuit and ground short-circuit may occur, resulting in excessive current flowing into the motor drive system and causing damage to the driver. Traditional overcurrent detection design uses a discrete scheme of general-purpose comparators and optocouplers, with a response time of 3~5µs. As power devices shift from silicon-based IGBTs to third-generation semiconductors SiC and GaN, their short-circuit withstand time has been shortened to less than 1µs, which can no longer be met by the traditional scheme.  VIN(CH1), VOUT(CH2), VREF=320mV (protection threshold), NSI22C12 propagation delay measured 144ns  Meanwhile, general-purpose op amps/comparators have limited common-mode voltage tolerance and are limited in applications such as DC+ overcurrent and phase current overcurrent detection. If only DC- overcurrent is monitored, the fault condition of the motor shell being shorted to ground cannot be covered. NOVOSENSE's NSI22C12 isolated comparators provide a single-chip isolated overcurrent protection scheme that can cover a more comprehensive range of fault scenarios, support a maximum propagation delay of 250ns and bi-directional overcurrent protection, and provide CMTI (Common-Mode Transient Immunity) of up to 150kV/μs, which greatly improves system reliability and supports the adoption of higher power density designs for customers' motor drive systems.  VIN=0V, VOUT(CH1), CMTI(CH3)=150kV/μs, VOHmin =2.40V>0.7*VDD2(VDD2=3.3V)  When the primary and secondary sides of NSI22C12 withstand a CMTI of up to 150kV/μs, the output still maintains a high level and overcurrent protection will not be mistakenly triggered.  Simplified system designs reduce the size of system protection circuits by 60%  In industrial motor drive systems, the bill of materials for the overcurrent protection scheme based on general-purpose comparators and optocouplers is up to 27 pieces, and the system failure rate of peripheral circuits consisting of numerous discrete devices is relatively higher. NSI22C12 integrates a high-voltage LDO with a primary-side supply range of 3.1~27V, which can help customers reduce extra step-down regulators; NSI22C12 also integrates a 100μA ±1.5% high-precision current source, which can help customers achieve ±20mV~±320mV bidirectional threshold adjustment with only a single resistor on board.  With the support of a highly integrated design, the overcurrent protection scheme using NSI22C12 isolated comparators can reduce the bill of materials to 11 pieces and reduce the size of system protection circuits by 60%, greatly reducing the use of discrete devices, simplifying the system design, and further improving system reliability. At the same time, in some systems with fast protection requirements, using NSI22C12 isolated comparators can reduce the use of high-speed optocouplers and provide customers with more cost-effective design options.  Typical application block diagram of NSI22C12 for bus/phase current protection in motor drive systems  Packaging and selection  NSI22C11 isolated single-ended comparator and NSI22C12 isolated window comparator NSI22C12 are available in both SOP8 package (for basic isolation) and SOW8 package (for reinforced isolation). In addition, the NSI22C1x series supports a wide operating temperature range of -40°C to 125°C. Currently, the industrial version of the NSI22C1x series has been put into mass production, and the AEC-Q100 automotive version is expected to be launched in the second half of 2024.
Key word:
Release time:2024-02-28 13:58 reading:3333 Continue reading>>
Nidec Power Train Systems Develops Industry-first Solenoid Valve for Blow-by Gas Leak Diagnosis
  Nidec Power Train Systems Corporation (“Nidec Power Train Systems” or the “Company”), a wholly owned subsidiary of Nidec Corporation, announced today that it has developed a solenoid valve for automotive engines’ blow-by gas leak diagnosis.  Nidec Power Train Systems’ Latest Solenoid Valve for Blow-by Gas Leak Diagnosis  In any internal-combustion engine, there is a tiny gap between its piston and the cylinder containing it, from which high-pressure exhaust steam from the combustion stroke and unburned mixture leak into the crankcase. Such gas, called blow-by gas, causes air pollution. This is why recent cars are required to have a closed crankcase to keep such gases, and use a reducing device to return internally accumulating gas to the inlet pipe, thereby to mix the gas with newly inspired air, and send the mixture into the combustion chamber again.  In North America, meeting the requirements of the On-Board Diagnostics II (OBDII) of the California Air Resources Board (CARB), the world’s strictest rules of their kind, requires a car to have a blow-by gas leak diagnosis function installed, and the above product is the industry’s first model to satisfy those needs.  This product, which is connected to a breather hose that reduces blow-by gas, is used to block a gas passage during a leak diagnosis. Thus, measuring the pressure inside the engine, including the breather hose, enables a diagnosis to see if blow-by gas is leaking to the outside.  The inside of the blow-by gas passage of this and other products requires high reliability, as it is subject to harsh environments caused by, for example, the retention of unburned gas, engine oil, etc., and low temperatures. In that regard, Nidec Power Train Systems, a long-time developer and manufacturer of transmissions and engine solenoid valves, successfully utilized its knowhow to develop this new product.  As a member of the world’s leading comprehensive motor manufacturer, Nidec Power Train Systemsstays committed to developing products based on its technologies to create light, thin, short, small, high-efficiency, and highly controlled products, and proposing, at an overwhelming speed, groundbreaking solutions that contribute to the evolution of automobiles.
Key word:
Release time:2024-02-01 15:33 reading:2270 Continue reading>>
Infineon announces completion of acquisition of GaN Systems
  Infineon Technologies AG recently announced the closing of the acquisition of GaN Systems Inc. (“GaN Systems”). The Ottawa-based company brings with it a broad portfolio of gallium nitride (GaN)-based power conversion solutions and leading-edge application know-how. All required regulatory clearances have been obtained and GaN Systems has become part of Infineon effective as of the closing.  “GaN technology is paving the way for more energy-efficient and CO 2-saving solutions that support decarbonization,” said Jochen Hanebeck, CEO of Infineon. “The acquisition of GaN Systems significantly accelerates our GaN roadmap and further strengthens Infineon’s leadership in power systems through mastery of all relevant power semiconductor technologies. We welcome our new colleagues from GaN Systems to Infineon.”  Infineon now has a total of 450 GaN experts and more than 350 GaN patent families, which expands the company’s leading position in power semiconductors and considerably speeds up time-to-market. Both companies’ complementary strengths in IP and application understanding as well as a well-filled customer project pipeline put Infineon in an excellent position to address various fast-growth applications.  On 2 March 2023, Infineon and GaN Systems announced that the companies had signed a definitive agreement under which Infineon would acquire GaN Systems for US$830 million. The acquisition, an all-cash transaction, was funded from existing liquidity.
Key word:
Release time:2023-10-27 10:48 reading:1605 Continue reading>>
Nidec Power Train Systems Develops New EOP to Cool EV Traction Motor System E-Axle
  Nidec Power Train Systems Corporation (“Nidec Power Train Systems” or the “Company”), a wholly owned subsidiary of Nidec Corporation, announced today that it has developed a new electric oil pump (“EOP”) to cool E-Axle, the traction motor system for EVs.  As demands grow for, among others, a smaller and lighter traction motor, which is the “heart” of the EV, and using less heavy rare-earth magnets on it, the traction motor is required to have better cooling efficiency, and the business of the oil-cooling system that can directly cool the motor, the source of heat, continues to expand.  Nidec Power Train Systems’ latest EOP comprises a motor and a pump produced entirely in the same factory, and with an active use of in-house component production technology, the Company can maintain the product’s high quality, while using significantly fewer components, and simplifying its mechanical component fastening process and electric connection. In addition, by employing Nidec Corporation’s compact, high-output brushless DC motors, the Company has successfully halved its latest EOP’s mass compared with its existing mass-produced predecessors.  Other than E-Axle, this product can be installed on other companies’ products as well.  Though its main sections were designed commonly with those of other models, this EOP has a platform whose interface and output can be adjusted easily for individual customers. This feature enables the Company to develop, within a short period, products with specifications that meet automobile manufacturers’ various requests.  As a member of the world’s leading comprehensive motor manufacturer, Nidec Power Train System stays committed to developing products based on its technologies to create light, thin, short, small, high-efficiency, and highly controlled products, and proposing, at an overwhelming speed, groundbreaking solutions that contribute to the evolution of automobiles.
Key word:
Release time:2023-10-12 10:56 reading:2284 Continue reading>>
BYD’s Acquisition of Jabil’s China Factory: Expanding Beyond iPhone Casings into <span style='color:red'>EMS</span> Orders
  Last month, the primary iPhone casing supplier, American company Jabil, announced that it had reached a preliminary agreement with China’s prominent EMS (Electronic Manufacturing Services) firm, BYD, to sell its Mobile Business Unit for $2.2 billion. The completion of the subsequent transaction will depend on due diligence findings and final agreement terms.  AMEYA360 analysis reveals that as Jabil’s main focus in its Mobile Business Unit is iPhone casing manufacturing, the successful conclusion of this deal would leave iPhone casing supply primarily in the hands of Chinese and Taiwanese manufacturers, potentially bolstering China’s position in the supply chain.  Furthermore, BYD’s acquisition of Jabil’s China Metal Business not only marks its formal entry into the iPhone supply chain, expanding its presence, but also signals its aspirations to become a supplier in the iPhone assembly business.  Jabil’s main production facilities for its Mobile Business Unit are located in Wuxi and Chengdu, China. Wuxi primarily handles iPhone aluminum frame manufacturing, while Chengdu focuses on stainless steel components. This year, the iPhone 15 Pro features a titanium alloy frame for the first time, and Jabil is a key supplier for this component.  In terms of operational performance, Jabil’s Wuxi facility, due to its smaller scale compared to Foxconn and Lens Tech, and lower product prices, has underperformed expectations. Conversely, Chengdu, responsible for high-end metal components, has superior technical capabilities and better performance.  Considering Jabil Group’s global footprint and the configuration of its key customer supply chains, the company had been seeking a buyer for some time. Initially, Luxshare was a contender in the acquisition, but a consensus on the purchase price was not reached, leading BYD to secure the deal at a higher price.  AMEYA360 believes that BYD’s acquisition presents an opportunity to replicate Lens Tech’s experience in acquiring the Catcher’s Taizhou factory in 2020, becoming a direct supplier of iPhone casings. Given Jabil’s involvement in both high-end and low-end iPhone casing businesses, BYD might even be in a position to directly compete with Foxconn for high-end orders. This move would make it difficult for Lens Tech, which still lacks a high-end product line and advanced manufacturing processes, to join the ranks of high-end product suppliers.  In the long term,AMEYA360 believes that BYD, which is already an iPad EMS supplier, aims to leverage its position in critical components to venture into iPhone EMS business in the future, expanding its EMS business footprint.
Key word:
Release time:2023-09-15 11:19 reading:3090 Continue reading>>

Turn to

/ 5

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code