国民技术发布面向AI数据中心的3 kW数字电源参考<span style='color:red'>设计</span>方案
  在人工智能(AI)算力爆发式增长与全球能源结构转型的双重驱动下,电力供给体系正经历从”粗放式”到”智能化”的范式变革。AI数据中心的单机功耗已突破15kW,根据Uptime Institute 2024报告记录,电力消耗已占AI数据中心运营成本的60%以上,AI电源是驱动瓦特向比特转化的智能神经中枢,通过极致能效比与动态调度实现“每度电产出最大有效算力”的价值跃迁。  作为国内领先的平台型MCU芯片设计公司,国民技术围绕数字能源领域进行产品布局,自2024年推出N32H474数字电源专用MCU芯片以来,在开发生态上持续投入,目前已构建起涵盖芯片、电源硬件、控制算法、实时操作系统及配套工具全栈垂直整合生态,实现了软硬协同的实时精准控制与极致能效转化。  7月8日,国民技术正式发布AI数据中心数字电源参考设计方案——高性能单芯片3 kW数字电源方案NS3KW53V5P2L3,该方案以其卓越的集成度和能效表现,助力客户快速构建高效、智能、可靠的电源系统。帮助开发者快速应对AI算力与新能源领域的关键电源挑战,为电力电子技术迈向数字化、智能化提供核心支撑。  01 高性能单芯片3 kW数字电源参考方案—NS3KW53V5P2L3  NS3KW53V5P2L3是国民技术面向数字电源行业推出的参考设计方案,尤其适用于AI数据中心电源、户外一体化电源等数字电源。该方案以单颗N32H474作为数字主控核心,基于自研Hunter OS实时操作系统开发生态链打造,整机峰值效率≥97.7%,达到业内领先水平。  该方案采用前级两相交错无桥图腾PFC,后级三相交错Y-Y型LLC架构,该架构能够灵活应用各种功率器件,在SiC、GaN等新器件的加持下,能够深度优化性价比,方案构架示意图如下:3kW数字电源方案框图  NS3KW53V5P2L3核心架构采用基于SiC器件的两相交错图腾柱PFC前端与基于SiC器件的三相交错LLC DC/DC隔离后端,整个前后级采用一颗N32H474芯片,负责两级功率变换的控制算法、保护逻辑及与上位机通信实现了卓越的综合性能。  方案核心优势:  ■ 超高的转换效率:整机峰值效率≥97.7%,50%~100%负载下PF >0.99。  ■ 优异的电气性能: 采用CCM两相交错图腾柱PFC降低输入电流纹波和THD (<5.0% @100%负载), 三相交错式半桥LLC实现高效率、低输出纹波和快速动态负载响应。  ■ 完备的保护功能: 具备过温、输出过流/过压、输入过欠压等保护机制,并通过交错式设计减小输出母线电容需求,提升系统寿命。  ■ 便捷的开发生态: 基于自研Hunter OS生态,集成上位机可视化工具,实现参数在线配置、波形分析和一站式保护策略管理,显著提升系统智能化和调试效率。  02 高精度数字电源专用主控芯片—N32H474  N32H474是国民技术推出的专用于数字电源领域的主控芯片,该芯片基于ARM Cortex-M4F内核设计,最高工作主频 240MHz,支持浮点运算和 DSP 指令,提升了数据处理速度和复杂运算能力,其125ps分辨率的SHRTIM和4个独立12bit 4.7MSPS的ADC,可满足多种复杂拓扑结构,灵活配置PWM。  N32H474数字电源应用关键资源:  ■ 高性能,实时控制电源性能  — 240 MHz@Arm-Cortex-M4F,性能达300DMIPS。  — 内置硬件数学函数加速器Cordic,支持整点和浮点运算。  ■ 高集成度模拟器件,简化硬件设计  — 4x 12-bit 4.7Msps ADC,最多支持51个通道 。  — 8x 12-bit DAC。  — 7x CMP,任意比较器输出可内部连接到任意一个Fault或EEV输入。  ■ 高精度定时器,为数字电源提供了保障  — 1x 16-bit SHRTIM,12x PWM(125ps),相位可调,10个外部输入事件,可任意I/O映射。  — 3x 16-bit ATIM,每一路ATIM支持6个独立通道,其中4个通道支持4对互补PWM输出。  ■ 丰富且可任意配置的外设接口,支持多节点同步控制  — 8x U(S)ART,其中3个UART支持任意I/O映射,硬件级485使能驱动。  — 3x CAN-FD ,支持任意I/O映射。N32H474系列MCU主要资源  03 便捷的数字电源开发生态  国民技术提供自主研发的主控MCU芯片、电源硬件、控制算法、实时操作系统及配套工具全栈开发生态,在行业内率先形成高度抽象的标准化开发框架(标准化开发框架包含数字控制软件框架与上位机调试工具)。这一创新开发生态可显著提高数字电源开发效率,帮助用户快速响应AI与新能源市场的多样化需求。  NS3KW53V5P2L3设计方案控制软件基于自研Hunter OS框架进行软件开发,Hunter OS操作系统是一款基于时间片轮询非枪占式硬实时控制操作系统。基于硬件中断进行调度,具备非常高的可靠性,专为实时控制设计。  数字控制软件架构  数字控制软件架构由4层架构组成,分别为驱动层(BSW)、运行时环境层(RTE)、应用算法层(APP)和上位机工具链层(DebugTool)四层架构,满足各种标准的认证  工具链  国民技术提供的专业开发工具链包含可配置的图形化调试工具Hunter OS DebugTool以及可视化波形调试工具Huntor OS Graphic等系列工具。  系列工具具备以下优点:  ■ 创新性的为数字控制的框架进行了高度抽象,大大简化了软件的编写难度。  ■ 突破性的给实时控制软件提供了图形化参数调试界面,彻底的丢弃传统使用编程器调试软件的方法。  ■ 首次为自动控制(PID)参数整定提供了标准波形显示工具,为自动控制(PID)整定提供全域可视化波形比对,显著提升了自动控制(PID)调试的速度,为企业节省了宝贵的时间资源。  可配置的图形化调试工具-Hunter OS DebugTool  Hunter OS DebugTool图形化调试工具是用户可自定义的标准化工具,布尔控制、显示控制和设置控制的每一项功能都是可以自定义,无需再编程。主要用于对控制软件的多项参数进行调试,旨在提升开发人员在参数调试、状态监控、数据记录等环节的效率。  可视化波形调试工具-Hunter OS Graphic  Hunter OS Graphic可视化波形显示工具是一款标准化的波形显示工具,通过高速串口能直观的同时显示4通道波形,其主要功能是提供实时波形可视化,在调试PID或者其他复杂逻辑功能时,能够准确、实时的提供时域波形信息,帮助开发人员高效配置和调整系统参数。  04 选型与支持  N32H474系列MCU共提供10个增强工业级型号,并实现规模化量产,品质与供应能力获行业广泛认可。可联系AMEYA360客服进行咨询。
关键词:
发布时间:2025-07-09 13:48 阅读量:389 继续阅读>>
罗姆新课上线 | 重点解析贴片电阻器热<span style='color:red'>设计</span>要点,参与赢好礼!
  1970年前后,大多数电子元器件是引脚式的,通孔安装是主流的安装方式。随着应用产品越来越复杂,所安装的元器件数量在增加,可实现高密度安装的表面贴装型元器件逐渐成为主流。  相应地,贴片电阻器也趋向于更加小型、大功率的产品。然而,随着安装密度的提高,传统的基于环境温度的管理方法在很多情况下已经不再适用。如果电路板的散热不充分,即使施加的功率在额定范围内,电阻器的温升也会很大,从而可能导致产品故障。因此,对于贴片电阻器,尤其是发热量较大的大功率产品而言,如何有效地抑制温升、如何准确地测量温度至关重要。  本次研讨会将向大家讲解贴片电阻器热设计方面的知识内容。扫描海报二维码即可报名,参与还有机会赢取精美礼品!  研讨会提纲  1. 热对策的重要性  2. 环境温度保证和引脚温度保证  3. 关于电阻器的温度管理  4. 电阻器的温度测量要点  5. 关于热设计支持  研讨会主题  实践篇:不可不知的贴片电阻器热设计要点  研讨会时间  2025年7月23日上午10点  研讨会讲师  洪梓昕 助理工程师  洪梓昕负责面向包括工控、民生、车载等各领域的分立器件产品的推广,涉及功率器件和小信号器件等产品,为客户进行选型指导和技术支持。  研讨会报名扫描上方二维码 立即报名  相关产品页面  电子小百科:什么是电阻器?  https://www.rohm.com.cn/electronics-basics/resistors?utm_medium=social&utm_source=wechat&utm_campaign=WeChat%EF%BC%88infor%EF%BC%89&utm_content=250702  更小的通用贴片电阻器新产品“MCRx系列”  https://mp.weixin.qq.com/s/lsZ3E12HPlX4I8eK3onyqg  6432尺寸金属板分流电阻器“PMR100”  https://mp.weixin.qq.com/s/P_EOs3dc_FIl4S4YH8ka7w  12W级额定功率的0.85mm业界超薄金属板分流电阻器“PSR350”  https://www.rohm.com.cn/news-detail?news-title=2023-03-14_news_resistor&defaultGroupId=false&utm_medium=social&utm_source=wechat&utm_campaign=WeChat%EF%BC%88infor%EF%BC%89&utm_content=250702  最大额定功率10W的低阻值电阻器“GMR320”  https://www.rohm.com.cn/news-detail?news-title=2021-04-15_news_shunt-r&defaultGroupId=false&utm_medium=social&utm_source=wechat&utm_campaign=WeChat%EF%BC%88infor%EF%BC%89&utm_content=250702  相关产品资料  通用贴片电阻器MCRS系列/MCRL系列  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250625/4d777dbd26438ed02a7d4ec0d3872a0b.pdf  超低阻值(0.5,1,1.5mΩ)5W大功率 平面贴片型 6432尺寸 分流电阻器-PMR100HZP7  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20240403/175302b1152aa923afbac248d8f55a24.pdf  大功率金属板分流电阻器 超低阻值型-PSR系列  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20230626/abc0d4d38bd1225b689ce9d0215565cd.pdf  大功率分流电阻器 - GMR320(5mΩ, 10mΩ to 100mΩ)  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20230711/dac0c6492cff17790c4a30e8fc0d13bc.pdf
关键词:
发布时间:2025-07-03 13:44 阅读量:297 继续阅读>>
上海雷卯电子:光电传感器的静电浪涌防护电路<span style='color:red'>设计</span>
  光电传感器简介和作用  光电传感器通过光信号的发射、反射或遮挡,实现物体检测、距离测量等功能,广泛应用于工业自动化(产线计数)、智能物流(AGV 导航)、安防监控(红外报警)等场景。  光电传感器原理  典型的对射型/ 漫反射型光电传感器,核心是 “光→电信号转换电路”,配合 LED 状态指示和晶体管驱动负载(如继电器),利用光电效应实现物理量检测的器件:  1. 发射端:产生光信号(如红外 LED、激光二极管);  2. 接收端:光敏元件(如光敏二极管、光敏电阻)将光信号转换为电信号;  3. 信号处理电路:放大、整形电信号,输出至 MCU 或控制系统。(光电传感器典型系统框图)  静电浪涌防护方案设计  上海雷卯电子采用 “分类防护” 策略,从电源端到信号接口构建防护体系:  01 电源端(棕线 + 蓝线)防护  风险:10~30V 电源易受浪涌冲击(如雷击感应的上百伏脉冲),直接损坏主电路。  雷卯方案:在棕线与蓝线之间并联小体积、高功率的 TVS 管SMBJ33CA:覆盖 10~30V 工作范围,留有余量;峰值脉冲功率(Pₚ)400W(IEC 61000-4-5 标准浪涌);响应时间≤1ns(快速钳位)。  02 信号输出端(黑、橙)线防护  风险:负载端的静电(如继电器触点打火)反向侵入,击穿晶体管集电极。  雷卯方案:在黑线、橙线与蓝线之间各并联小体积的ESD二极管SD36C,SOD323超小封装,进行静电浪涌二极防护,覆盖10-30V电源电压,满足IEC61000-4-2,等级4,接触放电30kV,空气放电30kV。  03 控制输入端(粉线)防护  雷卯方案:在粉线控制端与蓝线之间并联小体积的 ESD二极管ESDA05CP30,有效保护主控MCU,满足IEC61000-4-2,等级4,接触放电30kV,空气放电30kV。  上海雷卯电子(Leiditech)致力于成为电磁兼容解决方案和元器件供应领导品牌,供应ESD、TVS、TSS、GDT、MOV、MOSFET、Zener、电感等产品。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。
关键词:
发布时间:2025-06-27 11:55 阅读量:256 继续阅读>>
罗姆与芯驰科技联合开发出车载SoC X9SP参考<span style='color:red'>设计</span>,配备罗姆面向SoC的PMIC,助力智能座舱普及!
  6月25日,全球知名半导体制造商罗姆(总部位于日本京都市)宣布,与领先的车规芯片企业芯驰科技面向智能座舱联合开发出参考设计“REF68003”。该参考设计主要覆盖芯驰科技的智能座舱SoC*1“X9SP”产品,其中配备了罗姆的PMIC*2产品,并在2025年上海车展芯驰科技展台进行了展示。2025年上海车展芯驰科技展台现场照片右三:芯驰科技 创始人 仇雨菁      左二:芯驰科技 创始人 CTO 孙鸣乐左三: 罗姆半导体(上海)有限公司 董事长 米泽 秀一  芯驰科技的X9系列产品全面覆盖仪表、IVI、座舱域控、舱泊一体等从入门级到旗舰级的座舱应用场景,已完成百万片量级出货,量产经验丰富,生态成熟。盖世汽车研究院最新数据(国内乘用车上险量)显示, 2025年1-3月,在10万元以上的车型中,芯驰科技的X9系列座舱芯片(包括仪表、中控和域控)装机量位 居本土第一名,覆盖上汽、奇瑞、长安、一汽、广汽、北汽、东风日产、东风本田等车企的50多款主流车型和大量出海的车型。  芯驰科技与罗姆于2019年开始技术交流,并一直致力于合作开发智能驾驶舱的应用。2022年,双方签 署了车载领域的先进技术开发合作协议。迄今为止,双方通过结合芯驰科技的车载 SoC“X9H”、“X9M”和“X9E”、以及罗姆的PMIC、SerDes IC*3 以及 LED 驱动器 IC ,共同开发了面向智能驾驶舱的参考设计。  2025 年,面向中高端智能座舱,芯驰科技与罗姆联合开发出基于车载 SoC“X9SP”的新参考设计 “REF68003”。罗姆提供用于SoC的PMIC“BD96811F44-C”、BD96806Q04-C”、“BD96806Q05-C”和“BD96806Q06-C”,符合ISO 26262以及ASIL-B*4,有助于实现各种高性能车载应用。今后,罗姆将继续开发适用于汽车信息娱乐系统的产品,为提高汽车的便利性和安全性贡献力量。  芯驰科技 CTO 孙鸣乐表示:“随着汽车智能化的快速发展,对汽车电子和零部件的要求也越来越高。 X9SP是芯驰X9系列高性能座舱SoC的核心旗舰产品,面向智能座舱与跨域融合场景设计,具备高性能和高可靠性,特别适用于舱泊一体的解决方案。新开发的参考设计将罗姆的PMIC与X9SP相结合,以提高整体系统的稳定性和能效。我们期待与罗姆继续合作,在未来提供各种创新的车载解决方案。”  罗姆董事 高级执行官 立石 哲夫表示:“我们非常高兴能够与车载SoC领域领先公司——芯驰科技联合开发新的参考设计。集成了信息娱乐以及ADAS功能监控等各种功能的智能座舱正在加速普及,尤其在下一代电动汽车中,PMIC等车载模拟半导体产品的作用变得越来越重要。罗姆此次提供的SoC用PMIC是能够灵活地应用于新一代车载电源并满足功能安全要求的电源IC。今后,通过继续加深与芯驰科技的交流与合作,罗姆将会加快开发支持下一代智能座舱多功能化发展的产品,为汽车行业的进一步发展做出贡献。”  <背景>  近年来正在普及的智能驾驶舱,除了具备仪表集群和信息娱乐系统等多种功能之外,还加速了大型显示器的采用。与此同时,车载SoC所要求的处理能力也在增加,因此要求作为核心器件承担电力供给的 PMIC等电源IC兼顾支持电流和高效工作。  罗姆提供面向SoC的PMIC,不仅稳定性和效率性高,还可通过内部存储器(OTP)进行任意输出电压设定和顺序控制。通过最小限度的电路变更,可构建面向各种车型、模型的电源系统,为削减汽车制造商的开发工时做出贡献。  关于配备了“X9SP”和罗姆产品的参考设计“REF68003”  “REF68003”配备了芯驰科技的智能座舱用SoC“X9SP”以及罗姆的SoC用PMIC。目前,该参考设计已在芯驰科技验证完毕。利用该参考设计,可实现达到安全等级ASIL-B的智能座舱。另外,罗姆提供的 SoC用PMIC,可使用内部存储器(OTP)进行任意输出电压设置和时序控制,因此可根据具体的电路需求高效且灵活地供电。  该参考设计利用芯驰科技自有的硬件虚拟化支持功能,支持在单个SoC上运行多个OS(操作系统)。同时,利用硬件安全管理模块,还可将来自OS的命令传递给SoC和GPU。此外,通过替换成引脚兼容的芯驰科技其他SoC,还可以在不更改电路的前提下快速更改规格。  ・关于芯驰科技的智能座舱SoC“X9SP系列”  https://www.semidrive.com/product/X9SP  ・关于罗姆的参考设计页面  有关参考设计的详细信息以及配备于其中的产品信息,已在罗姆官网上发布。  URL:https://www.rohm.com.cn/reference-designs/ref68003  关于参考设计的更详细信息,请通过销售代表或罗姆官网的“联系我们”页面进行垂询。  关于芯驰科技  芯驰科技是全场景智能车芯引领者,专注于提供高性能、高可靠的车规芯片,覆盖智能座舱和智能车控领 域,涵盖了未来汽车电子电气架构最核心的芯片类别。芯驰全系列芯片均已量产,出货量超800万片。芯驰目前拥有超200个定点项目,服务超过260家客户,覆盖国内90%以上主机厂及部分国际主流车企,包括上汽、奇瑞、长安、东风、一汽、日产、本田、大众、理想等。  关于罗姆  罗姆是成立于1958年的半导体电子元器件制造商。通过铺设到全球的开发与销售网络,为汽车和工业设备市场以及消费电子、通信等众多市场提供高品质和高可靠性的IC、分立半导体和电子元器件产品。在罗姆自身擅长的功率电子领域和模拟领域,罗姆的优势是提供包括碳化硅功率元器件及充分地发挥其性能的驱动IC、以及晶体管、二极管、电阻器等外围元器件在内的系统整体的优化解决方案。如需了解更多信息,请访问罗姆官网:https://www.rohm.com.cn/  <术语解说>  *1) SoC(System-On-a-Chip:系统单芯片)  集成了CPU(中央处理单元)、存储器、接口等的集成电路。为了实现高处理能力、电力效率、空间削减,在车载设备、民生设备、产业设备领域被广泛使用。  *2)PMIC(电源管理IC)  一种内含多个电源系统、并在一枚芯片上集成了电源管理和时序控制等功能的IC。与单独使用DC-DC转换器IC、LDO及分立元器件等构成的电路结构相比,可以显著节省空间并缩短开发周期,因此近年来,无论在车载设备还是消费电子设备领域,均已成为具有多个电源系统的应用中的常用器件。  *3) SerDes IC  为了高速传输数据而成对使用、用来进行通信方式转换的两个IC的总称。串行器(Serializer)用来将数据转换为易于高速传输的格式(将并行数据转换为串行数据),解串器(Deserializer)用来将传输的数据转换为原格式(将串行数据转换为并行数据)。  *4) ISO 26262、ASIL(Automotive Safety Integrity Level)  ISO 26262是2011年11月正式颁布实施的汽车电子电气系统功能安全相关的国际标准。是一种旨在实现“功能安全”的标准化开发流程。需要计算车载电子控制中的故障风险,并将降低其风险的机制作为功能之一预先嵌入系统。该标准覆盖了从车辆概念阶段到系统、ECU、嵌入软件、设备开发及其生产、维护和报废阶段的车辆开发整个生命周期。 ASIL是ISO 26262中定义的风险分类系统,共分4个等级,风险等级越高,对功能安全的要求就越高。
关键词:
发布时间:2025-06-26 13:10 阅读量:321 继续阅读>>
高温IC<span style='color:red'>设计</span>必懂基础知识:高温<span style='color:red'>设计</span>的优势
  随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。  这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。本文将介绍高温设计的优势。  高温设计的优势  能够在高温下工作的集成电路具有多种优势。它们可以在汽车和航空航天等环境温度超过 150°C 的苛刻环境中可靠运行。这些设计通常非常稳健,包括温度保护电路,不易发生热失控和其他温度引起的故障,从而提高了系统的整体可靠性。通过耐受更高的温度,这些电路可以减少或消除对复杂冷却系统的需求,从而提供更简单、更具成本效益的解决方案。  ▷热管理  热管理对电子系统的设计和运行至关重要,可确保性能和可靠性。可利用散热器、液体冷却和改善空气流通等方法加强散热来降低结温。然而,这些方法也会增加电子模块的重量、尺寸和成本。  在大功率应用中,如功率开关和电动引擎等部件需要主动冷却。使用标温较高的冷却剂可以减少对大型散热器的需求,从而提高效率,但同时也要求元件能够承受更高的温度。碳化硅(SiC)功率开关适用于这些条件。在高温条件下工作并靠近功率晶体管安装的预驱动器是必不可少的,尤其是在汽车应用中,因为它们可以共享发动机冷却回路。无需特殊冷却即可在较高环境温度下工作的电路在各行各业都具有巨大的潜力。  电源管理对于传感器等低功耗应用也至关重要,尽管这些应用的功率不高,但热管理仍然具有挑战性。这是因为传感器尺寸超小、塑料外壳、无法添加散热片等因素导致散热不佳。额外的热管理会大大增加电子模块的成本、尺寸和重量。在这种情况下,从裸片到环境的热阻可达每瓦几十到几百摄氏度。驱动传感器执行器和处理传感器数据可能需要一定的功率,这会使裸片温度比环境温度高出几十摄氏度。这就需要能够承受高温的 IC 来实现没有这些热管理措施的应用。  另一个例子是由汽车电池直接供电的车用 IC。这可能是 12V 电池,或越来越常见的 48V 电池。在电路内部,IC 信号处理的电压可能仅需 1.2V,而从汽车电池到 IC 的线性稳压器消耗了大部分功耗。对于小负载来说,增加一个带有外部线圈的 DC-DC 转换器以提高效率既不实际也不经济。如果线性稳压器可以在高温下工作,则能够节省模块的成本和重量。  ▷过温保护  过温保护或热关断(Thermal Shutdown,TSD)对集成电路至关重要,可防止 IC 及其外部元件损坏,确保可靠性和安全性。环境温度过高、功耗过大、热管理不善或故障导致过载等因素都可能触发过温保护。当 IC 的结温超过预设阈值时,热关断机制就会启动,自动关闭 IC 的高功耗部分或整个芯片,以防止温度进一步升高及造成损坏。  一旦 IC 冷却到安全温度,它可以自动重新启动之前关闭的部分或整个 IC,在确保保护的同时最大限度地减少停机时间。这种机制对于维持 IC 的可靠性和使用寿命至关重要,可保护 IC 免受外部故障、过载或温度波动的影响。  有功能安全要求的产品也需要 TSD。也可使用具有功率降额功能的热监测或热预警。  TSD 应当保护 IC 免受热失控的影响,以形成一个正反馈。循环热失控发生在 IC 产生的热量超过其散热能力时,导致温度不可控地上升。高温会增加结和亚阈值泄漏,降低 MOS 晶体管的性能,并提高功率耗散。  如果缺乏 TSD 的保护,这一循环将持续到 IC 过热,可能导致故障、寿命缩短或安全隐患,包括火灾或爆炸。  TSD 级别的设置通常略高于最高工作温度,以便偶尔出现温度偏差时不会造成不必要的关机,但也要足够低,以便有效控制和关闭功率耗散部分。例如,如果最高工作温度为 165°C,考虑到 TSD 电路的制造容差,TSD 级别可设置在 170°C 至 185°C 之间。正确设置这一阈值对于平衡电子设计中的性能和安全性至关重要。  TSD 电路及其所有由该机制控制的相关模块必须设计为能够在最大 TSD 温度以及额外的安全裕度范围内可靠工作。这个安全裕度考虑了芯片上的温度梯度,即功率器件与温度传感器之间的温差。根据布局的不同以及使用的功率器件和传感器的数量,传感器可以放置在功率器件内部、旁边或更远的位置。此外,裕量还考虑了从温度上升到传感器检测到过热并关闭受影响的功率晶体管之间的延迟所导致的温度上升。这确保了即使在极端过热情况下,保护功能仍然能够保持有效运作。因此,TSD 电路必须在比 IC 其余部分更高的温度下保持工作状态,即超过最大工作结温。图 1. 保护电路的工作温度范围  ▷功耗 - 性能 - 面积  对 IC 进行优化,需要在功耗、性能和面积(PPA)这三个指标之间做出权衡。例如,提高性能会导致更高的功耗或更大的尺寸。相反,降低功耗可能会限制性能或需要更多的面积来添加节能元器件。提高最大工作温度可以扩大功耗空间,从而为性能提升或面积优化提供更多余地。  设计能在更高温度下可靠工作的 IC 实际上是一种性能的提升,因为它延长了使用寿命并降低了故障率。减少对大量冷却解决方案的需求可以降低系统的整体成本、复杂性和重量,从而实现更加紧凑和经济高效的设计。  高温工作能力使得在功耗、性能和面积之间进行的权衡更容易,同时也有助于提升整体的 PPA(功耗 - 性能 - 面积)评分。
关键词:
发布时间:2025-06-05 14:14 阅读量:346 继续阅读>>
上海雷卯电子EMC <span style='color:red'>设计</span>避坑指南:四不口诀
  你的产品明明设计得很好,为什么一做EMC测试就失败?上海雷卯电子教大家4个超实用的EMC设计技巧四不口诀,帮你避开常见的坑!  准则1 让电流“走捷径”,不绕远路  核心逻辑:高频电流走 “电感最小路径”,环路越大→辐射越强!  雷卯实验室关键知识点:  · 信号电流必成环路,回流路径紧贴流出路径  · 低频(kHz 级)走 “电阻最小路径”,回流可能分散;高频(MHz 级)走 “电感最小路径”,回流紧贴主线  · 设计技巧:高速信号与回流平面紧邻,缩短信号层与地平面间距  准则2 不要分割信号返回平面  雷卯 EMC 工程师的安全经验法则是:为所有信号电流提供一个完整的返回平面。若某低频信号易受干扰或可能干扰电路板上的电路,应使用单独层的走线将其电流回流至源端,而非分割平面。随意开槽 / 分割地平面,导致回流路径突变→EMI 激增!  例外情况:仅当低频敏感信号需隔离时(如音频电源),可采用独立回流走线,但需满足:  1. 独立层单独回流,不与高频平面交叉  2. 可咨询雷EMC专家,避免照搬案例  警示:99% 场景下,完整平面是最优解!  准则3 不要在连接器之间布置高速电路  在雷卯实验室评估过的电路板设计中,这是最常见的问题之一。许多本可轻松满足EMC要求(无需额外成本或精力)的简单设计,最终却因违反这一规则而不得不增加大量屏蔽和滤波措施。  为何连接器的位置如此重要?在几百兆赫兹以下的频率,波长可达米级或更长,印刷电路板本身的“天线”因电尺寸小而效率低,但连接到电路板的电缆或其他设备却可能成为高效天线。  信号电流在走线上流动并通过完整平面回流时,平面上任意两点的电压差通常与平面内的电流成正比。当所有连接器沿电路板一侧排列时,它们之间的电压差可忽略不计;但如果连接器之间布置了高速电路,连接器之间可能产生几毫伏或更高的电位差,这些电压会驱动电流流入连接的电缆,导致产品超出辐射发射要求。  准则4 不盲目追求最快边沿,控制好信号转换时间  核心逻辑:高频电流走 “电感最小路径”,环路越大→辐射越强!  雷卯推荐控制手段对比表:  推荐黄金比例:转换时间≈20% 位周期(如 100MHz 时钟,边沿控制在 2ns 以内)  总结 四不口诀速记表
关键词:
发布时间:2025-05-30 10:33 阅读量:374 继续阅读>>
恩智浦MR-VMU-RT1176解决方案简化移动机器人<span style='color:red'>设计</span>
  恩智浦的MR-VMU-RT1176是一款紧凑型、一体式车辆管理单元(VMU)。 该器件搭载i.MX RT1176跨界MCU,集成双核Arm® Cortex®-M7/M4处理器,并配备全面的传感器套件与丰富的连接选项,能够显著加速工程师构建下一代系统的进程。  移动机器人设计人员面临的挑战  移动机器人系统的设计极具复杂性,工程师需在一个系统内平衡实时控制、传感器融合及高速通信。传统设计需要集成多个分立式组件,如微控制器(MCU)、惯性测量单元(IMU)、全球导航卫星系统(GNSS)模块及网络接口,导致架构分散、繁琐,还延长了开发周期。  在移动机器人系统的设计过程中,工程师需应对多重挑战。其中实时处理是最严苛的环节之一,控制环路、传感器融合及自主决策均要求低延迟执行。许多MCU在高计算性能与实时约束之间难以取得平衡,工程师往往需要整合多个处理器或外部加速器,这进一步增加了复杂性与开发难度。  集成是另一个考虑要素,移动机器人要求确保处理单元、IMU、GNSS模块、电机控制器和网络接口的精准协调。然而,在传统设计中,工程师需要手动集成和同步这些组件,这不仅增加了开发时间,还可能带来不兼容的风险。  可靠的通信也非常重要。VMU必须以非常低延迟的传输传感器数据与执行器指令,以确保稳定、可预测的运动表现。然而,许多系统仍依赖传统协议,缺乏对CAN FD或汽车以太网等稳健、低延迟网络解决方案的支持,限制了数据传输效率与实时性。  最后,工程师广泛依赖PX4、Zephyr RTOS和Cognipilot等开源生态合作体系的软件,这些合作体系为实时控制提供必要的中间件和框架。然而,将这些软件与定制硬件配置无缝集成通常需要大量的开发工作。  借助MR-VMU-RT1176优化移动机器人  MR-VMU-RT1176提供紧凑的模块化解决方案,高效应对上述挑战。  MR-VMU-RT1176是一款紧凑、轻便的车辆管理单元解决方案,专为移动机器人设计。  处理能力  MR-VMU-RT1176基于i.MX RT1176跨界MCU构建,专为满足移动机器人严苛的计算需求而设计。 它采用双核架构,其中Cortex-M7(1GHz)用于控制环路、传感器融合及人工智能推理等高性能实时任务,而Cortex-M4(400MHz)则高效地管理后台处理,减轻主核的负担。 此外,该系统配备64MB外部闪存与2MB RAM,确保固件执行及实时数据处理的充足存储空间。MR-VMU-RT1176结构框图  全面的传感器套件  MR-VMU-RT1176集成了一套全面的传感器套件,可实现机器人系统的高精度运动跟踪与环境感知。该套件包括:  BMI088 6轴IMU,用于精确运动传感  BMM150和IST8310磁力计,用于航向与方位估计  两个BMP388气压计,用于高度和压力传感  两个ICM-42688 6轴IMU,用于增强运动跟踪的冗余与精度  其中一半传感器集成于内部连接的IMU板,使工程师能够轻松替换传感器,以适应未来的系统升级需求。  连接和接口选项  工程师需要灵活的通信选项,以便将VMU与电机、传感器及网络模块高效集成。MR-VMU-RT1176提供:  USB-C 2.0连接器和JST-GH引脚接头,用于高速数据传输  多个UART、I2C和SPI端口,用于连接外部外设  12路PWM输出,可直接控制执行器、伺服系统及电机  具有信号提升能力(SIC)的三重CAN-FD  100Base-T1汽车以太网,支持高带宽数据交换  RC输入与SBUS兼容接收器兼容,用于远程控制  由于这些连接器均遵循Dronecode标准,工程师能够轻松访问庞大的即插即用组件生态合作体系,这些组件能够与MR-VMU-RT1176搭配使用。  开发人员体验与软件生态合作体系  MR-VMU-RT1176具备高度兼容性,能够与开源实时操作系统及机器人框架轻松集成。 例如,它支持Zephyr RTOS,这是一个专为实时嵌入式应用设计的轻量级模块化系统。此外,该系统支持用于自主机器人的Cognipilot,它提供了一个基于Zephyr的自动驾驶平台。该单元还运行NuttX RTOS,这是一款符合POSIX标准的操作系统,以其强大的实时处理能力而闻名。此外,它还支持PX4 ,这是一款广泛用于无人机和移动机器人的飞行控制软件。  值得注意的是,PX4由QGroundControl补充。QGroundControl是一款用于任务规划、GPS航路点管理、遥测和测绘的地面站软件。该软件可在笔记本电脑、Android设备和定制硬件上运行,使用户能够从几乎任何地点实现全面的系统控制。
关键词:
发布时间:2025-05-29 11:51 阅读量:324 继续阅读>>
高温IC<span style='color:red'>设计</span>必懂基础知识:高结温带来的5大挑战
  随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。  这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。第一篇文章介绍了工作温度,包括环境温度和结温等。本文将继续介绍高结温带来的挑战。  高结温带来的挑战  半导体器件在较高温度下工作会降低电路性能,缩短使用寿命。对于硅基半导体而言,晶体管参数会随着温度的升高而下降,由于本征载流子密度的影响,最高极限会低于 300℃。依靠选择性掺杂的器件可能会失效或性能不佳。  影响 IC 在高温下工作的主要技术挑战包括:  泄漏电流增加  MOS 晶体管阈值电压降低  载流子迁移率降低  提高闩锁效应(Latch-Up)敏感性  加速损耗机制  对封装和接合可靠性的挑战  要设计出能够在高温下工作的 IC,了解高温下面临的挑战至关重要。下文将探讨 IC 设计面临的挑战。  1.泄漏电流增加  CMOS 电路中泄漏电流的增加主要是由半导体 PN 结泄漏和亚阈值沟道泄漏的增加引起的。  ▷反向偏置 PN 结泄漏  在较高温度下,半导体中热能的增加会导致更多电子 - 空穴对的产生,从而产生更高的泄露电流。结泄漏取决于掺杂水平,通常随温度呈指数增长。根据广泛使用的经验法则,温度每升高 10℃,结电流大约增加一倍。  二极管的泄漏电流由漂移电流和扩散电流组成:  其中, q 为电子的基本电荷, Aj 为结面积,ni 为本征载流子浓度,W 为耗尽区宽度,τ 为有效少数载流子寿命,L 为扩散长度,N 为中性区掺杂密度。  在中等温度下,泄漏电流主要由耗尽区中电子 - 空穴对产生的热引起。在高温下,泄漏电流主要由中性区产生的少数载流子引起。漂移电流与耗尽区宽度成正比,这意味着它与结电压的平方根成正比(在正常反向电压下),而扩散电流与结电压无关,并且与掺杂密度 N 成反比。掺杂水平越高,在温度高于约 150°C 时扩散泄漏越少。  泄漏电流的指数增加影响了大多数主动器件(如双极晶体管、MOS 晶体管、二极管)和一些被动器件(如扩散电容、电阻)。然而,由氧化物隔离的器件,例如多晶硅电阻、多晶硅二极管、ploy-poly 电容和 metal-metal 电容,并不受结泄漏的影响。结泄漏被认为是高温 bulk CMOS 电路中最严峻的挑战。  ▷亚阈值沟道泄漏  MOS 晶体管关闭时,栅极 - 源极电压 VGS 通常设置为零。由于漏极至源极电压 VDS 非零,因此漏极和源极之间会有小电流流过。当 Vgs 低于阈值电压 Vt 时,即在亚阈值或弱反型区,就会发生亚阈值泄漏。该区域的漏极源极电流并不为零,而是与 Vgs 呈指数关系,主要原因是少数载流子的扩散。  该电流在很大程度上取决于温度、工艺、晶体管尺寸和类型。短沟道晶体管的电流会增大,阈值电压较高的晶体管的电流会减小。亚阈值斜率因子 S 描述了晶体管从关断(低电流)切换到导通(高电流)的有效程度,定义为使漏极电流变化十倍所需改变的 VGS 的变化量:  其中,n 是亚阈值斜率系数(通常约为 1.5)。对于 n = 1,斜率因子为 60mV/10 倍,这意味着每低于阈值电压 Vt 60mV,漏极电流就会减少十倍。典型的 n = 1.5 意味着电流下降速度较慢,为 90mV/10 倍。为了能够有效地关闭 MOS 晶体管并减少亚阈值泄漏,栅极电压必须降到足够低于阈值电压的水平。  ▷栅极氧化层隧穿泄露  对于极薄的栅极氧化层(厚度低于约 3 纳米),必须考虑隧穿泄漏电流的影响。这种电流与温度有关,由多种机制引发。Fowler-Nordheim 遂穿是在高电场作用下,电子通过氧化层形成的三角形势垒时产生。随着有效势垒高度降低,隧道电流随温度升高而增大。较高的温度也会增强 trap-assisted 隧穿现象,即电子借助氧化层中的中间陷阱态通过。对于超薄氧化层,直接隧穿变得显著,由于电子热能的增加,隧穿概率也随之上升。  2.阈值电压降低  MOS 晶体管的阈值电压 Vt 与温度密切相关,通常随着温度的升高而线性降低。这是由于本征载流子浓度增加、半导体禁带变窄、半导体 - 氧化物界面的表面电位的变化以及载流子迁移率降低等因素造成的。温度升高导致的阈值电压降低会引起亚阈值漏电流呈指数增长。  3.载流子迁移率下降  载流子迁移率直接影响 MOS 晶体管的性能,其受晶格散射与杂质散射的影响。温度升高时,晶格振动(声子)加剧,导致电荷载流子的散射更加频繁,迁移率随之下降。此外,高温还会增加本征载流子浓度,引发更多的载流子 - 载流子散射,进一步降低迁移率。当温度从 25°C 升高到 200°C 时,载流子迁移率大约会减半。  载流子迁移率显著影响多个关键的 MOS 参数。载流子迁移率的下降会降低驱动电流,减少晶体管的开关速度和整体性能。更高的导通电阻会增加功率损耗并降低效率。较低的迁移率还会降低跨导,使亚阈值斜率变缓(增加亚阈值泄漏),降低载流子饱和速度(对于短沟道器件至关重要),并间接影响阈值电压。  4.提高闩锁效应敏感性  集成电路中各个二极管、晶体管和其他元件之间的隔离是通过反向偏置 P-N 结来实现的。在电路开发过程中,需采取预防措施以确保这些结在预期应用条件下始终可靠阻断。这些 P-N 结与其他相邻结形成 N-P-N 和 P-N-P 结构,从而产生寄生 NPN 或 PNP 晶体管,这些晶体管可能会被意外激活。  当寄生 PNP 和 NPN 双极晶体管相互作用,在电源轨和接地之间形成低阻抗路径时,CMOS IC 中就会出现闩锁效应(Latch-up)。这会形成一个具有正反馈的可控硅整流器(SCR),导致过大的电流流动,并可能造成永久性器件损坏。图 1 显示了标准 CMOS 逆变器的布局截面图。图中还包含寄生 NPN 和 PNP 晶体管。正常工作时,所有结均为反向偏置。图 1. 带标记的寄生双极晶体管逆变器截面图和寄生双极晶体管示意图  闩锁效应的激活主要取决于寄生 NPN 和 PNP 晶体管的 β 值,以及 N - 阱、P - 阱和衬底电阻。随着温度的升高,双极晶体管的直流电流增益(β)以及阱和衬底的电阻也会增加。  在高温条件下,闩锁效应灵敏度的增加也可以视为双极结型晶体管(BJT)阈值电压的降低,从而更容易在阱和衬底电阻上产生足以激活寄生双极晶体管的压降。基极 - 发射极电压随温度变化降低的幅度约为 -2mV/℃,当温度从 25℃升至 200℃时,基极 - 发射极电压降低 350mV。室温下的典型阈值电压为 0.7V,这意味着阈值电压大约减半。  5.加速损耗机制  Arrhenius 定律在可靠性工程中被广泛用于模拟温度对材料和元器件失效率的影响。  其中,R( T) 是速率常数,Ea 是活化能,k 是玻尔兹曼常数(8.617 · 10−5eV/K),T 为绝对温度(单位:开尔文)。通常,每升高10°C可靠性就会降低一半。  ▷经时击穿-TDDB  TDDB 是电子器件中的一种失效机制,其中介电材料(例如 MOS 晶体管中的栅氧化层)由于长时间暴露于电场下而随时间退化,导致泄漏电流增加。当电压促使高能电子流动时,在氧化层内部形成导电路径,同时产生陷阱和缺陷。当这些导电路径在氧化层中造成短路时,介电层就会失效。失效时间 TF 随着温度的升高而呈指数级减少。  ▷负 / 正偏置温度不稳定性 - NBTI / PBTI  NBTI 影响以负栅极 - 源极电压工作的 p 沟道 MOS 器件,而 PBTI 则影响处于积累区的 NMOS 晶体管。在栅极偏压下,缺陷和陷阱会增加,导致阈值电压升高,漏极电流和跨导减少。这种退化显示出对数时间依赖性和指数温度上升,在高于 125°C 时有部分恢复。  ▷电迁移  电迁移是指导体中的金属原子因电流流动而逐渐移位,形成空隙和小丘。因此,如果金属线中形成的空隙大到足以切断金属线,就会导致开路;如果这些凸起延伸得足够长以至于在受影响的金属与相邻的另一金属之间形成桥接,则可能导致短路。电迁移会随着电流密度和温度的升高而加快,尤其是在空隙形成后,会导致电流拥挤和局部发热。金属线发生故障的概率与温度成指数关系,与电流密度成平方关系,与导线长度成线性关系。铜互连器件可承受的电流密度约为铝的五倍,同时可靠性相似。  ▷热载流子退化  当沟道电子在 MOS 晶体管漏极附近的高电场中加速,会发生热载流子退化。在栅极氧化层中产生界面态、陷阱或空穴。它影响诸如阈值电压 VT、电流增益 β、导通电阻 RDS_ON 和亚阈值泄漏等参数。在较高温度下,平均自由程减少,降低了载流子获得的能量,使得热载流子退化在低温条件下更为显著。
关键词:
发布时间:2025-05-28 09:21 阅读量:436 继续阅读>>
一文了解嵌入式硬件<span style='color:red'>设计</span>的几个注意事项
  嵌入式设计是个庞大的工程,今天带您了解一下硬件电路设计方面的几个注意事项。首先,咱们了解下嵌入式的硬件构架。  我们知道,CPU是整个系统的灵魂,所有的外围配置都与其相关联,这也突出了嵌入式设计的一个特点硬件可剪裁。在做嵌入式硬件设计中,以下几点需要关注。  1. 电源的确定  电源对于嵌入式系统中的作用可以看做是空气对人体的作用,甚至更重要:人呼吸的空气中有氧气、二氧化碳和氮气等但是含量稳定,这就相当于电源系统中各种杂波,我们希望得到纯净和稳定符合要求的电源,但由于各种因素制约,只是我们的梦想。这个要关注两个方面:  a、电压  嵌入式系统需要各种量级的电源比如常见的5V、3.3V、1.8V等,为尽量减小电源的纹波,在嵌入式系统中使用LDO器件。如果采用DC-DC不仅个头大,其纹波也是一个很头疼的问题。  b、电流  嵌入式系统的正常运行不但需要稳定足够的电源,还要有足够的电流,因此在选择电源器件的时候需要考虑其负载,一般留有30%的余量。  如果是多层板,电源部分在layout的时候需电源分割,这时需要注意分割路径,尽量将一定量的电源放置在一起。如果是双面板,则走线宽度需要注意,在板子允许的情况下尽量加宽。合适的退耦电容尽量靠近电源管脚。  2. 晶振的确定  晶振相当于嵌入式系统的心脏,其稳定与否直接关系其运行状态和通讯性能。常见的振有无源晶振,有源晶振,首先要确定其振荡频率,其次要确定晶振类型。  a、无源晶振  其匹配电容和匹配电阻的选择,这部分一般依据参考手册。在单片机设计中,经常使用插件晶振配合瓷片电容。在ARM中,为了减少空间和便于布线,经常使用四角无源晶振配合贴片电容。 虽然我们对于固定晶振的匹配电路比较熟悉,但是为了达到万无一失,还是要看参考手册确定电容大小,是否需要匹配电阻等细节。  b、有源晶振 具有更好的更准确的时钟信号,但是相比之下,比无缘晶振价格高,因此这也是在硬件电路设计中需要关注的成本。在做电路板设计时需要注意晶振走线尽量靠近芯片,关键信号远离时钟走线。 在条件允许的情况下增加接地保护环。如果是多层板,也要讲关键信号远离晶振的走线。  3. 预留测试IO口  在嵌入式调试阶段,在管脚资源丰富的情况下,我通常预留一个IO口连接led或者喇叭,为下一步软件的编写做铺垫。在嵌入式系统运行过程中适当控制该IO接口,从而判断系统是否正常运行。  4. 外扩存储器  一个嵌入式系统如果有电源、晶振和CPU,那么这就是我们熟悉的最小系统。如果该嵌入式系统需要运行大点的操作系统,那么不但需要CPU具有MMU,CPU还需要外接SDRAM和NANDFLASH。  如果该cpu具有SDRAM和NANDFLASH控制器,那么在硬件设计上不用过多的考虑地址线的使用。如果没有相关的控制器,那么需要注意地址线的使用。  这部分在LAYOUT的时候是一个重点,究其原因就是要使相关信号线等长以确保信号的延时相等,时钟和DQS的差分信号线走线。在布线的时候各种布线技巧需要综合使用,例如与cpu对称分布,菊花链布线、T型布线,这都需要依据内存的个数多少来进行选择,一般来说个数越多,布线越复杂,但是知道其关键点,一切迎刃而解。  5. 功能接口  一个嵌入式系统最重要的就是通过各种接口来控制外围模块,达到设计者预设的目的。常用的接口有串口(可用来连接蓝牙,wifi和4G等模块),USB接口、网络接口、JTAG接口、音视频接口、HDMI接口等等。  由于这些接口与外部模块连接,做好电磁兼容设计是重要的一项工作。除此之外,在LAYOUT的时候注意差分线的使用。  6. 屏幕  这个功能之所以单独列出来,是由于其可有可无。如果一个嵌入式系统只是作为一个连接器连接外围设备模块,通过相关接口连接到电脑主机或者直接挂在网络上,那么屏幕就不需要了。  但是如果做出来的是一个消费类产品,与用户交互频繁,这就不得不唠叨几句。电容屏幕是嵌入式屏幕的主要部件,在电路设计中需要注意触屏连接线和显示屏连接线的布局。  在走线的过程中尽量短的靠近主控cpu,同时注意配对信号走差分线,RGB控制信号走等长。各种信号走线间距遵循3W规则,避免相互干扰。在屏幕的设计中,一定要确保功率和防止干扰,以防屏幕闪屏和花屏现象的出现。
发布时间:2025-05-14 09:13 阅读量:313 继续阅读>>
原理图和PCB<span style='color:red'>设计</span>常见错误速查清单
关键词:
发布时间:2025-05-13 10:46 阅读量:382 继续阅读>>

跳转至

/ 17

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码