<span style='color:red'>蔡司</span> arivis:体电子显微镜数据分析新利器
  体电子显微镜在生物微观结构研究中展现出巨大潜力,但伴随而来的是海量二维数据处理分析的难题。科研人员面临挑战包括:生物结构复杂,电镜图像灰度单一,阈值分割方法效果不佳;电镜图像缺乏荧光标记辅助区分结构,分割难度大;冷冻体电镜图像处理复杂度高于常温,深度学习应用亦受限,常需手动操作;大数据量导致软件处理效率下降,消耗大量时间和精力。  针对上述问题,蔡司 arivis 集成机器学习与深度学习技术,专为科研打造,能高效执行图像处理、分割、三维重建及数据分析,革新科研工作流程。  更精准的图像分割及三维重构  arivis 提供两种 AI 算法,即语义分割和实例分割,能够更加灵活且精准地完成对生物样本特定结构的图像分割及三维重构。研究人员只需在图像上进行简单涂画,标注所需分割的图像信号,即可借助机器学习和深度学习提取想要的结构进行三维重构,让您发掘更多细节。  流畅的三维可视化分析体验  arivis 提供多样化的直观界面展示方式——旋转、缩放、切片,让样本的微观构造在任意视角下纤毫毕现,助您深入探索每一个细微之处。  简化AI模型训练流程  arivis 不仅仅是在本地PC端实现智能分割的得力助手,蔡司更引领创新,推出 arivis 在线版(arivis Cloud)。该云平台依托深度学习技术,免去硬件限制,让您随时随地,仅需一个浏览器,不论是手机、iPad 还是笔记本,都能轻松访问并在线定制个人专属的深度学习分割模型。此模型进一步支持三维可视化呈现、数据量化分析,并配备完善的标注、测量和分析工具,精准对接您的个性化科研需求。最后,通过 VR 技术,我们邀您沉浸式探索数据新维度,体验前所未有的科研之旅。  高效数据处理引擎  arivis 提供了一流的数据处理能力,得益于其独特的算法,该软件无需占用大量内存资源,也不限定于高端硬件配置,这意味着研究者能使用成本更低的计算机系统去高效处理包括但不限于体电子显微镜在内的多渠道2D、3D、4D乃至5D图像数据集。无论面对的数据规模如何庞大,即使是TB级别以上,arivis均能轻松驾驭,显著缩短处理时间,为科研活动提速,提升整体研究效率。  广泛设备接入与数据格式支持  arivis 具有卓越的兼容性,无缝对接多种品牌及型号的体电子显微镜设备,确保您的实验无论采用哪种尖端仪器,均可顺利导入 arivis 进行图像处理。超过60多种的图像文件格式,让数据导入过程变得便捷无阻,无论是通用的.tif、.jpg格式,还是专业的.raw、.czi等科研图像格式,皆能轻松处理。  定制化处理新境界  为进一步提升灵活性与扩展性,arivis 不仅仅是一款强大的图像处理软件,它还内置了 Python 编程环境,让您能够直接在软件内编写脚本,实现高度个性化的图像分析流程。无论是进行复杂的数据预处理、高级特征提取,还是独特的图像分析算法开发,arivis 都将成为您的强大后盾,助您探索科研新领域。
关键词:
发布时间:2025-03-18 16:12 阅读量:261 继续阅读>>
<span style='color:red'>蔡司</span> ART 5.0 重磅来袭,重塑X射线显微成像的智能体验!
  科技无界,探索不止。蔡司高级重构工具箱 ART 5.0 版本正式发布,以三大核心突破重新定义X射线显微镜(VersaXRM)的成像边界,为您开启智能成像体验!  更清晰:DeepRecon Pro ImageClarity™,细节尽显  告别噪点困扰,迎接极致清晰!  全新DeepRecon Pro ImageClarity™通过深度学习算法,在降噪的同时完整保留关键特征。无论是微纳米级结构,还是材料内部缺陷,细微特征纤毫毕现。  内置「图像差异对比」功能,一键切换比对标准重建与 AI 优化结果,确保去噪不丢细节,让每一份数据都经得起推敲。  更精准:ROI训练+AI引擎,成像偏差精准消除  ART 5.0 首次实现「感兴趣区域(ROI)训练」功能,支持为 DeepRecon Pro 和 DeepScout 定制专属模型。通过聚焦关键区域,系统智能识别并消除背景干扰与成像偏差,让图像细节更加精准。  搭配新一代 AI 运算引擎,重构效率大幅提升,复杂样本处理时间显著缩短,助您快速获取高质量成像结果!  更高效:透明模型管理,多端协同作业  ART 5.0 以智能化管理为核心,为您提供更高效的实验体验。  可视化的模型数据库:一站式管理所有训练模型,关键参数、应用场景一目了然,快速调用已有模型  多平台同时接入:全新架构支持多设备协同,多端进行模型训练和数据重构列队,效率倍增  重构服务器状态监控:实时监控多客户端任务队列,实验室资源智能调度,彻底告别「重建拥堵」  结语  蔡司高级重构工具箱 ART 自发布以来,始终致力于帮助不同领域的客户提升成像效率与质量,此次迎来 ART 5.0 版本,不仅是蔡司 X 射线显微成像技术的又一次自我突破,更是智能化成像时代的崭新起点。
关键词:
发布时间:2025-03-12 09:45 阅读量:260 继续阅读>>
<span style='color:red'>蔡司</span> Lightfield 4D 重新定义动态生命观测新纪元
  要真正捕捉生命过程的本质,必须跨越三维空间与时间维度同步观测,但活体 4D 成像始终被四重枷锁制约:  毫秒级的生理活动远超于传统显微帧率的极限  高强度重复光照导致样本失活,观测即终结  大体积多色图像的采集时间限制成像通量  跨尺度成像时,需要频繁移动样品  全新共聚焦系列蔡司 LSM 910 和蔡司 LSM 990 搭载的 Lightfield 4D 成像技术,只需轻轻一拍,即可获取全面的三维信息,体积成像内毫无延迟,实现四维动态观测。它首次以高达每秒 80 个体积的速度捕捉生命动态的时空信息,以突破性的速度揭开生命动态的神秘面纱。  一次拍摄 一个体积 获取生理学和神经高速变化过程的三维信息  传统显微技术难以捕捉昆虫血淋巴中血细胞的高速三维运动轨迹。同时,生物体内的生理过程在「成像速度」与「三维信息量」间也难以取舍。  Lightfield 4D 技术利用独特的“一拍一体”(one snap, one volume)优势,以每秒 80 个体积的速度捕获生物体内的生理过程,使在完整体积中进行高时空分辨率的成像成为可能。您还可以利用蔡司 arivis Pro 高级图像智能分析软件,分割并追踪单个血细胞的空间运动轨迹。  更小曝光 更多信息 长时间温和地观察整个生物体  传统显微技术难以在遗传筛选实验中实现长时间无损活体成像,更难以同步捕捉毫秒级细胞运动轨迹与数日级器官形态变迁的过程。  数据显示,在斑马鱼耳囊发育筛选中,运用蔡司 Lightfield 4D 技术对多基因型胚胎进行16小时动态观测和三维追踪,体积成像时间间隔为2分钟。该技术使基因调控与器官形态的时空耦合过程得以深度解析,推动发育生物学迈入动态机制验证的新阶段。  快速采集 提高通量 加速采集多标大样品信息  传统三维成像技术受限于 Z 轴逐层扫描,使三维细胞球的体成像耗时冗长,进而限制通量,导致药物筛选效率低下。  Lightfield 4D 成像技术凭借瞬时体成像和大视野覆盖的显著优势,单次拍摄即可获取完整球体空间结构,并以颠覆性的速度获取多色样品的体积成像数据,从而显著提高实验效率。  同一平台 更多可能 高速体成像与共聚焦众多功能相结合  大脑主要由密集的神经元和神经胶质细胞构成,其神经元活动通过钙离子信号的变化表征,这些信号以毫秒级时间尺度快速发生。然而,大多数成像技术难以同时实现高时空分辨率,大多局限于单一平面或微小体积内的信号记录。  Lightfield 4D 能够快速记录更大的体积,以追踪神经元的活动情况。⁣您可以捕捉到相距100 μm 或更远的神经元同时发射的信号,从而获得对神经元回路的全新认识。  总结  蔡司 Lightfield 4D 技术以独有的成像方式,单次曝光就能获取整个生物体的三维图像信息,且体积内没有任何时间延迟。不同于传统的二维成像方式,Lightfield 4D 通过物镜和相机之间的微透镜阵列,单次曝光即可捕获 37 幅来自不同空间和角度的独立图像,从而得到生物体的体积图像信息。  同时每次生成体积图像时,超低光毒性让长时间捕获生命体内不同位置的快速生理活动成为可能,用更温和的观测,为您解密更锋利的科学难题。
关键词:
发布时间:2025-03-12 09:31 阅读量:266 继续阅读>>
<span style='color:red'>蔡司</span>工业测量自动化遇上OPC UA:开启智能制造新篇章
  在工业自动化的复杂网络中,不同设备和系统之间的通信顺畅与否,直接决定了生产效率与管理效能。而 OPC UA,即开放式平台通信统一架构(Open Platform Communications Unified Architecture),正逐渐成为这个领域中备受瞩目的 “通用语言”。  OPC UA 是一种面向服务的通信协议,专门为解决工业自动化及物联网设备与云端服务器之间的通信难题而设计。在过去,各设备制造商往往采用各自私有的通信协议,就好比不同国家的人说着完全不同的语言,彼此之间难以交流。这使得不同品牌、不同型号的设备在集成时困难重重,数据交换和系统集成成本高昂。一家工厂可能同时使用了来自 A 公司的自动化生产线设备和 B 公司的质量检测设备,由于两者通信协议不同,要实现生产线数据与质检数据的实时交互,就需要耗费大量的时间和资源进行协议转换与系统适配。  OPC UA 的出现,就像是为工业领域引入了一种全球通用的语言,让不同设备能够顺畅 “交流”。它定义了一套统一的通信标准和数据模型,涵盖了设备的各种信息,从实时运行数据到设备状态、报警信息等,所有支持 OPC UA 协议的设备,无论其来自何方、采用何种硬件架构或操作系统,都能按照这个统一的规范进行数据的发送、接收和解析 。这种统一的通信方式,不仅大大降低了工业系统集成的难度,还提高了系统的可靠性和可扩展性,为工业自动化迈向更高水平奠定了坚实基础。  当蔡司邂逅OPC UA  一、无缝集成,数据畅流  当蔡司工业测量设备与 OPC UA 相遇,一场数据交互的革新就此展开。蔡司的三坐标测量机、光学测量仪等设备,通过专门开发的 OPC UA 接口模块,能够与 OPC UA 服务器实现无缝对接。以往,测量数据的传输需要人工手动导出并录入到生产管理系统中,过程繁琐且容易出错,数据更新也不及时 。如今,通过 OPC UA 技术,蔡司三坐标测量机在完成零部件测量后,能将尺寸数据、形状偏差等测量结果实时、自动地传输给 OPC UA 服务器,再由服务器快速转发至生产管理系统和质量监控平台。这使得生产线上的工作人员能够第一时间获取最新的测量数据,及时调整生产参数。  二、实时监控与智能决策  基于 OPC UA,蔡司设备实现了数据的实时传输,为企业的生产管理和决策提供了强大支持。蔡司的高精度测量设备可对电路板上的电子元件进行测量,测量数据以毫秒级的速度通过 OPC UA 传输到监控中心。管理人员通过监控系统的可视化界面,能够实时查看每一台蔡司设备的运行状态、测量任务进度以及测量数据的动态变化趋势。  这些实时数据不仅用于生产过程的监控,更是企业做出智能决策的关键依据。通过对大量历史测量数据的分析,结合机器学习算法,企业可以预测设备的故障发生概率,提前安排维护保养,避免因设备故障导致的生产中断。  三、提升系统兼容性与扩展性  OPC UA 极大地增强了蔡司系统与其他设备的兼容性。在工业 4.0 的大环境下,制造企业的生产系统往往由多个品牌、多种类型的设备组成,不同设备之间的兼容性至关重要。蔡司的测量设备借助 OPC UA 协议,能够轻松与诸多品牌的 PLC 控制系统,以及各类工业机器人、自动化生产线设备进行通信和数据交互。  从未来扩展的角度来看,OPC UA 为蔡司工业测量自动化打开了无限可能的大门。随着物联网、人工智能等新技术的不断发展,企业对工业测量的需求也在不断演变。OPC UA 的开放性和可扩展性,使得蔡司能够方便地集成新的传感器技术、数据分析算法和软件功能,快速响应市场变化和客户需求。  未来展望:蔡司与OPC UA 携手前行  展望未来,蔡司工业测量自动化与 OPC UA 的结合将迈向更广阔的发展空间。随着工业 4.0 和智能制造的深入推进,生产过程对实时性、精准性和智能化的要求将持续攀升。蔡司将在 OPC UA 的基础上,进一步拓展测量设备的功能边界 。
关键词:
发布时间:2025-02-21 11:14 阅读量:303 继续阅读>>
<span style='color:red'>蔡司</span>METROTOM 6 scout 高精度计量型工业CT--内部缺陷终结者
  随着新能源汽车、电子消费品及精密注塑行业的快速发展,对零部件的质量和可靠性提出了更高的要求。特别是在新能源汽车的动力系统、电池外壳、内饰结构件,以及电子消费品的外壳、连接器等部件的生产中,精密注塑技术正成为核心工艺。然而,传统的质量检测手段在面对复杂几何形状和高精度要求时往往力不从心。  工业CT作为一种高分辨率、无损检测技术,能够快速、精准地获取注塑件内部结构和尺寸信息,是精密注塑行业质量控制的理想选择。它不仅能够检测气泡、裂纹、缩孔等内部缺陷,还可对尺寸偏差、装配误差等进行全面分析,为产品研发、工艺优化和批量生产提供强有力的技术支撑。在新能源汽车、电子消费品等领域的广泛应用,将进一步推动精密注塑工艺向智能化、高效化发展,为行业带来全新的品质保障方案。  蔡司METROTOM是基于CT传感器的坐标测量机,其融合 X射线计算机断层扫描(CT)及三坐标测量机(CMM)的功能优势,广泛适用于无损几何尺寸测量、色差数模比对、无损内部缺陷及装配结构分析,其权威的可追溯性计量性能、核心的坐标测量机高精度部件、CAA误差补偿、自校准装置及智能测量平台等众多技术优势,确保了系统的出色精度、多功能及长久稳定性。  ZEISS METROTOM 6 scout可获取更出色的分辨细节,仅需一次扫描即可完成复杂的检测及测量任务,从而对接触式或光学测量系统无法检测到的隐藏缺陷及内部结构进行检测、分析及测量,兼具高精准、自动工件定位、操作便捷、主动温度平衡、占地面积小等特点。  相较于其他 CT 产品,METROTOM 6 具备如下独特之处:  01、自动工件置中定位  可通过软件和居中轴自动居中,借助于5轴设计,无需额外调整工件中心摆放位置。免去了开关设备再调整夹具姿态的繁琐工作。  02、扫描参数自动识别  过去人们常常通过操作手册或者经验去设置扫描时的电压、电流(瓦数)、曝光时间、滤片、投影张数。在METROTOM 6中,即使是没有经验的CT使用者,也可以通过电脑智能推荐扫描参数进行操作(即使扫描的解析度要求发生变化),不再依赖经验和手册说明书,即使操作一台高精度的CT也不用担心操作人员的经验导致的测量影响。  03、超高的解析度  得益于微焦点透射式X射线源结合3K平板探测器,确保非常出色对比度及高分辨力的测量结果,获取更多质量细节信息或同一时间扫描更多样品,10 mm直径的样品可达到3µm的体素尺寸,即便更小的缺陷也可观测。  04、“一键式”扫描出报告  借助于Python API,针对批量产品扫描,用户可实现一键式扫描多个产品并完成拆分多件扫描的产品的检测,完成pp、ppk等趋势分析。配合扫码枪使用,可实现边线atline检测。  05、贯穿式软件解决方案  从采集数据、重构体积数据、分析评价、出具报告均由ZEISS INSPECT X-Ray独立完成(全自研软件)没有切换软件导出数据的顿感。  总结  工业高精度无损检测解决方案已成为精密注塑行业、新能源汽车及电子消费品领域不可或缺的一部分。它不仅能显著提升产品质量和生产效率,还为企业节约成本、优化工艺提供了科学依据。面对日益激烈的市场竞争和用户对高品质产品的需求,工业CT技术将在未来扮演更重要的角色,推动行业实现更加智能化、精细化的发展目标。
关键词:
发布时间:2025-02-21 11:11 阅读量:280 继续阅读>>
<span style='color:red'>蔡司</span>入门款工业CT METROTOM 1 - 内外检测一体化,注塑品质标杆再升级
  随着科技的进步和市场竞争的加剧,注塑行业正逐步向高精度、高效率、高自动化的方向发展。与此同时,客户对注塑产品的要求也越来越高,不仅要求产品外观精美、尺寸精确,更要求产品内部质量可靠、性能稳定。这就要求注塑企业在生产过程中,必须严格控制产品质量,确保每一个产品都符合标准。  如何缩短检测周期,提高生产效率?  如何高效快速完成大量检测特征及复杂检测要求?  如何方便直观地分析内部结构及装配间隙等特征?  如何避免装夹导致的变形,确保检测结果的准确性?  ZEISS METROTOM 1作为一款高精度、高效率的CT检测设备,凭借其独特的优势,完美满足了注塑行业对产品质量检测的需求。它能够提供高分辨率的三维影像,清晰显示注塑产品的内部结构、装配状态和间隙等,为产品质量的全面检测提供了可靠依据。并且采用无损检测技术,无需对样品进行拆分或破坏,即可完成检测,大大缩短了检测周期。  对于注塑产品内部难以用肉眼识别的缺陷,METROTOM 1能够一键完成检测,并准确呈现缺陷的位置、大小和形状等信息,为产品质量的改进提供了有力支持。此外,针对注塑行业普遍存在的材料较软无法装夹、样品透明无法使用光学测量等问题,METROTOM 1凭借其高精度、高效率、无损检测等优势,完美解决了这些行业痛点。  从内部,看见质量  – ZEISS METROTOM 1  研发阶段  1. 非破坏性检测,不仅大大缩短产品的检测周期与前期准备时间,此外还提供更精确的三维图像,更好的评估材料和结构性能,以及可能存在的内部缺陷  2. 获取全场数据,搭配ZRE进行逆向,并有针对性的修正模具,显著缩短修模周期,加快产品上市速度  量产阶段      1、 以较小的占地面积提供精度可追溯的高精度计量,配合较高的电压与功率,轻松批量扫描橡塑产品,并实现自动拆分及检测。  2. 可直接在体积数据上定位面积不足或者壁厚过厚以及间隙过大的问题,尤其对于密闭空间尺寸,可快速精准测量复杂零件壁厚的微小变化,及复杂曲面  质量实验室  1. 无需拆分,直观了解产品二维与三维局部、整体或者截面视图。可分析并测量组件装配后形成的间隙,或分析失效原因  2. 利用三维体积数据,可直观展示产品表面及内部尺寸特征,并以三维形式查看内部缺陷分布,体积、距离外表面最短距离等信息并精确测量  由内而外,质量控制  ZEISS METROTOM1产品特点  · 入门级计量CT,带可追溯的计量精度,  符合VDI/VDE 2630表1.3  · 扫描和检测一站式解决方案  · 批量扫描,自动拆分和检测  · 关键扫描参数,软件可自动确认  · 宏程序,实现自动检测及报告输出  揭示内部结构,实现全面分析  支持完整的工作流程,从数据采集、CT数据导入和多边化到广泛的分析和报告。
关键词:
发布时间:2024-07-19 09:49 阅读量:898 继续阅读>>
基于<span style='color:red'>蔡司</span>X射线显微镜的吸收衬度和衍射衬度成像技术
  X射线衍射衬度断层成像(Diffraction Contrast Tomography,DCT)是一种无损的三维晶体学成像方法。利用基于蔡司X射线显微成像平台的LabDCT Pro及CrystalCT系统(点击查看)可以对多晶材料进行无损三维晶体结构表征,得到多晶样品的晶粒尺寸、三维形貌、晶体取向、晶界类型、织构分布、应力应变张量等三维微结构信息。  利用所获得的晶体模型作为数值模拟的输入模型,可以更准确预测材料的性能,对于材料加工工艺优化具有重要指导意义;结合吸收衬度和衍射衬度也可以对样品进行多模态表征,比如研究第二相在晶界的分布;由于DCT是无损成像,还可以动态原位分析晶粒在热处理条件下的生长过程。  丹麦Xnovo Technology的应用团队与Ulm University的Dr. Jules Dake利用基于蔡司X射线显微成像平台的LabDCT Pro技术,结合吸收衬度和衍射衬度,捕捉了Al-5%Cu合金在多次等温退火过程中晶粒结构的演变,在《Tomography of Materials and Structures》上合作发表论文《Grain structure evolution during heat treatment of a semisolid Al-Cu alloy studied with lab-based diffraction contrast tomography》。  同时具有高时间分辨率和空间分辨率的三维实验数据是验证材料现象计算模型的关键。文章在现有的Al-Cu模型体系上跟踪退火过程晶粒结构的演变,为粉末压坯在烧结后期的晶粒重新排列、致密化和晶粒粗化提供了参考。该研究表明,Al-5%Cu合金经过十次退火后,初始组织由1934个晶粒减少到934个晶粒,而平均晶粒尺寸由194µm增大到247µm。  对单个晶粒生长的初步统计结果表明,在实验初期阶段,消失的通常是较小的晶粒。此外,无论晶粒尺寸如何,单个晶粒的取向变化通常很小,但是当晶粒突然出现较大旋转时,大概率发生在较小晶粒消失前的上一次退火处理中。下图展示了一个小晶粒以及它旁边两个稳定的晶粒,小晶粒在消失之前取向旋转了5度以上(因此IPF的颜色从绿色变为青绿色)。  随着样品总退火时间的增加,晶粒逐渐粗化,晶粒的空间分布、三维形貌等信息可从DCT结果中得到,而ACT结果能看出Cu沿晶界富集的网络结构。从t0到t5再到t10,样品中形成孔隙网络,孔隙率逐渐提高。  在热处理过程中晶粒接触的结晶学行为对微观组织的演变起着重要作用,可将所获得的晶体模型作为模拟的输入模型,进一步研究晶粒粗化行为。  蔡司X射线显微镜结合吸收衬度和衍射衬度成像技术,为材料研究及表征提供丰富的解决方案。
关键词:
发布时间:2024-07-17 11:22 阅读量:652 继续阅读>>
<span style='color:red'>蔡司</span>SCR智能控制系统:助力企业迈出自动化检测新步伐
  蔡司为促进和助力客户测量体系从离线到在线的不断拓展,从实验室单品检测到自动化升级,针对蔡司产品线的使用和控制进行了调整与优化,为客户量身定制了“高效检测,智能控制”的检测系统。  通过透彻了解行业客户需求与蔡司产品使用应用场景,实现蔡司三坐标、CT等设备自动测量与数据交互的智能控制系统应运而生。客户可以通过简单的快插快换,为自己的三坐标设备增加“控制手柄”,自主轻松实现自动检测与智能化升级。蔡司SCR控制系统实现CT与CMM的灵活、稳定控制,无需深入了解控制原理,SCR控制系统会将自动化参数与控制功能集成化给客户,客户可以通过简单易用的操作界面驱动自动测量,为尚不具备自动化能力的企业实现检测自动化。  SCR智能控制系统包含与三坐标连接的安全接头、外部安全、电源、信号接头以及调试和通讯连接使用的通讯接口。除支持西门子PLC 通讯控制外,其还支持TCPIP通讯协议,亦可选择CC-Link等主流通讯协议。软件控制方面,SCR智能控制系统将三坐标自动动作控制模块化,轻松实现手动模式和自动测量模式切换。系统还可以交互三坐标测量信号如测量状态、测量结果是否合格、三坐标检测程序表头参数信息等内容,交互自动上下料的控制信息如托盘输入输出信号、是否启动自动测量等等,真正为客户实现了即插即用,实现简单易用的自动控制。  蔡司致力于为企业构建智能工厂,提供自动化质量检测解决方案,向客户和市场呈现蔡司将尖端产品和智慧软件与现代化工厂完美融合的成果。
关键词:
发布时间:2024-07-12 10:56 阅读量:741 继续阅读>>
<span style='color:red'>蔡司</span>软件 | ZEISS INSPECT Optical 3D功能概览
  ZEISS INSPECT Optical 3D是蔡司旗下一款强大的三维测量数据检测和评估软件,原名GOM Inspect。这款软件在光学测量领域具有广泛的应用,并且已经成为行业标准。  ZEISS INSPECT Optical 3D的功能十分全面,它可以执行从简单到复杂的各种检测任务。例如,捕捉待测零件的数据,进行网格处理,导入CAD模型,进行GD&T(几何尺寸和公差)计算,以及进行趋势分析和数字装配等。无论使用哪种光学测量系统采集数据,ZEISS INSPECT Optical 3D都能轻松应对,提供精确可靠的测量结果。  ZEISS INSPECT Optical 3D的设计不受任何系统限制,可独立于蔡司的设备运行,用户能够更加灵活地选择适合自己的测量系统。软件还提供了丰富的在线帮助功能和最新的计量技术新闻,用户在使用过程中可以更加便捷地获取所需的信息和支持。  亮点功能  仿真渲染  ZEISS INSPECT Optical 3D可以自动检测光源,获得正确的阴影效果。利用ZEISS INSPECT Optical 3D 对零件进行虚拟装配,并通过渲染技术仿真零件的材质和光源,可实现在逼真虚拟环境下的零件检测。  基于曲线的检测  ZEISS INSPECT Optical 3D集合了以点为基础的检测和以面为基础的检测。基于全局数字化数据,可构造各种曲线并可视化显示各项特征,比如摄取边缘曲线、分析半径和特征线,以及创建样条曲线等。另外,基于曲线的检测还可分析齐平和缝隙。  基于软件的运动补偿  软件可有效消除可能会导致测量结果出错的任何零部件移动,由此加快了测量速度和结果输出。  虚拟计量室(VMR)  虚拟计量室(VMR)是所有光学测量机的中央控制和测量规划软件,可以模拟现实状况。用户能够执行自动化测量程序,预先分析所有机器人的运行路线,以防碰撞并采用尽可能高效的运行路线。  虚拟装夹  通过虚拟装夹功能,用户可以在没有任何夹具的情况下测量零件的夹紧状态,提高工作效率并节省成本。软件可计算零部件夹紧状态,无需设计和打造夹具。  自动曲面创建  软件支持自动曲面创建,轻松将扫描数据转换为高精度的CAD模型,用于后续其他需要CAD数据的流程,如模拟。CAD亦可导出为STEP格式文件。  行业及应用  ZEISS INSPECT Optical 3D软件在各个领域都有广泛应用。作为一款强大的三维测量数据检测和评估工具,它能够帮助用户精确获取和分析物体的三维数据,从而满足各种测量和质量控制的需求。  首先,ZEISS INSPECT Optical 3D软件在制造业中扮演着重要角色。在制造业的生产线上,对产品的尺寸精度、形状公差等要求非常高。通过使用ZEISS INSPECT Optical 3D软件,制造商可以准确测量产品的三维数据,并与CAD模型进行对比,确保产品符合设计要求。同时,软件还支持自动化检测流程,提高了检测效率,降低了人为误差,有助于制造商提高产品质量和生产效率。  其次,ZEISS INSPECT Optical 3D软件在科研领域也有广泛的应用。在材料研究、生物医学、航空航天等领域,需要对物体的微观结构、形貌特征等进行精确测量和分析。ZEISS INSPECT Optical 3D软件能够捕捉到物体的细微变化,提供高分辨率的三维数据,帮助科研人员揭示物体的内在特性和规律,推动科学研究的进展。  此外,ZEISS INSPECT Optical 3D软件还在逆向工程、质量检测、文物修复等领域发挥着重要作用。在逆向工程中,软件可以通过测量实物得到三维数据,进而生成CAD模型,为产品设计和制造提供依据。在质量检测中,软件可以帮助检测人员快速发现产品存在的缺陷和问题,及时进行改进。在文物修复中,软件可以辅助修复人员获取文物的精确三维数据,为修复工作提供重要参考。  综上所述,ZEISS INSPECT Optical 3D软件具有广泛的应用场景和用途,它能够帮助用户准确获取和分析三维数据,提高产品质量和生产效率,推动科研进展,为各个领域的发展提供有力支持。无论是制造业、科研领域还是其他行业,都可以通过使用该软件来实现对物体三维数据的精确测量和评估。
关键词:
发布时间:2024-07-12 10:53 阅读量:681 继续阅读>>
<span style='color:red'>蔡司</span>:氮化镓GaN的特殊价值在多个领域持续释放
  自MU在2018年10月25日那场波澜壮阔的科技浪潮中,如同破浪前行的领航者,首次发布了全球首款GaN充电器,将这一前沿技术正式引入了消费电子的广袤天地。短短数载,GaN的浪潮便席卷了整个行业,各大厂商如雨后春笋般纷纷涉足,竞相推出相关产品。如今,GaN消费电子产品市场犹如一片璀璨的星海,繁星点点,竞争激烈。  然而,面对这片红海般的竞争态势,相关企业并未满足于现状,而是如同翱翔于天空的雄鹰,敏锐地捕捉到了更多的增量市场空间。于是,GaN技术的应用开始逐步向新能源汽车、光伏、数据中心等更为广阔的领域延伸,犹如一颗璀璨的星辰,照亮了前行的道路。  GaN的独特价值,不仅仅局限于消费电子的边界,它正在这些新兴的领域中持续释放着光芒。就像一块珍贵的宝石,GaN在不同领域的应用中闪耀着独特的光彩,为未来的科技发展注入了新的活力。  无刷直流电机(BLDC)在机器人、电动工具、家电和无人机中的应用越来越多。这些应用要求设备具备轻便、小巧、低转矩脉动、低噪音和极高的精度控制。为了满足这些需求,驱动电机的逆变器需要以更高频率运行,同时需要先进的技术来减少由此产生的更高功率损耗。  氮化镓(GaN)晶体管和集成电路能够在不显著增加损耗的情况下以更高频率运行,相比于基于硅的设备,它们能够显著降低成本、噪音、尺寸和重量。也正因此,GaN在电机驱动领域展现出了巨大的潜力。  同时,在快充市场,GaN早已被广泛使用,也证明了其足够的安全可靠性。  01 GaN正在加速“上车”  在汽车行业的电动化与智能化浪潮中,汽车的电子脉络如同藤蔓般蔓延生长,搭载的电子电力系统愈发繁密。而在这一革新的浪潮中,基于GaN材料的功率器件犹如璀璨的明星,其功率输出密度和能量转换效率均远超传统硅材料,更以其出色的性能引领系统向小型化、轻量化迈进,大幅缩减了电力电子零部件的体积与重量。新能源汽车的崛起,为GaN材料带来了前所未有的发展机遇。  随着新能源汽车市场的蓬勃发展,GaN已率先在车载激光雷达产品中大放异彩,并逐渐在车载充电器(OBC)、DC/DC转换器等核心部件中展露锋芒,预示着其未来无限的可能性。风口之下,整车厂商、零部件供应商、GaN相关厂商等纷纷将目光投向这一领域,竞相将GaN产品引入新能源汽车的广阔天地。  GaN器件凭借优越的开关性能,成为车载激光雷达领域的宠儿。随着激光雷达在新能源汽车中的广泛应用,GaN器件产品更是炙手可热。2023年,英诺赛科凭借其低压车规级GaN产品,已在头部车企的车载激光雷达中实现量产,并在年底推出通过AEC-Q101认证的100V车规级GaN器件新品,为自动驾驶及其他先进驾驶辅助系统提供了强大的支持。  在新能源汽车车载充电器(OBC)领域,GaN Systems凭借其11kW/800V氮化镓车载充电器参考设计,在APEC 2023电力电子会议上大放异彩。与SiC产品相比,其功率密度提升高达36%,整体物料清单(BOM)成本至少降低15%,展现了氮化镓技术的卓越性能。同时,GaNPower也在这一领域积极布局,与汽车电子公司加拿大麦格纳集团携手合作,共同推动GaN在OBC上的应用研发。  高压汽车应用领域的GaN解决方案供应商VisIC公司则将目光瞄准了电动汽车逆变器,与hofer powertrain共同开发的基于GaN的逆变器已开始应用于800V汽车,并与IQE合作,共同研发高可靠性D型GaN功率产品,为电动汽车逆变器领域带来新的突破。博世也在积极研发1200V氮化镓技术,为新能源汽车领域注入新的活力。  目前,GaN器件在新能源汽车领域主要占据400V以下的应用市场,在中低端汽车市场展现出巨大的发展空间。同时,GaN器件在高压应用领域的研发也在不断推进,预示着其在新能源汽车领域更为广阔的前景。总体来看,氮化镓在新能源汽车领域的发展潜力不容小觑,正在逐步登上应用大舞台的巅峰。  在电源转换领域,死区时间曾是设计师们必须面对的难题。然而,随着GaN FET技术的出现,这一问题得到了显著改善。GaN FET技术不仅降低了死区时间,还大幅提升了电机驱动器的性能,为电源转换领域带来了革命性的变革。凭借其高效能、高功率密度和优越的热管理特性,GaN技术在电机驱动领域展现出显著的优势和广阔的前景,为电机驱动系统带来了全新的变革和无限的可能性。  02 GaN在光伏领域持续渗透  在璀璨的光伏舞台上,GaN光伏逆变器以其超凡的才华,将功率密度的华丽乐章演绎得更为激昂,为GaN功率器件开辟了一片崭新的价值蓝海。  回溯至2022年11月,美国光伏界的璀璨之星Solarnative振翅高飞,旗下微型光伏逆变器Power Stick搭载了EPC的GaN器件,犹如镶嵌了一颗璀璨的明珠,实现了业内翘楚的功率效益——功率密度竟跃升了五倍之多。这一卓越性能如一道曙光,照亮了GaN器件在光伏逆变器领域的无限可能,吸引了众多厂商竞相追逐。  英诺赛科,作为行业内的佼佼者,于2023年7月挥毫泼墨,将GaN的艺术融入光伏的画卷,旨在进一步雕琢模块体积,雕琢出更为高效的系统性能。而在今年初春的APEC 2024展会上,英诺赛科更是展示了其精心打造的2KW微逆方案,搭配150V GaN与650V GaN的和谐交响,与传统Si方案相比,不仅体积减少了约20%,功率器件的损耗更是降低了35%。这一卓越表现,不仅让系统性能璀璨绽放,更在成本上实现了优雅的缩减。  而在合作的舞台上,EET公司亦与EPC携手共舞,选用了EPC的增强型氮化镓(eGaN®)功率晶体管,为其新型SolMate®绿色太阳能阳台产品注入了更为强大的生命力。英飞凌亦在今年初与Worksport携手并肩,在便携式发电站的转换器中舞动着GaN功率器件的旋律。这两大合作案例,犹如优美的双人舞,展现了GaN器件在提高效率、开关频率等方面的卓越才能,同时实现了体积重量和系统成本的轻盈化。  如今,GaN在光伏行业的应用案例如同繁星点点,汇聚成一幅璀璨的星图。它以其卓越的性能和广泛的应用前景,逐渐成为光伏行业的“主力军”之一,引领着行业迈向更加辉煌的未来。  03 GaN在数据中心领域应用进展  在数据中心的庞大运营图谱中,服务器电源及其冷却系统犹如一只饥饿的巨兽,吞噬着不菲的能源,成为运营成本的重要组成。然而,随着GaN技术的崛起,这只巨兽似乎找到了节制的钥匙。GaN,以其超凡的性能和效率,正逐步减轻数据中心对冷却系统的依赖,以更轻盈的姿态,迈向节能与成本效益的新纪元。因此,数据中心工程师们纷纷将目光投向搭载GaN器件的电源模块,期待其带来的革新。  在数据中心电源模块的创新之路上,英诺赛科如同一颗璀璨的明星,其推出的100V SolidGaN的1kW DCDC电源模块和搭载650V GaN的2kW PSU方案,犹如两把利剑,精准地满足了当前AI、云计算对数据中心供电高效高功率密度的渴求。而纳微半导体,则以其最新高功率氮化镓芯片GaNSafe™为基础,打造了CRPS185 3200W钛金Plus效率服务器电源,其98W/inch³的超高功率密度和96.52%的极高峰值效率,无疑为数据中心服务器电源领域树立了新的标杆。  与此同时,CGD与群光电能科技和英国剑桥大学技术服务部(CUTS)的强强联合,正在共同描绘一幅未来数据中心电源的宏伟蓝图。他们携手设计和开发的先进、高效、高功率密度数据中心电源产品,将GaN的潜力发挥到极致。GaN的开关损耗小,使其在数据中心的电源模块中如鱼得水,相关案例的落地更是证明了其强大的生命力。展望未来,GaN有望延伸至数据中心的其他部件,开启更为广阔的应用前景。  蔡司扫描电镜 助力半导体研发  蔡司用于高质量成像和高级分析显微镜的FE-SEM蔡司扫描电镜Sigma系列将场发射扫描电子显微镜(FE-SEM) 技术与出色的用户体验相结合。构建您的成像和分析程序并提高工作效率。研究新材料、用于质量检验的颗粒或生物或地质标本。在高分辨率成像方面毫不妥协-转向低电压并在1kV 或更低电压下受益于增强的分辨率和对比度。使用一流的EDS几何结构执行高级分析显微镜 ,并以两倍的速度和更高的精度获得分析数据。
关键词:
发布时间:2024-07-11 10:19 阅读量:666 继续阅读>>

跳转至

/ 13

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码