ROHM’s New <span style='color:red'>SiC</span> Schottky Barrier Diodes for High Voltage xEV Systems: Featuring a Unique Package Design for Improved Insulation Resistance
  ROHM has developed surface mount SiC Schottky barrier diodes (SBDs) that improve insulation resistance by increasing the creepage distance between terminals. The initial lineup includes eight models - SCS2xxxNHR - for automotive applications such as onboard chargers (OBCs), with plans to deploy eight models - SCS2xxxN - for industrial equipment such as FA devices and PV inverters in December 2024.  The rapidly expanding xEV market is driving the demand for power semiconductors, among them SiC SBDs, that provide low heat generation along with high-speed switching and high-voltage capabilities in applications such as onboard chargers. Additionally, manufacturers increasingly rely on compact surface mount devices (SMDs) compatible with automated assembly equipment to boost manufacturing efficiency. Compact SMDs tend to typically feature smaller creepage distances, fact that makes high-voltage tracking prevention a critical design challenge.  As leading SiC supplier, ROHM has been working to develop high-performance SiC SBDs that offer breakdown voltages suitable for high-voltage applications with ease of mounting. Adopting an optimized package shape, it achieves a minimum creepage distance of 5.1mm, improving insulation performance when contrasted with standard products.  The new products utilize an original design that removes the center pin previously located at the bottom of the package, extending the creepage distance to a minimum of 5.1mm, approx. 1.3 times greater than standard products. This minimizes the possibility of tracking (creepage discharge) between terminals, eliminating the need for insulation treatment through resin potting when surface mounting the device on circuit boards in high voltage applications. Additionally, the devices can be mounted on the same land pattern as standard and conventional TO-263 package products, allowing an easy replacement on existing circuit boards.  Two voltage ratings are offered, 650V and 1200V, supporting 400V systems commonly used in xEVs as well as higher voltage systems expected to gain wider adoption in the future. The automotive-grade SCS2xxxNHR are AEC-Q101 qualified, ensuring they meet the high reliability standards this application sector demands.  Going forward, ROHM will continue to develop high-voltage SBDs using SiC, contributing to low energy consumption and high efficiency requirements in automotive and industrial equipment by providing optimal power devices that meet market needs.  Application Examples◇ Automotive applications: Onboard chargers (OBCs), DC-DC converters, etc.  ◇ Industrial Equipment: AC servo motors for industrial robots, PV inverters, power conditioners, uninterruptible power supplies (UPS), and more  Online Sales InformationAvailability: The SCS2xxxxNHR for automotive applications are available now.  The SCS2xxxN for industrial equipment are scheduled in December 2024.  Pricing: $10.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  EcoSiC™ BrandEcoSiC™ is a brand of devices that leverage silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  TerminologyCreepage Distance  The shortest distance between two conductive elements (terminals) along the surface of the device package. In semiconductor design, insulation measures with such creepage and clearance distances must be taken to prevent electric shocks, leakage currents, and short-circuits in semiconductor products.  Tracking (Creepage Discharge)  A phenomenon where discharge occurs along the surface of the package (insulator) when high voltage is applied to the conductive terminals. This can create an unintended conductive path between patterns, potentially leading to dielectric breakdown of the device. Package miniaturization increases the risk of tracking by reducing creepage distance.  Resin Potting  The process of encapsulating the device body and the electrode connections between the device and circuit with resin, such as epoxy, to provide electrical insulation. This provides durability and weather resistance by protecting against water, dust, and other environmental conditions.  AEC-Q101 Automotive Reliability Standard  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Q101 is a standard that specifically applies to discrete semiconductor products (i.e. transistors, diodes).
Key word:
Release time:2024-11-20 14:00 reading:423 Continue reading>>
ROHM's 4th Generation <span style='color:red'>SiC</span> MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:650 Continue reading>>
ROHM’s New TRCDRIVE pack™ with 2-in-1 <span style='color:red'>SiC</span> Molded Module: Significantly Reduces the Size of xEV Inverters
  ROHM has developed four models as part of the TRCDRIVE pack™ series with 2-in-1 SiC molded modules (two of 750V-rated: BSTxxxD08P4A1x4, two of 1,200V-rated: BSTxxxD12P4A1x1) optimized for xEV (electric vehicles) traction inverters. TRCDRIVE pack™ supports up to 300kW and features high power density and a unique terminal configuration - help solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours.  As the electrification of cars rapidly advances towards achieving a decarbonized society, the development of electric powertrain systems that are more efficient, compact, and lightweight is currently progressing. However, for SiC power devices that are attracting attention as key components, achieving low loss in a small size has been a difficult challenge. ROHM solves these issues inside powertrains with its TRCDRIVE pack™.  A trademark brand for ROHM SiC molded type modules developed specifically for traction inverter drive applications, TRCDRIVE pack™ reduces size by utilizing a unique structure that maximizes heat dissipation area. On top, ROHM’s 4th Generation SiC MOSFETs with low ON resistance are built in - resulting in an industry-leading power density 1.5 times higher than that of general SiC molded modules while greatly contributing to the miniaturization of inverters for xEVs.  The modules are also equipped with control signal terminals using press fit pins enabling easy connection by simply pushing the gate driver board from the top, reducing installation time considerably. In addition, low inductance (5.7nH) is achieved by maximizing the current path and utilizing a two-layer bus-bar structure for the main wiring, contributing to lower losses during switching.  Despite developing modules, ROHM has established a mass production system similar to discrete products, making it possible to increase production capacity by 30 times compared to conventional SiC case-type modules. To obtain samples, please contact a sales representative or visit the contact page on ROHM’s website.  Product LineupTRCDRIVE pack™ is scheduled to be launched by March 2025 with a lineup of 12 models in different package sizes (Small / Large) and mounting patterns (TIM: heat dissipation sheet / Ag sinter). In addition, ROHM is developing a 6-in-1 product with built-in heat sink that is expected to facilitate rapid traction inverter design and model rollout tailored to a variety of design specifications.  ☆: Under Development  AQG 324 is a qualification standard for automotive power modules established by ECPE (European Center for Power Electronics).  European automakers are required to comply with this standard when considering adoption.  Application Examples・ Automotive traction inverters  Sales InformationAvailability: June 2024 (OEM quantities)  Pricing: $550/unit (samples, excluding tax)  Comprehensive Support      ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered, such as simulations and thermal designs that enable quick evaluation and adoption of TRCDRIVE pack™ products. Two evaluation kits are available as well, one for double-pulse testing and the other for 3-phase full bridge applications, enabling evaluation in similar conditions as practical inverter circuits.  For details, please contact a sales representative or visit the contact page on ROHM’s website.  EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  TerminologyTraction Inverter  Traction motors in electric cars are driven by 3-phase AC power with a phase shift of 120°. Traction inverters convert direct current supplied from the battery into 3-phase alternating current.  2-in-1  To convert DC into 3-phase AC, one high-side and one low-side MOSFET are required per phase for switching. A 2-in-1 configuration combines both of these MOSFETs into a single module.
Key word:
Release time:2024-06-19 14:57 reading:642 Continue reading>>
ROHM Group Company <span style='color:red'>SiC</span>rystal and STMicroelectronics Expand Silicon Carbide Wafer Supply Agreement
  Kyoto, Japan and Geneva, Switzerland, April 22, 2024 – ROHM (TSE: 6963) and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, announced today the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.  Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.  “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”. said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.  Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.  About STMicroelectronics  At ST, we are over 50,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An integrated device manufacturer, we work with more than 200,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of cloud-connected autonomous things. We are committed to achieving our goal to become carbon neutral on scope 1 and 2 and partially scope 3 by 2027.  Further information can be found at www.st.com .  About ROHM  Founded in 1958, ROHM provides ICs and discrete semiconductor devices characterized by outstanding quality and reliability for a broad range of markets, including automotive, industrial equipment and consumer market via its global development and sales network.  In the analog power field, ROHM proposes the suitable solution for each application with power devices such as SiC and driver ICs to maximize their performance, and peripheral components such as transistors, diodes, and resistors.  Further information on ROHM can be found at www.rohm.com .  About SiCrystal  SiCrystal, a ROHM group company, is one of the global market leaders for monocrystalline silicon carbide wafers. SiCrystal’s advanced semiconductor substrates provide the basis for the highly efficient use of electrical energy in electric vehicles, fast charging stations, renewable energies and in various fields of industrial applications.  Further information on SiCrystal can be found at www.sicrystal.de .
Key word:
Release time:2024-04-24 11:10 reading:1061 Continue reading>>
novosns:Must-Know Basic Facts about Digital Isolators
  Electrical isolation is a crucial concept in the design of electrical systems. Through the isolation of the high and low voltage systems, the following important functions can be achieved:  1.Make the high and low voltage systems independent of each other and improve the anti-interference capability of the low voltage system;  2.Ensure safe interaction between the high and low voltage systems so that the systems can work safely;  3.Protect users' personal safety by avoiding electric shock from the high voltage.  In this Technical Sharing, the basics of electrical isolation will be introduced in detail, including: the definition and importance of electrical isolation, the classification and definition of isolation levels, and the standards and specifications for isolator certification.(Click here to watch the video  Definition and Importance of Electrical Isolation  Electrical isolation uses isolators to prevent destructive electrical signals from being transmitted between high/low voltage subsystems, while allowing safe electrical signals required for system operation to interact between high/low voltage systems. Three system interaction scenarios are discussed below:  1.When two low voltage systems interact, electrical signals can be freely transmitted between the two systems. In this state, we usually consider the systems to be working safely.  2.When high/low voltage systems interact directly without isolators, due to the high potential difference between the high voltage system and the low voltage system, the high voltage system may transmit destructive electrical signals to the low voltage system, which will cause the low voltage system to malfunction and even cause permanent damage to the low voltage system. This will not only affect the functional safety of the systems, but also endanger personal safety and lead to major safety accidents.  3.After using an isolator for electrical isolation between the high and low voltage systems, destructive electrical signals are blocked by the isolator. Safe electrical signals required for normal system operation interact between the high and low voltage systems, ensuring the functional safety of the systems.  Classification and Definition of Isolation Levels  Based on different isolation performance, electrical isolation is divided into different isolation levels. Functional isolation, basic isolation, dual isolation, and reinforced isolation are among typical isolation levels:  1. Functional isolation can only achieve the isolation necessary for normal device operation and does not have the function of electric shock protection, such as the PCB materials on the circuit boards.  2. Basic isolation only provides single-stage isolation and can achieve isolation while the insulation layer is intact. But once the insulation layer fails, the system will be at risk of electric shock. Under normal circumstances, the isolation voltage that basic isolators can isolate is around 3kV, and there are a few basic isolators whose isolation voltage can reach 5kV.  3. Dual isolation adds a layer of isolation on the basis of basic isolation to achieve system redundancy. It can ensure system security when single-stage isolation fails. In this way, the isolation voltage can reach 5kV and above.  4. Reinforced isolation is also single-stage isolation, but it can achieve the same isolation strength as dual isolation.  Standards and Specifications for Isolator Certification  Currently, most common isolators adopt basic and reinforced isolation. In order to be certified for the two isolation levels, the performance of isolators needs to comply with regional codes and safety standards.  In terms of isolator standards and certifications, the International Electrotechnical Commission (IEC) is the earliest non-governmental international electrotechnical standardization organization in the world. IEC works with organizations in multiple regions to develop international safety standards for electrical/electronic devices. In different regions, local standards are developed by different organizations. For example, the United States, Canada, Germany, and China all have local organizations.  Isolators must meet local standards before they can be legally marketed commercially and the electrical/electronic products fitted with them can be sold to customers. Typically, the first page of an isolator datasheet will list standards that the isolator has passed. The reinforced isolation level of digital isolators is mainly proposed by VDE and promoted by IEC as a global standard. NOVOSENSE is a leader of digital isolators in China and also the first semiconductor company to obtain the VDE enhanced isolation certification.  Under the current VDE standards, both basic and reinforced isolators have corresponding test standards and parameter specifications.  In the maximum surge voltage test, both basic and reinforced isolators are required to pass 50 bipolar surge impulses, and the final measured voltage must not exceed 1.3 times the maximum surge voltage in the datasheet, on top of which reinforced isolators are required to pass a surge voltage test of at least 10kV.  In applications, partial discharge phenomenon occurs when there are defects inside a device. which does not affect the insulation strength in short time. However, under the repeated impact of high voltage, the defect will eventually lead to the breakdown of the isolation barrier. Therefore, these defects need to be detected through non-destructive testing. Basic isolators need to pass the 1.5 times VIOSM surge test, while partial discharge testing of reinforced isolators needs to be conducted at 1.875 times VIOSM voltage.  According to the working life of chips at different temperatures and voltages, the working voltage of chips under the minimum rated life and failure rate during the target life can be fitted by Weibull distribution, and then VIORM and VIOSM can be obtained according to the requirements of the VDE correlation coefficients. It can also be seen from the table that reinforced isolators have a longer working life and a lower failure rate during their life.  After passing the above tests, isolators are deemed to have met the requirements for VDE certification.  To sum up, electrical isolation involves the working safety of devices and the personal safety of users, and is an indispensable part of electrical system design.
Key word:
Release time:2024-04-09 11:58 reading:708 Continue reading>>
ROHM Offers the Industry’s Largest* Library of LTspice® Models at Over 3,500 by Adding <span style='color:red'>SiC</span> and IGBTs
  ROHM has expanded the library of SPICE model lineup for LTspice® of its circuit simulator. LTspice® is also equipped with circuit diagram capture and waveform viewer functions that make it possible for designers to check and verify in advance whether the circuit operation has been achieved as designed. In addition to the existing lineup of bipolar transistors, diodes, and MOSFETs, ROHM has added SiC power devices and IGBTs that increases its number of LTspice® models to more than 3,500 for discretes (which can be downloaded from product pages). This brings the amount of coverage of LTspice® models on ROHM’s website to over 80% of all products - providing greater convenience to designers when using circuit simulators that incorporate discrete products, now including power devices.  In recent years, the increasing use of circuit simulation for circuit design has expanded the number of tools being utilized. Among these, LTspice® is an attractive option for a range of users, from students to even seasoned engineers at well-known companies. To support these and other users, ROHM has expanded its library of LTspice® models for discrete products.  Besides product pages, ROHM has added a Design Models page in October that allows simulation models to be downloaded directly. Documentation on how to add libraries and create symbols (schematic symbols) is also available to facilitate circuit design and simulation execution.  Going forward, ROHM will continue to contribute to solving circuit design issues by expanding the number of models compatible with various simulators while providing web tools such as ROHM Solution Simulator to meet growing customer needs.  TerminologySPICE Model  Data that expresses the operating characteristics of elements in mathematical equations for use in electronic circuit simulations. The SPICE model format may differ depending on the simulator (usually in the form of a text file).  Circuit Simulator  A software-based tool that makes it possible to design and verify electronic circuits without the need for actual electronic components.  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  The most commonly used structure in FETs.  IGBT (Insulated Gate Bipolar Transistor)  A power transistor that combines the high-speed switching characteristics of a MOSFET with the low conduction loss of a bipolar transistor.  ROHM Solution Simulator  A free electronic circuit simulation tool that runs on ROHM’s website. A wide variety of simulations are supported, from component selection and standalone device verification to system-level operational testing.
Key word:
Release time:2023-12-06 11:52 reading:1890 Continue reading>>
STMicroelectronics to Invest EUR 5 Billion in New <span style='color:red'>SiC</span> Wafer Fab
  STMicroelectronics, following its EUR 7.5 billion wafer fab project with GlobalFoundries in Crolles, France. is set to invest EUR 5 billion in building a new SiC super semiconductor wafer fab in Catania, Sicily, Italy. The fab in Italy will specialize in producing SiC chips, a pivotal technology for electric vehicles with substantial growth potential, according to French media L’Usine Nouvelle on November 26th,  STMicroelectronics competitively plans to transition to 8-inch wafers starting from 2024. The company will integrate Soitec’s SmartSiC technology to enhance efficiency and reduce carbon emissions. Simultaneously, STMicroelectronics aims to increase capacity, achieve internal manufacturing, and collaborate with Chinese firm Sanan Optoelectronics to raise SiC chip-related revenue from the expected USD 1.2 billion in 2023 to USD 5 billion by 2030.  On June 7th earlier this year, STMicroelectronics and Sanan Optoelectronics announced a joint venture to establish a new 8-inch SiC device fab in Chongqing, China, with an anticipated total investment of USD 3.2 billion.  To ensure the successful implementation of this extensive investment plan, Sanan Optoelectronics said to utilize its self-developed SiC substrate process to construct and operate a new 8-inch SiC substrate fab independently.  TrendForce: over 90% SiC market share by major global players  According to TrendForce, the SiC industry is currently dominated by 6-inch substrates, holding up to 80% market share, while 8-inch substrates only account for 1%. Transitioning to larger 8-inch substrates is a key strategy for further reducing SiC device costs.  8-inch SiC substrates offer significant cost advantages than 6-inch substrates. The industry’s major players in China, including SEMISiC, Jingsheng Mechanical & Electrical Co., Ltd. (JSG), Summit Crystal, Synlight Semiconductor, KY Semiconductor, and IV-SemiteC, are advancing the development of 8-inch SiC substrates. This shift from the approximately 45% of total production costs associated with substrates is expected to facilitate the broader adoption of SiC devices and create a positive cycle for major companies.  Not only Chinese companies but also international semiconductor giants like Infineon Technologies and Onsemi are actively vying for a share of the market. Infineon has already prepared the first batch of 8-inch wafer samples in its fab and plans to convert them into electronic samples soon, with mass production applications scheduled before 2030. International device companies like Onsemi and ROHM have also outlined development plans for 8-inch SiC wafers.  Currently, major companies hold over 90% of the market share, intensifying competition. A slowdown in progress could provide opportunities for followers. According to TrendForce, the market share of the top 5 SiC power semiconductor players in 2022 was dominated by STMicroelectronics (36.5%), Infineon (17.9%), Wolfspeed (16.3%), Onsemi (11.6%), and ROHM (8.1%), leaving the remaining companies with only 9.6%.
Release time:2023-11-30 10:53 reading:2450 Continue reading>>
Murata:What Are the Conditions for Increasing the Efficiency of Power Conversion and Motor Drives and for Expanding the Use of <span style='color:red'>SiC</span> and GaN Power Semiconductors?
  Governments around the world and companies in all industries and businesses are coming together to engage in efforts to achieve carbon neutrality (Fig. 1). Every conceivable multifaceted decarbonization measure is being taken. This includes, for instance, the utilization of renewable energies such as solar power, the electrification of equipment that was previously used by burning fossil fuels, and the reduction in power consumption of existing devices like home appliances, IT equipment, and industrial motors.  Various countries and regions have introduced carbon pricing mechanisms as systems to shift greenhouse gas emissions from business activities to costs. As a result, in addition to being meaningful as social contribution, carbonization initiatives now have a clear numerical impact on the financial statements that serve as a report card for corporate management.  Full Model Change in Semiconductor Materials for the First Time in 50 Years  There has been an increase in activity for decarbonization efforts. Against this background, there is a field in semiconductors where the pace of the movement in technological innovation is rapidly accelerating. This is the power semiconductor field.  Power semiconductors are semiconductor devices that play the role of managing, controlling, and converting the power necessary to operate electrical and electronic equipment. These devices are built into so-called power electronics circuits. These circuits include power circuits that stably supply drive power to home appliances and IT equipment, power conversion circuits to transmit and distribute power without waste, and circuits that drive motors with high efficiency at a torque and rotational speed that can be controlled freely. These power semiconductors, which are key devices to realize a sustainable society, have now started to undergo a once-in-50-years full model change.  Power semiconductors have various device structures including MOSFET*1, IGBT*2, and diodes. They are used differently according to the purpose. Nevertheless, although the structure differs, silicon (Si) has consistently been used for more than 50 years as the device material. That is because Si has good electrical characteristics and has the property of being easy to process into various device structures at the same time.  *1: A Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a type of Field Effect Transistor. It functions as an electrical switch. These transistors consist of three layers: a metal, oxide, and semiconductor. The current is turned on and off by applying a voltage to the electrode called a gate.  *2: An Insulated Gate Bipolar Transistor (IGBT) is a transistor with a structure that combines a MOSFET and bipolar transistor. It is characterized by combining the high-speed operation of the MOSFET with the high withstand voltage and low resistance of the bipolar transistor.  However, Si-based power semiconductors are no longer able to clear the high level of technical requirements to further reduce the power consumption of various electrical and electronic equipment. To overcome this situation, progress is underway on the utilization of new materials such as silicon carbide (SiC) and gallium nitride (GaN), which are more suitable than Si as materials for power semiconductors. SiC and GaN have multiple physical properties and characteristics suitable for power semiconductors. These include their dielectric breakdown field strength (affects the withstand voltage), mobility (affects the operating speed), and thermal conductivity (affects reliability). If we can develop a device that brings out those excellent characteristics, we can realize power semiconductors with even higher performance.  SiC-based MOSFETs and diodes have already been commercialized. They are being used in electric vehicle (EV) motor drive inverters, DC/AC converters in solar power generation power conditioners, and other equipment. GaN-based HEMT*3 have also already been commercialized. They are now being used in AC converters for ultra-small PCs, chargers for smartphones, and other equipment.  *3: A High Electron Mobility Transistor (HEMT) is a Field Effect Transistor that enables high-speed switching by joining semiconductors with differing properties to induce electrons with high mobility.  Evolution of Capacitors, Inductors, and Other Equipment Is Essential to Draw out the Potential of SiC and GaN  It is not possible to draw out the full outstanding potential of power semiconductors made based on new materials simply by replacing the Si-based devices in existing power electronics circuits. This is because the other semiconductor ICs, passive components, and even the control software that comprise power electronics circuits have been developed and selected on the assumption they would be used in Si-based power semiconductors. It is necessary to newly re-develop and re-select these peripheral components as well to effectively utilize new material-based power semiconductors.  Fig. 2: Example of an AC/DC converter circuit utilizing a GaN-based power semiconductor used in data center servers and other technologies  For example, numerous GaN HEMTs are being used in AC/DC converter circuits that have adopted GaN HEMTs recently introduced to lower power consumption in the power supplies of data center servers (Fig. 2). It is possible to improve the switching frequency (operating frequency) of power electronics circuits by utilizing the features of GaN HEMTs in that they enable high-speed switching at high voltages. The reactance value of capacitors embedded into circuits and inductors in reactor signal processing circuits can be lower in circuits with a high operating frequency. In general, low reactance components have a small size. Therefore, it is possible to downsize the circuit board and to improve the power density. Similarly, introducing SiC MOSFETs even in inverter circuits which drive EV motors and other components enables the downsizing of peripheral components and also allows the overall inverter circuits to be made smaller and more lightweight.  On the other hand, a high level of noise may arise from high-voltage and high-speed switching power supplies. There is a possibility that noise may then adversely affect the operation of the peripheral equipment. Power supplies comprising power semiconductors made with SiC and GaN switch at an even higher frequency. Therefore, the risk of noise occurring further increases. Accordingly, stricter noise suppression is required than when using existing power electronics circuits. At that time, there is a need to use noise suppression components designed to be applied to high-voltage, large-current, and high-frequency circuits rather than those for conventional circuits.  In addition, there is also a need for small transformers that operate at even higher frequencies for transformers that are particularly heavy components even among passive components. Low profile planar transformers and other components have already been developed and launched onto the market under the assumption that they will be used in SiC- and GaN-based power semiconductors.  Attention Focusing on the Evolution of Peripheral Components in Addition to Power Semiconductors  Various types of semiconductors, not limited to power semiconductors, have been made based on Si up to now. Therefore, many existing electronic components have been developed under the implicit assumption that they will be used by being combined with Si-based semiconductors. It may become necessary to develop new products to suit the new technical requirements instead of simply searching for even better products among existing components to maximize the effect of introducing power semiconductors made with new materials.  In general, Si-based power semiconductors tend to operate at lower speeds the greater the voltage and current they can handle (Fig. 3). That is the reason why there are not enough small capacitors and reactors that can handle high voltages and large currents. Moreover, there is a trend to simplify the heat dissipation system and to reduce the size, weight, and cost for SiC-based power semiconductors that can operate stably under high temperatures. In these cases, the passive components also need to have a guaranteed high reliability under a high-temperature environment.  The introduction of new materials in the power semiconductor field is a major move to update the electrical and electronic ecosystem that has been optimized to Si materials for more than 50 years. Therefore, we also want to pay a great deal of attention to the evolution of peripheral electronic components optimized for new materials.
Key word:
Release time:2023-11-22 14:42 reading:1706 Continue reading>>
Expanding production capacity for <span style='color:red'>SiC</span> power devices: ROHM completes acquisition of new production site
China's <span style='color:red'>SiC</span> capacity is expected to account for 50% of the world's share in 2024
  As reported by Taiwanese media, there’s a gradual uptick in TSMC’s capacity utilization lately, accompanied by a noticeable surge in orders from TSMC’s clients. Some segments of the market are showing signs of rekindled demand, hinting at a possible upswing in the semiconductor industry. Nevertheless, certain semiconductor manufacturing firms remain cautious in their industry outlook.  TSMC’s Capacity Utilization Rate on the Rise  Media’s report indicates that TSMC’s capacity utilization rate has gradually recovered. The 7/6nm utilization, which had dropped to 40% at one point, is now around 60% and could potentially reach 70% by the end of the year. Similarly, the 5/4nm utilization is at 75-80%, and the 3nm capacity, which increases seasonally, is approximately 80%.  Concurrently, TSMC is experiencing a significant uptick in orders from their clients, including tech giants like Apple, MediaTek, NVIDIA, AMD, Intel, Broadcom, Marvell, and STMicroelectronics. Furthermore, AI chip clients such as AMD’s subsidiary Xilinx, Amazon, Cisco, Google, Microsoft, and Tesla have all accepted TSMC’s plan for a price increase in 2024.  Taking Tesla as an example, they are building a supercomputer facility in Austin to accelerate the development of their autonomous driving system, expanding the computing power of Dojo. The core D1 of Dojo is produced using TSMC’s 7nm process and advanced packaging technology. Based on this, Tesla is deepening its collaboration with TSMC, and it’s expected that their order volume will increase from around 5,000 pieces this year to 10,000 pieces next year.  Amid the ongoing AI surge, NVIDIA is actively seeking additional production capacity. On October 19th, NVIDIA’s CEO, Jensen Huang, revealed in an interview that the global demand for AI chips remains robust. He has met with TSMC’s CEO, C.C. Wei, to discuss providing more capacity to serve customers. NVIDIA is in the planning stages for the next generation of chips designed for AI-based infrastructure and has also engaged in discussions with partners such as Quanta and ASUS to strategize collaboration.  Is the Semiconductor Industry on the Rebound?  During TSMC’s Q3 earnings call, C.C. Wei pointed out that, in addition to strong AI demand, there’s a rebound in demand for smartphones and personal computers. As for automotive electronics, benefiting from the continued growth of electric vehicles, the demand for next year is expected to be quite robust. Regarding when the semiconductor industry might hit bottom, Wei remarked that there are some early signs appearing in the PC and mobile phone sectors. However, it remains challenging to predict a strong resurgence as customers are still cautiously managing their inventories.  In response to industry concerns about smartphone growth, TSMC’s CFO, Wendell Huang, noted that smartphone growth is anticipated to remain lower than the company’s future growth rate. High-Performance Computing (HPC) is expected to be the most robust growth segment, making substantial contributions to growth in the coming years.  On the other hand, other semiconductor foundry companies, such as PSMC, have also shared their perspectives on the fourth quarter and future industry developments. Recently, PSMC’s President, Brian Shieh, pointed out that the supply chain’s inventory seems to have reached a reasonable level, with growing demand for mobile panel driver ICs, surveillance system CIS chips, and visibility extending beyond one quarter. Prices for special memory products have started to show an upward trend. Demand for Power Management ICs (PMIC) also displays signs of recovery, even though the trend isn’t as pronounced as that of driver ICs and CIS chips.  Regarding UMC, the company is scheduled to hold an earning call on 25th October. In their previous earnings call for the last quarter, UMC mentioned that due to ongoing adjustments in the supply chain’s inventory, the outlook for wafer demand remains uncertain. Although the industry glimpsed a modest recovery in the second quarter, the overall sentiment in the end-market remains subdued, and customers continue to maintain stringent inventory management practices.
Key word:
Release time:2023-10-25 11:35 reading:1397 Continue reading>>

Turn to

/ 4

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code