ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

发布时间:2024-06-19 14:57
作者:AMEYA360
来源:ROHM
阅读量:735

  ROHM has developed four models as part of the TRCDRIVE pack™ series with 2-in-1 SiC molded modules (two of 750V-rated: BSTxxxD08P4A1x4, two of 1,200V-rated: BSTxxxD12P4A1x1) optimized for xEV (electric vehicles) traction inverters. TRCDRIVE pack™ supports up to 300kW and features high power density and a unique terminal configuration - help solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

  As the electrification of cars rapidly advances towards achieving a decarbonized society, the development of electric powertrain systems that are more efficient, compact, and lightweight is currently progressing. However, for SiC power devices that are attracting attention as key components, achieving low loss in a small size has been a difficult challenge. ROHM solves these issues inside powertrains with its TRCDRIVE pack™.

  A trademark brand for ROHM SiC molded type modules developed specifically for traction inverter drive applications, TRCDRIVE pack™ reduces size by utilizing a unique structure that maximizes heat dissipation area. On top, ROHM’s 4th Generation SiC MOSFETs with low ON resistance are built in - resulting in an industry-leading power density 1.5 times higher than that of general SiC molded modules while greatly contributing to the miniaturization of inverters for xEVs.

  The modules are also equipped with control signal terminals using press fit pins enabling easy connection by simply pushing the gate driver board from the top, reducing installation time considerably. In addition, low inductance (5.7nH) is achieved by maximizing the current path and utilizing a two-layer bus-bar structure for the main wiring, contributing to lower losses during switching.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

  Despite developing modules, ROHM has established a mass production system similar to discrete products, making it possible to increase production capacity by 30 times compared to conventional SiC case-type modules. To obtain samples, please contact a sales representative or visit the contact page on ROHM’s website.

  Product LineupTRCDRIVE pack™ is scheduled to be launched by March 2025 with a lineup of 12 models in different package sizes (Small / Large) and mounting patterns (TIM: heat dissipation sheet / Ag sinter). In addition, ROHM is developing a 6-in-1 product with built-in heat sink that is expected to facilitate rapid traction inverter design and model rollout tailored to a variety of design specifications.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

  ☆: Under Development

  AQG 324 is a qualification standard for automotive power modules established by ECPE (European Center for Power Electronics).

  European automakers are required to comply with this standard when considering adoption.

  Application Examples・ Automotive traction inverters

  Sales InformationAvailability: June 2024 (OEM quantities)

  Pricing: $550/unit (samples, excluding tax)

  Comprehensive Support

      ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered, such as simulations and thermal designs that enable quick evaluation and adoption of TRCDRIVE pack™ products. Two evaluation kits are available as well, one for double-pulse testing and the other for 3-phase full bridge applications, enabling evaluation in similar conditions as practical inverter circuits.

  For details, please contact a sales representative or visit the contact page on ROHM’s website.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

  EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

  TerminologyTraction Inverter

  Traction motors in electric cars are driven by 3-phase AC power with a phase shift of 120°. Traction inverters convert direct current supplied from the battery into 3-phase alternating current.

  2-in-1

  To convert DC into 3-phase AC, one high-side and one low-side MOSFET are required per phase for switching. A 2-in-1 configuration combines both of these MOSFETs into a single module.

ROHM’s New TRCDRIVE pack™ with 2-in-1 SiC Molded Module: Significantly Reduces the Size of xEV Inverters

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM Develops an Ultra-Compact MOSFET Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
2025-07-08 17:04 阅读量:207
ROHM Introduces a New MOSFET for AI Servers with Industry-Leading* SOA Performance and Low ON-Resistance
  ROHM has released of a 100V power MOSFET - RY7P250BM - optimized for hot-swap circuits in 48V power systems used in AI servers and industrial power supplies requiring battery protection to the market.  As AI technology rapidly advances, data centers are facing unprecedented processing demands and server power consumption continues to increase annually. In particular, the growing use of generative AI and high-performance GPUs has created a need to simultaneously improve power efficiency while supporting higher currents. To address these challenges, the industry is shifting from 12V systems to more efficient 48V power architectures. Furthermore, in hot-swap circuits used to safely replace modules while servers remain powered on, MOSFETs are required that offer both wide SOA (Safe Operating Area) and low ON-resistance to protect against inrush current and overloads.  The RY7P250BM delivers these critical characteristics in a compact 8080-size package, helping to reduce power loss and cooling requirements in data centers while improving overall server reliability and energy efficiency. As the demand for 8080-size MOSFETs grows, this new product provides a drop-in replacement for existing designs. Notably, the RY7P250BM achieves wide SOA (VDS=48V, Pw=1ms/10ms) ideal for hot-swap operation. Power loss and heat generation are also minimized with an industry-leading low ON-resistance of 1.86mΩ (VGS=10V, ID=50A, Tj=25°C), approximately 18% lower than the typical 2.28mΩ of existing wide SOA 100V MOSFETs in the same size.  Wide SOA tolerance is essential in hot-swap circuits, especially those in AI servers that experience large inrush currents. The RY7P250BM meets this demand, achieving 16A at 10ms and 50A at 1ms, enabling support for high-load conditions conventional MOSFETs struggle to handle.  ROHM’s new product has also been certified as a recommended component by leading global cloud platform provider, where it is expected to gain widespread adoption in next-generation AI servers. Especially in server applications where reliability and energy efficiency are mission-critical, the combination of wide SOA and low RDS(on) has been highly evaluated for cloud infrastructure.  Going forward, ROHM will continue to expand its lineup of 48V-compatible power solutions for servers and industrial equipment, contributing to the development of sustainable ICT infrastructure and greater energy savings through high-efficiency, high-reliability products.  Application Examples  • 48V AI server systems and power supply hot-swap circuits in data centers  • 48V industrial equipment power systems (i.e. forklifts, power tools, robots, fan motors)  • Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  • UPS and emergency power systems (battery backup units)  Online Sales InformationSales Launch Date: May 2025  Pricing: $5.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  Applicable Part No: RY7P250BM  EcoMOS™ BrandEcoMOS™ is ROHM's brand of silicon MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  TerminologyHot-Swap Circuit  A circuit that enables components to be inserted or removed while the system remains powered on.  It typically consists of MOSFETs, protection elements, and connectors, and is responsible for suppressing inrush current and protecting against overcurrent conditions, ensuring stable operation of the system and connected components.  Power MOSFET  A MOSFET designed for power conversion and switching applications. N-channel MOSFETs are the dominant type, turning on when a positive voltage is applied to the gate relative to the source. They offer lower ON-resistance and higher efficiency than P-channel variants. Due to their low conduction loss and high-speed switching performance, power MOSFETs are commonly used in power supplies, motor drives, and inverter circuits.  SOA (Safe Operating Area)  The defined range of voltage and current in which a device can operate reliably without risk of failure. Operating outside this boundary may result in thermal runaway or permanent damage. SOA is especially critical in applications exposed to inrush currents or overcurrent conditions.  Low ON-resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) reduces power loss during operation.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered on. Proper control of this current reduces stress on power circuit components, helping to prevent device damage and stabilize the system.
2025-07-03 14:52 阅读量:217
ROHM's SiC MOSFET Adopted for Mass Production in Toyota's New BEV
  ~Integration in traction inverters extends the cruising range and improves performance~  The power module equipped with ROHM Co., Ltd.'s 4th generation SiC MOSFET bare chip has been adopted in the traction inverter of Toyota Motor Corporation's (hereinafter "Toyota") new crossover BEV "bZ5" for the Chinese market.  The "bZ5" is a crossover-type BEV jointly developed by Toyota, BYD TOYOTA EV TECHNOLOGY Co., Ltd. (hereinafter "BTET"), FAW Toyota Motor Co., Ltd. (hereinafter "FAW Toyota"), etc., and was launched by FAW Toyota in June 2025.  The power module adopted this time has started mass production shipments from HAIMOSIC (SHANGHAI) Co., Ltd., a joint venture between ROHM and Zhenghai Group. ROHM's power solutions centered on SiC MOSFETs contribute to the extended range and enhanced performance of the new BEV.  ROHM aims to complete the construction of the production line for the next-generation 5th generation SiC MOSFET by 2025, and is also accelerating the market introduction plans for the 6th and 7th generations, focusing on the development of SiC power devices. ROHM will continue to work on improving device performance and production efficiency, and strengthen the system to provide SiC in various forms such as bare chips, discrete components, and modules, promoting the spread of SiC and contributing to the creation of a sustainable mobility society.  About the "bZ5"  The "bZ5" is a crossover BEV jointly developed by Toyota, BTET, FAW Toyota, etc., with the concept of "Reboot." It features active and iconic styling and is designed to provide a personal space for young users known as Generation Z. The driving range is 550 km for the lower grade and 630 km (CLTC mode) for the higher grade. Reservations began on April 22, 2025, the day before the opening of the 2025 Shanghai Motor Show, attracting significant attention.  About HAIMOSIC (SHANGHAI) Co., Ltd.  HAIMOSIC (SHANGHAI) CO.,LTD. is a Joint venture initiated by Zhenghai Group Co., Ltd. (China) and ROHM Co., Ltd. (Japan). HAIMOSIC is mainly engaged in the R&D, design, manufacturing and sales of the silicon carbide power module, with an estimated annual capacity of 360,000 pieces/year. The total investment of the project is 450 million RMB and the registered capital is 250 million RMB. For more details, please visit HAIMOSIC's website: http://www.haimosic.com/
2025-06-23 14:11 阅读量:302
New High Accuracy Current Sense Amps Compatible with Both Negative and High Voltages
  ROHM has developed a new lineup of high accuracy current sense amps – the BD1423xFVJ-C and the BD1422xG-C. They are qualified under the AEC-Q100 automotive reliability standard. The BD1423xFVJ-C series, offered in the TSSOP-B8J package, supports input voltages up to +80V, making it ideal for high-voltage environments such as 48V DC-DC converters, redundant power supplies, auxiliary batteries, and electric compressors. The series includes three models with different gain settings: BD14230FVJ-C, BD14231FVJ-C and BD14232FVJ-C.  For lower voltage use cases, the BD1422xG-C, available in the compact SSOP6 package, supports input voltages up to +40V. This makes them suitable for automotive applications requiring space-saving designs, such as current monitoring and protection (overcurrent) in 5V/12V power supply networks used in body and drivetrain domains. Like its high-voltage counterpart, this series also consists of three different gain options: BD14220G-C, BD14221G-C and BD14222G-C.  In recent years, alongside conventional 5V/12V power supplies, the automotive market has seen a growing adoption of 48V systems fueled by the rising popularity of electric vehicles. Furthermore, as vehicle functionality becomes more advanced, the need for precise monitoring and control across a wide range of applications continues to increase, placing a greater importance on high-accuracy current sensing.  A current sense amp indirectly measures the current flowing through a circuit by amplifying the miniscule voltage drop across a shunt resistor. The amplified signal is then sent to an ADC or comparator for system control and monitoring. ROHM’s automotive-grade current sense amps meet market demands by leveraging proven analog expertise. This enables high-accuracy current sensing with compatibility for both negative and high voltage environments, contributing to improved safety and reliability in automotive applications, particularly electric vehicles.  These new products achieve greater space efficiency by integrating most of current sensing circuitry, typically comprised of an operational amplifier and discrete components, int o a single package. As a result, current detection is possible by simply connecting a shunt resistor. The devices also feature a two-stage amplifier configuration, consisting of a chopper amplifier at the input and an auto-zero amplifier at the output. Internal resistor matching for gain setting ensures stable, accurate current sensing (±1%) while minimizing the effects of temperature variations.  Furthermore, current detection accuracy is maintained even when an external RC filter circuit added for noise suppression, significantly reducing design complexity and development time. Additional features include -14V negative voltage tolerance that supports back electromotive force, reverse connection, and negative voltage input.  Going forward, ROHM will continue to deliver optimal solutions that contribute to higher precision and enhanced reliability in automotive equipment.  Application Examples  • BD1423xFVJ-C (for 48V systems): Redundant power supplies, auxiliary batteries, DC-DC converters, and electric compressors, and the like  • BD1422xG-C (for 5V/12V systems): Body DCUs (Domain Control Units) / ECUs (Electronic Control Units), etc.  Terminology  AEC-Q100 Automotive Reliability Standard  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Q100 is a standard that specifically applies to integrated circuits (ICs).  Shunt Resistor  A resistor connected in series in the current path to detect the current in the circuit by measuring the potential difference across it.  Chopper Amp  An amp circuit designed to minimize signal offset and noise, primarily used for accurately amplifying low-frequency and weak DC signals.  Auto-Zero Amp  An amp that automatically compensates for offset voltage (unwanted noise and errors) by continuously sampling and correcting it during operation. This ensures high signal accuracy, making it ideal for applications that demand ultra-precise measurement and signal processing.
2025-06-13 16:56 阅读量:339
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码