A new choice for high-accuracy, highly compatible current sensing: NOVOSENSE launches the NSCSA21x-Q series high-precision current sense amplifiers
  NOVOSENSE has launched the NSCSA21x-Q series high-precision current sense amplifiers, offering a –2V to 28V common-mode input range, ultra-low ±5μV offset voltage, 130dB CMRR, and 200kHz bandwidth. Designed to meet the needs of new energy vehicles, server power supplies, telecom power systems, and energy storage, the NSCSA21x-Q series delivers exceptional accuracy and system stability in demanding environments.  Addressing Key Challenges in Modern Power and Automotive Systems  As automotive electrification and industrial intelligence advance, current sensing accuracy and system stability have become critical to overall performance. Traditional current sensors often face limitations in low-voltage detection, reverse connection protection, and dynamic response, impacting system reliability and efficiency. The NSCSA21x-Q series directly targets these pain points, overcoming three major challenges in precision current detection:  (1) High-Precision Motor Phase Current Sampling  Supports bidirectional current sensing in H-bridge structures. Combined with FOC algorithms, it enables ±0.5° electrical angle control for precise motor performance.  (2) Suppression of Parasitic Inductance Interference  In low-side sensing, the NSCSA21x-Q effectively mitigates “ground bounce” effects through PWM rejection, maintaining high accuracy even with small current signals. With a 130dB CMRR and only ±5μV input offset, it ensures signal integrity under severe transient conditions.  (3) Reverse Battery Protection  Withstands up to –28V reverse voltage, safeguarding the system against battery misconnection and simplifying protection circuit design.  Robust Performance Across All Operating Conditions  Breaking conventional design limits, the NSCSA21x-Q series supports a wide –2V to 28V common-mode range with built-in PWM suppression and chip-level reverse-voltage tolerance. Even under –28V reverse common-mode stress, the device quickly resumes normal operation. In rigorous transient tests (–2V to 12V step change), it achieves a <5μs recovery time and <50mV output disturbance, making it ideal for high-accuracy current detection in motor drives and solenoid control under PWM switching environments.  Precision and Stability Across Temperature Extremes  Featuring a ±5μV (typical) input offset voltage and ±0.5% maximum gain error, the NSCSA21x-Q maintains outstanding accuracy over a full –40°C to 125°C temperature range. With a temperature drift as low as 0.05μV/°C, it ensures stable measurements in harsh automotive and industrial conditions.Input Offset Voltage Distribution of NSCSA21x-Q SeriesCommon-Mode Rejection Ratio (CMRR) Distribution of NSCSA21x-Q Series  Fast Dynamic Response and Strong Transient Protection  With a 200kHz bandwidth (50V/V gain) and a 2V/μs slew rate, the NSCSA21x-Q supports fast current variation monitoring and real-time protection. Compared to mainstream alternatives, it achieves up to 3× faster transient response, meeting the needs of high-speed applications such as motor control and power protection.  Flexible Configurations with Automotive-Grade Reliability  The NSCSA21x-Q series offers four fixed gain options (50V/V, 75V/V, 100V/V, and 200V/V), covering both industrial and automotive versions. Packaged in an ultra-compact SC70-6 (2mm × 1.25mm) footprint, it's pin-compatible with industry standards, enabling smaller system size and higher design efficiency.Four Fixed-Gain Versions of the NSCSA21x-Q Series  The NSCSA21x-Q series is AEC-Q100 Grade 1 qualified, supporting –40°C to +125°C operation and ensuring long-term reliability in automotive environments.
Key word:
Release time:2026-01-15 17:20 reading:261 Continue reading>>
NOVOSENSE launches automotive- and industrial-grade NSCSA240-Q series current sense amplifiers to address PWM transient interference challenges
  NOVOSENSE announced the launch of its new bidirectional current sense amplifier series, NSCSA240-Q, covering both industrial and automotive versions, designed for high-voltage PWM systems in vehicles and industrial equipments. The NSCSA240-Q series integrates enhanced PWM rejection technology, supporting bidirectional current sensing with exceptional transient immunity, automotive-grade precision, and flexible configurability. Featuring an ultra-wide input common-mode range from –4V to 80V, a typical input offset voltage of ±5μV, and a 135dB DC Common-Mode Rejection Ratio (CMRR). This series effectively tackles the challenge of high-frequency transient interference in PWM systems, providing a highly reliable current monitoring solution for automotive electronic power steering (EPS), motor drive, industrial automation and other applications. The NSCSA240-Q series meets the AEC-Q100 automotive reliability standard.  Superior Transient Immunity: Reliable Performance in High-Voltage PWM Environments  In PWM systems, rapid switching can cause severe common-mode voltage fluctuations that distort output signals in conventional amplifiers. The NSCSA240-Q series achieves an AC CMRR of 90dB at 50kHz, effectively suppressing ΔV/Δt transients. Its proprietary transient suppression design reduces output disturbances by up to 80%, achieving a recovery time of less than 10μs under 80V common-mode voltage transients. With a bandwidth ranging from 450kHz to 600kHz (gain-dependent), it supports both high-speed overcurrent protection and accurate low-frequency PWM signal capture—ensuring stable, low-noise signal performance for EPS, motor drive and industrial motor control systems. The wide –4V to 80V input common-mode range offers broad dynamic capability and robust tolerance across 12V, 24V, and 48V vehicle power architectures. Furthermore, ±2000V ESD protection (HBM/CDM) enhances resistance to external electrical disturbances, ensuring overall system reliability.NSCSA240-Q Series Application Diagram  Automotive-Grade Precision: ±5μV Offset and ±0.1% Accuracy Across –40°C to 125°C  Designed to meet the increasingly stringent current measurement requirements of automotive electronics, the NSCSA240-Q series delivers exceptional measurement stability. It features a typical input offset voltage of only ±5μV (maximum ±25μV) and achieves ±0.1% accuracy over a wide temperature range (–40°C to 125°C). With a typical gain error of 0.05%, it ensures reliable and consistent current monitoring even under harsh conditions. Fully qualified to the AEC-Q100 automotive standard, the series guarantees long-term reliability in demanding in-vehicle environments.  Flexible Integration: Multiple Gain and Package Options for Design Optimization  As automotive systems trend toward miniaturization and integration, the NSCSA240-Q series is engineered for flexible and space-efficient design. It offers four fixed gain options—20V/V, 50V/V, 100V/V, and 200V/V—supporting shunt resistors ranging from 10mΩ to 0.1mΩ for flexible current detection. The series is available in two compact packages: SOIC-8 (4.9mm × 3.91mm) and TSSOP-8 (3mm × 4.4mm), allowing easy integration into space-constrained motor controller PCBs and helping designers optimize system layouts within limited board area.NSCSA240-Q Series Package
Key word:
Release time:2026-01-12 13:52 reading:316 Continue reading>>
A Comprehensive Guide to Choosing Between LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)
  Selecting the appropriate voltage regulator is critical for the stability and efficiency of various circuit systems. Among the numerous types available, LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators) are two common voltage stabilizers. This article will thoroughly explore the selection methods for LDO and DC-DC regulators, covering concepts, operating principles, characteristics, and application scenarios.  A Comprehensive Guide to Selecting LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)  1. LDO (Low Dropout Linear Regulator)  1.1 Concept  LDO stands for Low Dropout Regulator, typically used to regulate high input voltages to lower output voltages. It achieves stable output voltage by adjusting the conduction resistance of its internal transistor.  1.2 Working Principle  When the input voltage exceeds the output voltage, the internal transistor enters an amplified state. It dissipates excess power to regulate the output voltage, maintaining it at the set value.  1.3 Characteristics  Simple design, low noise, relatively low cost, suitable for applications requiring high precision. However, it has low efficiency and significant thermal distortion.  2. DC-DC (Switching Regulator)  2.1 Concept  DC-DC refers to a switching regulator (DC-to-DC Converter) that converts input voltage to the desired output voltage by switching the state of a switching element (e.g., MOSFET).  2.2 Working Principle  DC-DC operates by periodically turning the switching element on and off to control the output voltage magnitude, while a filter removes high-frequency noise from the output waveform.  2.3 Features  High efficiency, capable of delivering substantial output power, suitable for applications requiring large voltage drops or enhanced efficiency, but involves complex design and relatively higher cost.  3. How to Select?  3.1 Output Voltage Range  For lower output voltages, an LDO is more suitable; whereas for large voltage drops or higher output power requirements, a DC-DC converter is more appropriate.  3.2 Efficiency Requirements  When prioritizing power efficiency, especially under large voltage drops, DC-DC converters typically outperform LDOs.  3.3 System Complexity  LDOs may be preferable for simplified design and cost reduction; DC-DC converters are necessary when higher output power and efficiency are required.  3.4 Ripple and Noise  In applications sensitive to output ripple and noise, LDOs are generally more suitable than DC-DC converters because they produce lower ripple and noise.  4. Application Scenarios  4.1 LDO Application Scenarios  Applications requiring high output voltage accuracy, low output current, and strict ripple/noise specifications.  4.2 DC-DC Applications  Applications requiring large voltage drops, high output power, and high efficiency, such as mobile devices, power amplifiers, and communication equipment.  4.3 Comprehensive Considerations  In practical applications, the optimal regulator type must be selected by comprehensively evaluating system power consumption, output load conditions, stability requirements, and cost factors.  As common voltage regulators, LDOs and DC-DC converters play vital roles in electronic product design. Selecting the appropriate regulator type depends on specific application requirements, including output voltage range, efficiency demands, system complexity, and ripple noise. During the selection process, a comprehensive evaluation of all factors is necessary to ensure the circuit system operates stably, reliably, and efficiently.
Key word:
Release time:2025-12-31 17:31 reading:323 Continue reading>>
GigaDevice Achieves ISO/SAE 21434 Certification and ASPICE CL2 Assessment, Strengthening Automotive Cybersecurity Together with TÜV Rheinland
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has been awarded the ISO/SAE 21434 Road Vehicles Cybersecurity Engineering certification by TÜV Rheinland. In parallel, the MCAL (Microcontroller Abstraction Layer) software of GD32A7 automotive-grade MCUs successfully passed the ASPICE Capability Level 2 (CL2) assessment. These milestones demonstrate GigaDevice’s alignment with internationally recognized practices in automotive cybersecurity and software project management, reinforcing its competitiveness in the global automotive electronics market.  ISO/SAE 21434, jointly issued by ISO and SAE, defines a comprehensive cybersecurity risk-management framework that spans the entire vehicle lifecycle. As vehicles become increasingly connected and intelligent, cybersecurity has emerged as a foundational requirement for protecting user privacy and ensuring a secure, reliable mobility experience. Achieving this certification confirms that GigaDevice has established an end-to-end cybersecurity governance framework across the design, development, and mass-production phases of its automotive product portfolio—helping customers streamline compliance, accelerate program approvals, and enhance market competitiveness.  The ASPICE assessment model, governed by the German Association of the Automotive Industry (VDA), is one of the industry's most important standards for evaluating software development capability. ASPICE CL2 requires companies to adopt structured processes for project planning, monitoring, and traceability. Developed in full compliance with AUTOSAR, the GD32A7 MCAL software supports major compilers and debugging toolchains while meeting both functional-safety and cybersecurity requirements. Passing ASPICE CL2 affirms the maturity of GigaDevice’s software-development lifecycle and underscores its commitment to high-reliability automotive solutions.  Driven by new infrastructure such as 5G, AI, and the IoT, vehicles are evolving into interactive intelligent terminals. Automotive-grade chips play a central role in this transition, enabling continuous advancements in vehicle intelligence. Designed for next-generation automotive platforms, the GD32A7 series leverages the Arm® Cortex®-M7 core and offers multiple configurations, including single-core, multi-core, and lockstep architectures. With a maximum frequency of 320MHz and up to 1300 DMIPS of compute performance, the devices support 2.97V–5.5V operation and deliver stable performance across a –40°C to +125°C temperature range. The series are well suited for applications such as body electronics, intelligent cockpit systems, chassis control, and powertrain subsystems.  The GD32A71x/GD32A72x families comply with ISO 26262 ASIL B, while the GD32A74x series supports ASIL D requirements. All product lines integrate a Hardware Security Module (HSM) with TRNG, AES, HASH, ECC/RSA, and Chinese SM2/SM3/SM4 cryptographic engines, meeting the Evita Full information-security architecture and providing robust data protection for in-vehicle systems.  Wenxiong Li, Vice President of GigaDevice and General Manager of the Automotive BU, stated: “Achieving ISO/SAE 21434 certification and ASPICE CL2 capability assessment marks an important milestone in elevating our automotive-grade MCU development to higher standards of security and process maturity. GigaDevice will continue to expand the GD32 MCU automotive portfolio and deepen our collaboration with TÜV Rheinland to deliver higher-performance, higher-security products and a more complete ecosystem for our customers.”  Bin Zhao, General Manager of Industrial Services and Cybersecurity at TÜV Rheinland Greater China commented: “GigaDevice has demonstrated exceptional execution and technical competence in establishing automotive cybersecurity systems and software development processes. Obtaining ISO/SAE 21434 certification and ASPICE CL2 capability assessment provides strong validation for its entry into global automotive supply chains. We look forward to further collaboration to advance innovation and deployment in automotive electronics safety.”  GigaDevice and TÜV Rheinland also announced the establishment of a strategic partnership focused on functional safety, cybersecurity, personnel training, and certification services. The collaboration aims to integrate both parties' strengths to enhance competitiveness across automotive, industrial, and emerging markets—delivering safer and more reliable products and solutions to customers worldwide.
Key word:
Release time:2025-12-26 16:25 reading:390 Continue reading>>
Murata Launches World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate, Achieving Dk below 2.0, Contributing to 6G Realization
  Murata Manufacturing Co., Ltd announces the World’s First LCP (liquid crystal polymer) flexible substrate with an Inner Cavity structure, ULTICIRC, and has already begun mass production*. Murata’s proprietary design incorporates an Inner Cavity within the substrate to achieve a dielectric constant (Dk) below 2.0, dramatically reducing transmission loss.Cross-Section Image  With 6G expected to leverage the FR3 (Frequency Range 3) band—roughly 7–24 GHz—substrates with minimal transmission loss are essential to enable high-speed, high-capacity communications at high frequencies. At the same time, demand is growing for thin, space-saving flexible substrates that support free-form mechanical design to meet the ongoing miniaturization of smartphones and communication equipment. Murata has provided LCP flexible substrates with excellent high-frequency characteristics, featuring a proprietary high-performance resin that eliminates spring-back and an adhesive-free, one-shot press multilayer lamination process; building on this expertise for 6G readiness, Murata has developed and launched ULTICIRC. Conventional flexible substrates faced the challenge that making them thinner resulted in increased transmission loss, but this product incorporates an Inner Cavity structure within the substrate, achieving a dielectric constant (Dk) below 2.0, which is significantly lower than Murata's conventional products, enabling both thin profiles and ultra-low transmission loss simultaneously.  Furthermore, thanks to an adhesive-free proprietary manufacturing method and the excellent barrier properties of LCP, the Inner Cavity structure maintains high moisture resistance.  For inquiries regarding this product, please contact us.
Key word:
Release time:2025-12-18 16:00 reading:477 Continue reading>>
Renesas Releases its First Wi-Fi 6 and Wi-Fi/Bluetooth LE Combo MCUs for IoT and Connected Home Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA6W1 dual-band Wi-Fi 6 wireless microcontroller (MCU), along with the RA6W2 MCU that integrates both Wi-Fi 6 and Bluetooth® Low Energy (LE) technologies. These connectivity devices address the growing demand for always-connected, ultra-low-power IoT devices across smart home, industrial, medical and consumer applications. Renesas also launched fully integrated modules that accelerate development with built-in antennas, wireless protocol stacks, and pre-validated RF connectivity.  Ultra Low Power Operation for Always-Connected IoT  Today’s IoT devices must stay always connected to improve application usability and response time, while maintaining the lowest possible power consumption to extend battery life or to meet eco-friendly regulations. Renesas’ Wi-Fi 6 MCUs offer features such as Target Wake Time (TWT), which enables extended sleep times without compromising cloud connectivity and power consumption. This is critical for applications such as environmental sensors, smart locks, thermostats, surveillance cameras, and medical monitors, where real-time control, remote diagnostics and over-the-air (OTA) updates are critical.  Additionally, both MCU Groups are optimized for ultra-low power consumption, consuming as little as 200nA to 4µA in sleep mode and under 50µA in Delivery Traffic Indication Message (DTIM10). With the “sleepy connected” Wi-Fi functionality, these devices stay connected with minimal power draw, meeting the growing requirements of modern energy efficiency standards.  Scalable RA MCU Architecture with Full Software Support  Built on the Arm® Cortex®-M33 CPU core running at 160 MHz with 704 KB of SRAM, the MCUs enable engineers to develop cost-effective, standalone IoT applications using integrated communication interfaces and analog peripherals, without the need for an external MCU. Customers also have the option to design with a host MCU that can be selected from Renesas’ broad RA MCU offerings and attach the RA6W1 and RA6W2 as connectivity and networking add-ons. Both RA6W1 and RA6W2 are designed to work with Renesas’ Flexible Software Package (FSP) and e² studio integrated development environment. As the first Wi-Fi MCUs in the RA portfolio, they offer a scalable platform that supports seamless software reuse across the RA family.  High Performance Dual-Band Wi-Fi 6 with 2.4 and 5 GHz Connectivity  With support for both 2.4 and 5 GHz bands, both MCUs deliver superior throughput, low latency, and reduced power consumption. The dual-band capability dynamically selects the most suitable band based on real-time conditions, ensuring a stable and high-speed connection even in environments with many connected devices. Advanced features such as Orthogonal Frequency Division Multiple Access (OFDMA) and TWT boost performance and energy efficiency, making these solutions well suited for dense urban environments and battery-powered devices.  Robust Security and Matter-Certified Interoperability  The RA6W1 and RA6W2 devices offer advanced built-in security including AES-256 encryption, secure boot, key storage, TRNG, and XiP with on-the-fly decryption to keep data safe from unauthorized access. The RA6W1 is RED certified (Radio Equipment Directive), which makes it easier for developers to future-proof their design. Additionally, the device is Matter ready and certified with Matter 1.4, and is compatible across smart home platforms. Renesas supports both MCUs and modules through the Renesas Product Longevity Program, offering 15-year support for MCUs and 10 years for modules.  “We’re offering our customers the flexibility to design with a standalone Wi-Fi device, a Wi-Fi/Bluetooth LE combo, or fully integrated modules depending on their needs,” said Chandana Pairla, VP of the Connectivity Solutions Division at Renesas. “These wireless solutions save power, simplify system design and lower BOM cost. With hosted or hostless implementation options, customers can confidently begin their wireless onboarding journey and seamlessly integrate into next-generation connected systems.”  Two types of modules, Wi-Fi 6 (RRQ61001) and Wi-Fi/Bluetooth LE combo (RRQ61051) simplify design by integrating certified RF components and wireless connectivity stacks that comply with global network standards. Supported RF certification standards include the U.S. (FCC), Canada (IC), Brazil (ANATEL), Europe (CE/RED), UK (UKCA), Japan (Telec), South Korea (KCC), China (SRRC) and Taiwan (NCC). By integrating connectivity at the system level, the modules significantly reduce design effort and accelerate time to market.  Winning Combinations  Renesas offers “Advanced Low-Power Wireless HMI for Household Appliances” and “Automatic Pet Door & Tracking System” that combine the new Wi-Fi 6 MCU and Wi-Fi/Bluetooth LE MCU with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RA6W1 MCU is now available in FCQFN and WLCSP packages, along with the RRQ61001 and RRQ61051 modules. The RA6W2 MCU (BGA package) will be available in Q1/2026. The devices are supported by the FSP, e² studio, evaluation kit and software development kit (SDK) that include flash memory, PCB trace antennas, connectors and embedded power profiler for power consumption analysis. Renesas also offers comprehensive software tools to aid system application development, as well as the Production Line Tool (PLT) for production testing of wireless MCUs.
Key word:
Release time:2025-12-12 16:28 reading:654 Continue reading>>
ROHM launches wide SOA MOSFET for AI servers in compact 5×6mm package
  ROHM has developed the 100V power MOSFET - RS7P200BM - achieving industry-leading SOA in a 5060-size (5.0mm × 6.0mm) package. This product is ideal for hot-swap circuits in AI servers using 48V power supplies as well as for industrial power supplies requiring battery protection.  The rapid evolution and widespread adoption of AI technologies have increased the demand for stable operation and improved power efficiency in servers equipped with generative AI and high-performance GPUs. Particularly in hot-swap circuits, power MOSFETs with wide SOA are essential to handle inrush current and overload conditions, ensuring stable operation. Furthermore, within data centers and AI servers, the transition towards 48V power supplies, which offer superior power conversion efficiency, is progressing against a backdrop of energy conservation. This necessitates the development of high-voltage, high-efficiency power supply circuits capable of meeting these demands.  Therefore, ROHM has expanded its line-up of 100V power MOSFETs ideal for hot-swap circuits in AI servers to meet market demand. The new RS7P200BM adopts a compact DFN5060-8S (5060 size) package, enabling even higher density mounting compared to the AI server power MOSFET ‘RY7P250BM’ in the DFN8080-8S (8.0mm × 8.0mm size) package, which ROHM has released in May 2025.  The new product achieves a low on-resistance (RDS(on)) of 4.0mΩ (conditions: VGS=10V, ID=50A, Ta=25°C) while maintaining wide SOA of 7.5A at a pulse width of 10ms and 25A at 1ms under operating conditions of VDS=48V. This balance of low on-resistance and wide SOA, typically a trade-off relationship, helps suppress heat generation during operation, thereby improving server power supply efficiency, reducing cooling load, and lowering electricity costs.  Mass production of the new product began in September 2025 (sample price: $5.5/unit, excluding tax).  ROHM will continue to expand its product lineup for 48V power supplies, which are increasingly adopted in applications such as AI servers. By providing highly efficient and reliable solutions, we will contribute to reducing power loss and cooling loads in data centers, as well as enhancing the high reliability and energy efficiency of server systems.  Application Examples  •48V system AI servers and data center power hot-swap circuits  •48V system industrial power supplies (forklifts, power tools, robots, fan motors, etc.)  •Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  •UPS, emergency power systems (battery backup units)  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector. Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  ・EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  SOA(Safe Operating Area)  The voltage and current range within which a device can operate safely without damage. Operation beyond this safe operating area may cause thermal runaway or damage; therefore, consideration of the SOA is essential, particularly in applications where inrush current or overcurrent may occur.  Hot-swap circuit  The complete circuitry supports the hot-swap function, which enables the removal or insertion of components while the device's power supply remains active. Comprising MOSFETs, protective elements, and connectors, it suppresses inrush currents occurring during component insertion and provides overcurrent protection, thereby ensuring the safe operation of the system and connected components.  Inrush Current  The high current exceeds the rated current value that flows momentarily when switching on electronic equipment. Controlling this prevents damage to devices and stabilizes the system by reducing the load on components within the power supply circuit.  On-resistance(RDS(on))  The resistance value between the drain and source terminals when the MOSFET is in operation (on). The lower the value, the less power loss occurs during operation.
Key word:
Release time:2025-11-28 17:28 reading:557 Continue reading>>
Now Standard in Siemens’ Flotherm™! ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors
  ROHM has expanded its lineup of EROM (Embeddable BCI-ROM) models for shunt resistors and has made them available on ROHM’s website. In addition, these models are now standard in Siemens’ electronic thermal design software, Simcenter™ Flotherm™*.  ROHM’s shunt resistors are widely used in automotive and industrial equipment applications, where their high-accuracy current detection and superior reliability are highly valued. We have added the PMR series to the EROM lineup, alongside the previously available PSR series.  The EROM models achieve high accuracy with a measurement deviation within ±5% for both surface temperature (ΔT) and thermal resistance, enabling thermal analysis that closely reflects actual operating conditions. This contributes to improved simulation accuracy in the thermal design phase and enhances overall development efficiency.  Furthermore, by standard implementation in Simcenter™ Flotherm™, these models make it easier for component manufacturers and set manufacturers to share thermal analysis data. This allows for highly accurate and efficient simulations while maintaining the confidentiality of proprietary information.  Going forward, ROHM will continue to enhance the support for customers’ design and development activities through both its high-performance components and advanced simulation models.  *Standard in Simcenter™ Flotherm™ 2510 and later.  Terminology  EROM (Embeddable BCI-ROM)  A reduced-order model that can be used within Simcenter™ Flotherm™ to perform thermal simulations. It allows sharing while keeping internal component structures (confidential design data) hidden, enabling fast and highly accurate analysis.  Simcenter™ Flotherm™  A CFD (Computational Fluid Dynamics) simulator developed by Siemens, specialized in thermal and cooling design for electronic devices. It enables fast and accurate thermal analysis from the early design stage through validation, supporting exceptionally reliable thermal design.  Simcenter™ Flotherm™ is a registered trademark of Siemens.
Key word:
Release time:2025-11-21 16:50 reading:473 Continue reading>>
Renesas’ Industry-First Gen6 DDR5 Registered Clock Driver Sets Performance Benchmark by Delivering 9600 MT/s
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first sixth-generation Registered Clock Driver (RCD) for DDR5 Registered Dual In-line Memory Modules (RDIMMs). The new RCD is the first to achieve a data rate of 9600 Mega Transfers Per Second (MT/s), surpassing the industry standard. This breakthrough marks a significant leap from the 8800 MT/s performance of Renesas’ Gen5 RCD, setting a new standard for memory interface performance in data center servers.  Key Features of Renesas’ Gen6 DDR5 RCD  10% Bandwidth Increase over Renesas’ Gen5 RCD (9600 MT/s versus 8800 MT/s)  Backward Compatibility with Gen5 Platforms: Provides seamless upgrade path  Enhanced Signal Integrity and Power Efficiency: Enables AI, HPC, and LLM workloads  Expanded Decision Feedback Equalization Architecture: Offers eight taps and 1.5mV granularity for superior margin tuning  Decision Engine Signal Telemetry and Margining (DESTM): Improved system-level diagnostics provides real-time signal quality indication, margin visibility, and diagnostic feedback for higher speeds  The new DDR5 RDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. Renesas has been instrumental in the design, development and deployment of the new RDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers. Renesas is the leader in DDR5 RCDs, building on its legacy of signal integrity and power optimization expertise.  “Explosive growth of generative AI is fueling higher SoC core count. This is driving unprecedented demand for memory bandwidth and capacity as a critical enabler of data center performance,” said Sameer Kuppahalli, Vice President of Memory Interface Division at Renesas. “Our sixth generation DDR5 Registered Clock Driver demonstrates Renesas’ continued commitment to memory interface innovation, path-finding and delivering solutions to stay ahead of market demand.”  "Samsung has collaborated with Renesas across multiple generations of memory interface components, including the successful qualification of Gen5 DDR5 RCD and PMIC5030,” said Indong Kim, VP of DRAM Product Planning, Samsung Electronics. “We are now excited to integrate Gen6 RCD into our DDR5 DIMMs, across multiple SoC platforms to support the growing demands of AI, HPC, and other memory-intensive workloads."  Availability  The RRG5006x Gen6 RCD is designed to meet the stringent requirements of next-generation server platforms, offering robust performance, reliability, and scalability. Renesas is sampling the new RRG5006x RCD to select customers today, including all major DRAM suppliers. Production availability is expected in the first half of 2027.
Key word:
Release time:2025-11-13 16:33 reading:803 Continue reading>>
Panasonic Industry Commercializes Conductive Polymer Tantalum Solid Capacitors (POSCAP) with The Industry's Lowest Profile*1 to Support High-Output Power Delivery Required for USB Type-C Connections
  Panasonic Industry Co., Ltd., a Panasonic Group company, announced  that it will begin commercial production of its two models of Conductive Polymer Tantalum Solid Capacitors (POSCAP), 50TQT33M and 63TQT22M. These capacitors are incorporated into power circuits used for information and communication equipment, including laptops and tablets. They offer an ultra-high withstand voltage and high capacitance in a body with the industry’s lowest profile of 3 mm, supporting high-output power delivery through USB Type-C connectors. Mass production for these models is planned to start in December 2025.  These capacitors are ideal for voltage stabilization and noise reduction in power supplies compliant with USB Power Delivery (USB-PD)[1] 3.1. While previous USB-C connectors supplied up to 100 W (20 V/5 A), USB-PD 3.1 expands this to 240 W (48 V/5 A). This enables widespread use of USB-C connectors for high-speed data transfer and rapid charging, and is expected to further expand applications to larger equipment requiring high power output, such as displays.  On the other hand, information and communication equipment such as laptops are increasingly required to be thinner and more compact. Capacitors therefore must combine an ultra-high withstand voltage, high capacitance, and a low profile in order to fit into limited space. Panasonic Industry began mass production of Conductive Polymer Tantalum Solid Capacitors (POSCAP) in 1997 and, as an industry leader, has continuously delivered first-of-their-kind products. Leveraging proprietary powder molding technology and film formation technologies, the company has newly developed two models that achieve both an ultra-high withstand voltage and high capacitance in a package with the industry's lowest profile of 3 mm.  Through these unique device technologies, Panasonic Industry will continue to contribute to enhancing the functionality of electronic equipment, including laptops, while also reducing the environmental impact through smaller, lighter devices and lower material usage.  Key features:  1. Achieves both an ultra-high withstand voltage and high capacitance*2 to support high-output USB Type-C power delivery, in a 3 mm profile—the lowest in the industry*1—enabled by proprietary powder molding and film formation technologies  2. Lineup of USB-PD 3.1-compliant models rated at 50 V and 63 V  3. Contributes to reduced material usage lower environmental impact through low-profile design  *1 As of September 18, 2025, Conductive polymer tantalum solid capacitors with rated voltages of 50 V and 63 V and capacitance of 22 μF or higher (Panasonic Industry data)  *2 USB-Power Delivery 3.1 (180 W/240 W output) compliant high-capacitance conductive polymer tantalum solid capacitors with rated voltages of 50 V and 63 V, and a capacitance of 22 μF or higherDetailed features:  1. Achieves both an ultra-high withstand voltage and high capacitance to support high-output USB Type-C power delivery, in a 3 mm profile—the lowest in the industry—enabled by proprietary powder molding and film formation technologies  To achieve capacitor performance required for USB-PD 3.1 power supplies in a low-profile body, both high capacitance and a high withstand voltage must be ensured, despite their trade-off relationship. High-capacitance tantalum powder is necessary for electrode materials, but its fine particle size makes molding difficult, creating challenges for stable production. Forming a uniform dielectric film on the surface of the electrodes is important for enhancing the withstand voltage. However, since electrodes made with high-capacitance tantalum powder contain extremely small internal pores, dielectric oxide films tend to develop imperfections.  Panasonic Industry overcame these challenges by establishing proprietary technology to mold high-capacitance tantalum powder with uniform density, and by optimizing the film deposition process to create flawless dielectric films. This enabled the development of two new models that combine an ultra-high withstand voltage and high capacitance, meeting the USB-C high-output power delivery requirements in a 3 mm low-profile package.Cross-sectional view of POSCAP and enlarged view of the inside of the electrode body  2. Lineup of USB-PD 3.1-compliant models rated at 50 V and 63 V  Until now, Panasonic Industry’s POSCAP lineup extended only up to 35 V, with no models compatible with USB-PD 3.1, which extends the rated voltage specification to 36 V (180 W) and 48 V (240 W). The two new models, rated at 50 V and 63 V, each achieve a high capacitance of 22 μF or higher in a package with the industry's lowest profile of 3 mm. The full lineup provides flexibility to meet diverse applications and equipment specifications.  3. Contributes to reduced material usage lower environmental impact through low-profile design  Compared to the industry standard size*3, the new models reduce volume by 25%, contributing to a lower environmental impact through reduced material usage.  *3 Comparison with the industry standard size (7.3 mm × 4.3 mm × 4 mm) of conductive polymer tantalum solid capacitors used in USB-PD 3.1 compliant power suppliesApplications:  Voltage stabilization and noise reduction of USB-PD 3.1-compliant power supplies for laptops, displays, and peripheral equipment  Arc discharge[2] countermeasures for USB-PD 3.1-compliant connectors  Specifications:  Life: 2,000 hours at 105°C; guaranteed operating temperature range: -55°C to 105°C  Ripple current[3]: 100 kHz, 105°C  ESR[4]: 100 kHz, 20°C  *4 Product dimensional tolerance:  Length (L): ±0.3 mm; Width (W): ±0.2 mm; Height (H): ±0.2 mmTerm descriptions:  [1] USB-PD  The power delivery standards established by the standard-setting organization USB Implementers Forum, Inc. (USB-IF). With the launch of USB-PD 3.1 in 2021, USB Type-C cables and connectors can now deliver up to 240 W of power, supporting a wide range of applications—from smartphones and laptops to larger equipment such as monitors.  [2] Arc discharge  An electric spark or discharge phenomenon that occurs when a high current flows at low voltage in electrical circuits.  [3] Ripple current  When a voltage fluctuation is applied to a capacitor, a corresponding charging or discharging current flows through the capacitor. The current applied to this capacitor is referred to as a ripple current. The higher the ripple current, the higher the allowable current.  [4] ESR (Equivalent Series Resistance)  Represents the value of an internal resistance component that can cause heat generation. Capacitors with lower ESR allow higher ripple currents and provide excellent noise absorption.
Key word:
Release time:2025-11-06 15:35 reading:737 Continue reading>>

Turn to

/ 44

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code