ROHM and Infineon collaborate on silicon carbide power electronics packages to enhance flexibility for customers
  ROHM and Infineon Technologies AG have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems, and AI data centers. Specifically, the partners aim to enable each other as second sources of selected packages for SiC power devices, a move which will increase design and procurement flexibility for their customers. In the future, customers will be able to source devices with compatible housings from both ROHM and Infineon. The collaboration will ensure seamless compatibility and interchangeability to match specific customer needs.  "We are excited about working with ROHM to further accelerate the establishment of SiC power devices," said Dr. Peter Wawer, Division President Green Industrial Power at Infineon. "Our collaboration will provide customers with a wider range of options and greater flexibility in their design and procurement processes, enabling them to develop more energy-efficient applications that will further drive decarbonization."  "ROHM is committed to providing customers with the best possible solutions. Our collaboration with Infineon constitutes a significant step towards the realization of this goal, since it broadens the portfolio of solutions," said Dr. Kazuhide Ino, Member of the Board, Managing Executive Officer, in charge of Power Devices Business at ROHM. "By working together, we can drive innovation, reduce complexity, and increase customer satisfaction, ultimately shaping the future of the power electronics industry."Dr. Peter Wawer, Division President Green Industrial Power at Infineon (left)and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  As part of the agreement, ROHM will adopt Infineon’s innovative top-side cooling platform for SiC, including TOLT, D-DPAK, Q-DPAK, Q-DPAK dual, and H-DPAK packages. Infineon's top-side cooling platform offers several benefits, including a standardized height of 2.3 mm for all packages. This facilitates designs and reduces system costs for cooling, while also enabling better board space utilization and up to two times more power density.  At the same time, Infineon will take on ROHM’s DOT-247 package with SiC half-bridge configuration to develop a compatible package. That will expand Infineon’s recently announced Double TO-247 IGBT portfolio to include SiC half-bridge solutions. ROHM's advanced DOT-247 delivers higher power density and reduces assembly effort compared to standard discrete packages. Featuring a unique structure that integrates two TO-247 packages, it enables to reduce thermal resistance by approximately 15 percent and inductance by 50 percent compared to the TO-247. The advantages bring 2.3 times higher power density than the TO-247.  ROHM and Infineon plan to expand their collaboration in the future to include other packages with both silicon and wide-bandgap power technologies such as SiC and gallium nitride (GaN). This will further strengthen the relationship between the two companies and provide customers with an even broader range of solutions and sourcing options.  Semiconductors based on SiC have improved the performance of high-power applications by switching electricity even more efficiently, enabling high reliability and robustness under extreme conditions, while allowing for even smaller designs. Using ROHM’s and Infineon’s SiC products, customers can develop energy-efficient solutions and increase power density for applications such as electric vehicle charging, renewable energy systems and AI data centers.  About ROHM  ROHM, a leading semiconductor and electronic component manufacturer, was established in 1958. From the automotive and industrial equipment markets to the consumer and communication sectors, ROHM supplies ICs, discretes, and electronic components featuring superior quality and reliability through a global sales and development network. Our strengths in the analog and power markets allow us to propose optimized solutions for entire systems that combine peripheral components (i.e., transistors, diodes, resistors) with the latest SiC power devices as well as drive ICs that maximize their performance.  Further information is available at https://www.rohm.com  About Infineon  Infineon Technologies AG is a global semiconductor leader in power systems and IoT. Infineon drives decarbonization and digitalization with its products and solutions. The company has around 58,060 employees worldwide and generated revenue of about €15 billion in the 2024 fiscal year (ending 30 September). Infineon is listed on the Frankfurt Stock Exchange (ticker symbol: IFX) and in the USA on the OTCQX International over-the-counter market (ticker symbol: IFNNY).
Key word:
Release time:2025-09-29 14:53 reading:337 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:420 Continue reading>>
ROHM Launches 2-in-1 SiC Molded Module “DOT-247”
  ROHM has developed the "DOT-247," a 2-in-1 SiC molded module (SCZ40xxDTx, SCZ40xxKTx), ideal for industrial applications such as PV inverters, UPS systems, and semiconductor relays. The module retains the versatility of the widely adopted "TO-247" package while achieving high design flexibility and power density.  The DOT-247 features a combined structure consisting of two TO-247 packages. This design enables the use of large chips, which were structurally difficult to accommodate in the TO-247 package, and achieves low on-resistance through an unique internal structure. Additionally, through optimized package structure, thermal resistance has been reduced by approximately 15% and inductance by approximately 50% compared to the TO-247. This enables a power density 2.3 times higher than the TO-247 in a half-bridge configuration –achieving the same power conversion circuit in approximately half the volume.  The new products featuring the DOT-247 package are available in two topologies: half-bridge and common-source. Currently, two-level inverters are the mainstream in PV inverters, but there is growing demand for multi-level circuits such as three-level NPC, three-level T-NPC, and five-level ANPC to meet the need for higher voltages. In the switching sections of these circuits, topologies such as half-bridge and common-source are mixed –making custom products necessary in many cases when using conventional SiC modules.  To address this challenge, ROHM has developed each of these two topologies—the smallest building blocks of multi-level circuits—into a 2-in-1 module. This enables flexibility to support various configurations such as NPC circuits and DC-DC converters, while significantly reducing the number of components and mounting area, and achieving circuit miniaturization compared to discrete components.  Evaluation boards will also be made available progressively to facilitate evaluation during application design. For more information, please contact a sales representative or visit the contact page on ROHM’s website.  Product Lineup  ☆:Under Development  AEC-Q101 is an automotive electronics reliability standard established by the Automotive Electronics Council (AEC).  The Q101 standard is specifically focused on discrete semiconductor components.  Application Examples  PV inverters, semiconductor relays, UPS (uninterruptible power supply), ePTO, and boost converters for FCVs (fuel cell vehicles).  AI servers (eFuse), EV charging stations, etc.  Sales Information  Pricing: $140/unit (samples, excluding tax)  Availability: ROHM construct mass production (September 2025)  Products compliant with the automotive reliability standard AEC-Q101 are scheduled to begin sample shipments in October 2025.  Comprehensive Support  ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered, such as simulations and thermal designs that enable quick evaluation and adoption of DOT-247 products. An evaluation kit for double-pulse testing is already available, allowing immediate testing, while an evaluation kit for 3-phase inverters is currently under preparation, with reference designs scheduled to be released from November 2025.  • About the DOT-247 design models  SPICE models: Available on the product web pages for each part number  LTspice® models: Scheduled to be available for three-level NPC from October 2025 on the web pagesLTspice® is a registered trademark of Analog Devices, Inc.When using third-party trademarks, please adhere to the usage guidelines specified by the rights holder.  For details, please contact a sales representative or visit the contact page on ROHM’s website.  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.• EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Half-bridge/ Common-source  A basic configuration of a power conversion circuit consisting of two MOSFETs. In a half-bridge configuration, the MOSFETs are connected in series, one above the other, and the output is taken from the connection point. By switching the upper and lower MOSFETs alternately, the output voltage can be switched between positive and negative, making this configuration widely used as the basic structure for high-efficiency power conversion in inverters and motor drive circuits.  Common Source is a configuration where the source terminals of the two MOSFETs are connected, and the output is taken from each drain. By grouping the source terminals, the gate drive circuit can be simplified, making it suitable for applications such as multilevel inverters.  Types of NPC-type multi-level circuits  NPC (Neutral Point Clamped) is a multi-level circuit configuration that divides the output voltage into three levels (+, 0, and -) to reduce voltage stress on the switching devices. The "0V" state is created by the neutral point, which is the contact point located between the positive and negative voltages.  T-NPC (T-type NPC) replaces the diode used to stabilize the neutral point with switching devices such as MOSFETs, enabling more efficient operation. ANPC (Active NPC) actively controls the potential of the neutral point itself using a switch, achieving smoother output waveforms and high-precision power conversion. T-NPC and ANPC are suitable for applications requiring higher output and efficiency.  ePTO (electric Power Take-Off)  A system that uses the power from an electric vehicle's motor or battery to drive external work machinery or equipment (such as hydraulic pumps or compressors). This is an electrified version of the PTO (Power Take-Off) used in conventional engine vehicles, and its adoption is advancing in environmentally friendly commercial vehicles and work vehicles.
Key word:
Release time:2025-09-17 13:11 reading:416 Continue reading>>
Murata Launches Digital Output SMD Pyroelectric Infrared Sensor for Low Power Applications
  Murata Manufacturing Co., Ltd has launched a digital output SMD pyroelectric infrared sensor, IRS-D200ST00R1, with low power consumption and is already in mass production.  In recent years, the use of IoT technology in smart homes and smart buildings has increased convenience, safety, and power saving within living spaces and facilities. Because of this, the demand for wireless communication units equipped with human detection functions capable of sensing movement in real time is also increasing to realize more efficient and comfortable environments. One of the key technologies to enable the motion detection function is a pyroelectric infrared sensor. Products which communicate wirelessly require long-term stable operation with reduced battery replacement or charging, thus creating a strong need for pyroelectric infrared sensors that can detect human movement while extending battery life. Additionally, to increase design flexibility inside these products, space-saving measures are essential, driving demand for compact infrared sensors., space-saving measures are essential, driving demand for compact infrared sensors.  In response, we developed this product using proprietary pyroelectric ceramic technology to achieve low power consumption and a compact size. Even when continuously operating the human detection function, power consumption is kept low, and the sensor includes an interrupt function that activates the microcontroller only when a change is detected, contributing to extended battery life. Furthermore, the compact size enables space-saving, and the adoption of the digital I2C interface simplifies design during development.  The main features of this product include contributing to overall system power reduction through low power consumption and interrupt functionality, space-saving due to its small and low-profile SMD package, ease of design enabled by built-in amplifier and ADC with digital output (I2C), reduction of false detections and stable operation thanks to high signal-to-noise ratio and EMI noise resistance, Also enabling process cost reduction through reflow compatibility.  Key specifications are a dual element electrode size of 0.08 × 0.02 inch (2.0 × 0.5 mm), an overall size of 0.24 × 0.24 × 0.10 inch (6.0 × 6.0 × 2.6 mm), typical sensitivity of 19.5 mV, element height of 0.065 inch (1.65 mm), field of view of ±55° horizontal and ±42° vertical, supply voltage from 1.8 to 3.3 V, typical current consumption of 8 µA, and an I2C interface.*
Key word:
Release time:2025-09-15 14:09 reading:393 Continue reading>>
ROHM’s SiC MOSFETs Adopted in Schaeffler’s Inverter Brick, Now in Mass Production
  ROHM and Schaeffler, a leading German automotive supplier, have started mass production of a new high-voltage inverter brick equipped with ROHM’s SiC (silicon carbide) MOSFET bare chips as part of their strategic partnership. The inverter brick is intended for a major Chinese car manufacturer.High voltage inverter brickSiC MOS Wafer  The Schaeffler inverter subassembly is the essential power device building block (brick) to control the electric drive via logic signals. This is where the high-frequency current pulses are produced that set the vehicle’s electric motor in motion. The performance characteristics of the inverter brick now being produced are impressive: Schaeffler increased the output of the brick by increasing the maximum possible battery voltage to much more than the usual 800 V – and with RMS currents of up to 650 A, which turn the sub-module into a compact power pack.  “Through our strategic approach of incorporating scalability and modularity into our e-mobility solutions – from individual components to a highly integrated electric axle – we developed the readily integrated inverter brick. Based on our generic platform development, it took us just one year to bring this optimal product for the popular X-in-1 architectures to volume production readiness,” says Thomas Stierle, CEO of the E-Mobility Division at Schaeffler.  Modularity and scalability as the key to easy integration  As a core component of an inverter, a brick has to meet strict requirements. The characteristics of the sub-module are indicative of the factors behind the current sales success and start of volume production: ROHM’s silicon carbide (SiC) power semiconductors enable the frame-mounted sub-module with high power density to be compact, efficient, and readily integrated into various inverters through its modular and scalable design. The sub-module incorporates the power module for pulse width modulation (PWM) of the current pulses, the DC link capacitor, a DC link and a cooler. Moreover, the brick has a DC boost function, thanks to which a vehicle with 800 V architecture can also be charged at a 400 V charging station at a charging speed of 800 V.  “We are glad about the launch of volume production for Schaeffler’s inverter brick with our 4th generation SiC MOSFET,” says Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM. “With our SiC technology we are making a substantial contribution to increasing the efficiency and performance of electric cars. Working with Schaeffler as our partner, we are thus fostering innovation and sustainability in the automotive industry,” Dr. Ino adds.  The strategic partnership of Schaeffler (originally initiated under Vitesco Technologies) with ROHM has existed since 2020 and serves to secure capacity for energy-efficient SiC power semiconductors.Thomas Stierle, CEO E-Mobility Division at Schaeffler (left) and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  About Schaeffler Group  The Schaeffler Group has been driving forward groundbreaking inventions and developments in the field of motion technology for more than 75 years. With innovative technologies, products and services for electric mobility, CO₂-efficient drives, chassis solutions and renewable energies, the company is a reliable partner for making motion more efficient, intelligent and sustainable – over the entire life cycle. Schaeffler describes its comprehensive range of products and services in the mobility ecosystem by means of eight product families, from bearing solutions and linear guidance systems of all kinds to repair and monitoring services. With around 120,000 employees at more than 250 locations in 55 countries, Schaeffler is one of the world’s largest family-owned companies and ranks among Germany’s most innovative companies.
Key word:
Release time:2025-09-05 16:57 reading:503 Continue reading>>
Proudly Made in India: Fibocom & Kaynes Technology Join Forces to Drive IoT Innovation, Policy Compliance, and Local Growth
  Fibocom,a leading global provider of wireless communication modules and AI solutions,today announced a strategic manufacturing partnership with Kaynes Technology, oneof India’s foremost electronics and semiconductor manufacturing pioneers. Thiscollaboration underscores Fibocom’s commitment to India’s national initiatives,including Make in India and Atmanirbhar Bharat,while addressing the growing demand for locally produced IoT components.  Equipped withhigh-speed SMT lines, automated testing systems, and precision assemblyequipment, the state-of-the-art facility in Karnataka, Hyderabad, and Gujaratstrengthens Fibocom’s integration into India’s dynamic manufacturing ecosystem.This initiative represents more than capacity expansion — it reflects Fibocom’svision to embrace India, grow with India, and empower the world through India.  Strategic PolicyAlignment and Market Commitment  Fibocom’sinvestment in local manufacturing is fully aligned with India’s industrial developmentagenda, supporting technological self-reliance, accelerating time-to-market forIndian OEMs, and delivering long-term value to both domestic and globalcustomers.  Partnering with India’s ManufacturingLeader  With decades ofexpertise in precision manufacturing, supply chain integration, and world-classquality systems, Kaynes Technology provides the foundation for this strategicpartnership. Together, Fibocom and Kaynes Technology are advancing India as aglobal force for next-generation connectivity solutions.  “Kaynes Technologyis proud to join forces with Fibocom to deliver critical IoT componentsmanufactured in India,” said Raghu Panicker, CEO, Kaynes Technology.“This collaboration enables local industries to innovate faster, scale smarter,and compete more effectively on the global stage.”  Trusted & Proudly Made in India  Fibocom’s locallyproduced modules are designed to global standards while proudly bearing the'Made in India' mark. This not only enhances trust among Indian OEMs andgovernment stakeholders but also reinforces India’s growing reputation as areliable center for IoT innovation and exports.  “Thispartnership is a statement of intent — Fibocom is here not just to sell, but tobuild, invest, and grow with India,” said Ragin Kallanmar Thodikai, Country SalesManager, India, Fibocom. “We are proud to contribute to afuture where intelligent connectivity is Madein India and trusted worldwide.“
Key word:
Release time:2025-09-02 15:36 reading:550 Continue reading>>
ROHM at electronica India 2025: Power and Analog Devices Contributing to the Evolution of Industrial and E-Mobility applications
  From September 17th to 19th, ROHM will exhibit at electronica India 2025, South Asia's leading trade fair for electronic components, systems, applications, and solutions, taking place at the Bangalore International Exhibition Centre (BIEC). At booth H3-E25, ROHM will showcase its latest SiC and GaN technologies, featuring reference designs and evaluation systems that address today’s power and thermal challenges in both industrial equipment and automotive drive systems. Additionally, we will also showcase analog solutions such as power ICs for industrial equipment and automotive LED drivers.  "electronica India 2025 will be the right place to explore real-world applications powered by ROHM’s advanced power semiconductors. With our local design expertise and close cooperation with key players in the Indian market, we are uniquely positioned to support the country’s shift toward more sustainable and efficient electronics," says Makoto Terada, Managing Director, ROHM Semiconductor India.  Highlights of ROHM’s presence at electronica India 2025 include:  For Industrial Applications  ・Locally co-developed reference designs, as part of ROHM’s 'Made in India' initiative, emphasizing faster prototyping and region-specific design optimization, which will be unveiled for the first time.  ・A full lineup of GaN reference designs ranging from 45W to 5.5kW, including compact AC adapters, Totem Pole PFC designs, and server power supplies.  ・ROHM’s 2kV SiC MOSFETs, adopted in SEMITRANS® 20 modules by Semikron Danfoss, powering SMA Solar Technology’s Sunny Central FLEX for utility-scale PV and battery systems.  * SEMITRANS® is a trademark or registered trademark of Semikron Danfoss Elektronik GmbH  For Automotive and E-Mobility  ・TRCDRIVE pack™, a molded SiC module designed for the traction inverter of EVs.  ・New 2-in-1, 4-in-1 and 6-in-1 molded SiC modules for compact and cost-optimized drive solutions.  ・TO-247 discrete SiC MOSFETs shown through practical 3-phase inverter boards for affordable traction systems.  More Information  For additional highlights of ROHM at electronica India 2025, please visit:  www.rohm.com/electronica-india  ROHM’s Power Eco Family: Reliable Solutions Across a Wide range of Applications  ROHM will also feature its Power Eco Family, a branding concept that unites its key power device lines: Each product line will be represented through live demonstrations, adoption cases, and hands-on evaluation tools available at the booth.
Key word:
Release time:2025-09-01 15:11 reading:548 Continue reading>>
Adapting to challenging magnetic environments: MT73xx 3D dual-output Hall latches from NOVOSENSE enable precise automotive motor control
  The NOVOSENSE MT73xx series dual-output Hall latches, based on 3D Hall technology, support SS (Speed & Speed) or SD (Speed & Direction) dual-channel outputs and complies with Automotive Grade 0 standards. Ideal for motor control systems such as power windows, liftgates, and sunroofs, this product family enhances the accuracy and stability of speed and position detection, optimizing overall in-vehicle comfort.  In motor control systems, precise detection of speed and direction signals directly influences system response speed and operational stability. Traditional solutions typically rely on a combination of two separate Hall latches, requiring high magnetic ring installation precision. This often leads to issues such as signal phase deviation, poor synchronization, and structural complexity.  Integrates a 3D Hall sensing structure with inherent orthogonal output characteristics, the MT73xx series can simultaneously deliver dual-channel speed signals (SS output) with a 90° phase difference or speed and direction signals (SD output), making it widely suitable for “speed-direction” detection applications. This design reduces dependency on precise positioning of magnetic poles, mitigates dual-channel phase deviation, simplifies system architecture, and improves overall system stability, providing a more flexible and reliable solution for motion control detection.  Compatibility with diverse magnetic ring configurations enabled by VHS technology  To achieve high-precision 3D sensing, the MT73xx series adopts NOVOSENSE’s proprietary VHS (Vertical Hall Sensor) technology. Through combinations of XY, YZ, and XZ axial sensing, any two axes naturally deliver orthogonal outputs, enhancing signal synchronization.  Additionally, the MT73xx series offers excellent compatibility with various magnetic ring configurations – whether axial, radial, or irregularly shaped magnets – maintaining robust duty cycle performance. This allows customers to adapt designs flexibly depending on magnetic ring characteristics and installation environments, further reducing development complexity and tuning costs.  Dual-output design for optimized system integration  Regarding system integration, the MT73xx’s dual-output capability allows it to replace traditional single- or dual-Hall solutions by directly transmitting SS (Speed & Speed) or SD (Speed & Direction) signals to ECU, minimizing the requirements for peripheral redundant position sensors.  This approach not only saves PCB space and simplifies structural layouts, but also enhances solution integration, offering greater design flexibility for innovative applications in motor control and intelligent cockpit systems.
Key word:
Release time:2025-08-13 15:35 reading:648 Continue reading>>
PRI Certification, the #2 Certification Body in China, Launches IATF 16949 Services to Support Growing Automotive Industry
  PRI Certification Expands by Adding IATF 16949 Certification Services in China and Enhances Position as One of the Top Two Chinese CBs with 18% Market Share  PRI Certification proudly announces the official launch of IATF 16949 certification services in China. The expansion through PRI China’s Beijing office allows the organization to offer IATF 16949 services directly to the Chinese marketplace. In addition to this stronger presence in China, PRI Certification also holds the #2 market share in the United States. This dual-market leadership underscores PRI’s global credibility and trusted reputation across two of the world’s most significant manufacturing regions.  This strategic move solidifies PRI Certification’s commitment to delivering high-quality, industry-specific certification solutions throughout Asia. While the Beijing office will serve as the local hub for client engagement and auditing, all technical and certification decisions will continue to be supported through PRI’s team in Warrendale, Pennsylvania, USA—ensuring global consistency, technical rigor, and impartial oversight.  Over a Decade of Experience in Asia  PRI Certification has been delivering IATF 16949 certification in Japan for over 10 years, earning a strong reputation for excellence and reliability in the region. Expanding into China is a natural progression that aligns with growing demand in the Asian automotive market.  Expert Auditors with Deep Automotive Knowledge  PRI’s auditors bring unmatched technical expertise and practical insight to each audit. This ensures clients receive not just compliance evaluations but also process improvements that contribute to lasting business value.  Tailored Audits Across 30+ Industries  PRI Certification has successfully delivered certification services across more than 30 industries worldwide. The organization’s approach to auditing is tailored to the specific needs of the automotive sector, making PRI a trusted partner for companies pursuing or maintaining IATF 16949 Certification.  Continuing a Legacy of Quality in China  PRI has been providing certification services in China since 2010, helping organizations achieve international quality benchmarks across a wide range of sectors. The introduction of IATF 16949 services marks a significant milestone, strengthening PRI’s ongoing commitment to the region’s automotive manufacturing excellence.
Key word:
Release time:2025-08-05 14:46 reading:545 Continue reading>>
SIMCom:A7663E Achieves Key Global Certifications, Enabling Scalable 4G IoT Deployments
  As the global demand for LTE Cat 1 modules continues to rise in industrial IoT, asset tracking, and metering applications, SIMCom (as a global leader in IoT communication and solution)'s A7663E stands out with a balanced mix of performance, integration flexibility, and certification readiness. The module has recently secured a comprehensive set of international certifications, including RoHS, REACH, CE (RED) for the European market, Anatel for Brazil, and Cybersecurity compliance, paving the way for faster IoT deployment in regulated global markets.  The A7663E is built LGA form factor, offering high integration capability while maintaining reliability. It supports LTE-FDD with downlink speeds up to 10 Mbps and uplink up to 5 Mbps, making it suitable for medium-data-rate IoT scenarios that demand efficient wireless performance and long lifecycle support. The inclusion of integrated multi-constellation GNSS (GPS, GLONASS, BeiDou) further enhances its value for location-based applications like asset tracking, smart mobility, telematics, surveillance devices, industrial routers, and remote diagnostics and so on.  Additionally, A7663E provides a rich set of interfaces to support diverse product architectures. Its software feature set includes FOTA (Firmware Over-The-Air), SSL encryption, and LBS—ensuring devices stay secure and up-to-date throughout their lifecycle. This greatly reduces time-to-market and engineering cost.  With global compatibility, the A7663E is an ideal LTE Cat 1 solution for IoT developers aiming to scale deployments across multiple regions with confidence.
Key word:
Release time:2025-07-24 10:37 reading:505 Continue reading>>

Turn to

/ 81

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code