一、 核心工艺参数与性能指标 (Core Process Parameters & Metrics)
这些是你在日常工作中每天都要监控、分析和报告的关键数据。
去除速率 (Removal Rate, RR)
解释:单位时间内去除的薄膜厚度,是CMP最核心的性能指标。通常单位为埃/分钟 (Å/min) 或纳米/分钟 (nm/min)。RR的稳定性和可控性至关重要。
不均匀性 (Non-Uniformity, NU%)
解释:衡量整个晶圆表面去除速率差异的指标。通常分为片内不均匀性 (WIWNU, Within-Wafer) 和片间不均匀性 (WTWNU, Wafer-to-Wafer)。NU%越小,代表平坦化效果越均匀,对器件性能一致性越好。
选择比 (Selectivity)
解释:指在同一工艺条件下,对两种不同材料的去除速率之比。例如,在浅沟槽隔离(STI) CMP中,我们希望氧化物(Oxide)相对于氮化物(Nitride)有很高的选择比,以在去除多余氧化物的同时,尽可能少地磨损作为停止层的氮化物。
下压力 (Downforce / Pressure)
解释:研磨头(Polishing Head)施加在晶圆背面的压力,单位通常是psi (磅/平方英寸)。根据普雷斯顿方程,它是决定去除速率的关键输入参数之一。
转速 (Rotation Speed)
解释:指研磨盘(Platen)和研磨头(Head)的旋转速度,单位是rpm (转/分钟)。同样是影响去除速率和流体动力学的关键参数。
二、 关键硬件与耗材 (Key Hardware & Consumables)
这些是你每天都要接触、更换和维护的物理部件。
研磨液 (Slurry)
解释:CMP工艺的“化学”核心。它是由研磨颗粒(Abrasive)和各种化学添加剂(助氧化剂、络合剂、pH稳定剂、表面活性剂等)混合而成的悬浮液。
研磨垫 (Pad)
解释:CMP工艺的“机械”核心。通常是聚氨酯(Polyurethane)材料,表面有特定的沟槽(Grooves)设计,用于传输研磨液和带走碎屑。分为硬垫和软垫。
研磨垫修整器 (Pad Conditioner / Dresser)
解释:带有金刚石颗粒的圆盘,用于在研磨过程中或研磨间隙对研磨垫进行“修整”。目的是去除嵌入的碎屑,恢复研磨垫表面的粗糙度和微观结构,以维持稳定的去除速率。
挡环 (Retaining Ring)
解释:位于研磨头边缘的环状部件,用于在研磨时固定晶圆,防止其滑出。同时,挡环的材质和状态对晶圆边缘的研磨轮廓(Edge Profile)有决定性影响。
研磨颗粒 (Abrasive)
解释:研磨液中的固体颗粒,提供主要的机械研磨作用。常见的有二氧化硅(Silica)、二氧化铈(Ceria)、氧化铝(Alumina)等,其粒径、形状和硬度都经过精密设计。
三、 平坦化形貌与缺陷 (Planarization Topography & Defects)
这些是CMP工艺需要解决的核心问题和常见的失效模式。
碟形凹陷 (Dishing)
解释:在金属CMP(如铜互连)中,大尺寸金属区域由于材质较软,被过度研磨,中心区域低于周围介电层,形成碟状凹陷。这会增加后续连线的电阻。
腐蚀凹陷 (Erosion)
解释:在高密度图形区域,由于局部压力和化学作用增强,导致大面积的介电层被过度磨损而变薄的现象。
残留 (Residue)
解释:研磨后,本应被去除的材料(如金属、氧化物)未能完全去除,残留在晶圆表面。这通常发生在图形的凹陷区域,会导致短路等致命缺陷。
划伤 (Scratches)
解释:CMP工艺最常见的缺陷之一。由大的研磨颗粒、外部异物或研磨垫碎屑在晶圆表面划出的线状痕迹。
边角磨圆 (Corner Rounding)
解释:在STI CMP中,沟槽的边角被过度研磨而变得圆钝的现象。这会影响晶体管的几何形状和电学性能。
四、 工艺控制与终点检测 (Process Control & Endpoint Detection)
这些是确保工艺稳定性和精确性的关键技术。
终点检测 (Endpoint Detection, EPD)
马达电流法 (Motor Current):通过监测研磨盘或研磨头马达的电流变化(摩擦力变化)来判断。
光学法 (Optical):通过监测特定波长光的反射或干涉信号来判断薄膜厚度变化。
涡电流法 (Eddy Current):专门用于金属CMP,通过感应金属膜厚变化引起的涡电流变化来判断。
解释:判断CMP过程何时应该停止的技术。这是从按时间控制(Timed Polish)向量产控制(Process-Controlled Polish)转变的关键。常见方法有:
原位 (In-situ)
解释:指在研磨过程中实时进行。例如“原位终点检测”(In-situ EPD),“原位修整”(In-situ Conditioning)。
CMP后清洗 (Post-CMP Clean)
解释:一个至关重要的独立工序。使用刷洗、兆声波清洗和化学药液,去除CMP后残留在晶圆表面的颗粒、金属离子和有机物。清洗的好坏直接决定最终的缺陷水平。
金属填充 (Dummy Fill / Metal Fill)
解释:一种版图设计端的优化手段(DFM, Design for Manufacturability)。在图形密度低的区域,预先填充不具备电学功能的“假”金属块,以提高整个版图的图形密度均匀性,从而极大地改善CMP后的平坦度,减少Dishing和Erosion。
五、 理论与模型 (Theory & Models)
这些是理解CMP机理、进行深入研究的理论基础。
普雷斯顿方程 (Preston's Equation)
解释:CMP最基础的经验模型:RR = Kp * P * V。其中RR是去除速率,P是压力,V是相对速度,Kp是普雷斯顿系数(一个包含了所有其他化学和材料因素的经验常数)。
斯特里贝克曲线 (Stribeck Curve)
解释:描述润滑状态下摩擦系数与(粘度×速度/压力)关系的曲线。在CMP中,它被用来解释研磨垫、晶圆和研磨液三者之间的复杂作用,帮助我们理解从接触式研磨到流体动力学研磨的转变,对优化工艺窗口有指导意义。
希望这份清单对你有所帮助。在实际工作中,你会发现这些术语总是交织在一起出现。例如,你需要调整下压力和转速来优化去除速率,同时监控不均匀性,并利用终点检测来防止碟形凹陷和腐-蚀凹陷的发生。祝你在CMP领域不断进步。
上一篇:全球半导体营收,将达1万亿美元!
下一篇:纳芯微中报全面解析
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
RB751G-40T2R | ROHM Semiconductor | |
CDZVT2R20B | ROHM Semiconductor | |
BD71847AMWV-E2 | ROHM Semiconductor | |
MC33074DR2G | onsemi | |
TL431ACLPR | Texas Instruments |
型号 | 品牌 | 抢购 |
---|---|---|
BU33JA2MNVX-CTL | ROHM Semiconductor | |
TPS63050YFFR | Texas Instruments | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
BP3621 | ROHM Semiconductor | |
ESR03EZPJ151 | ROHM Semiconductor | |
STM32F429IGT6 | STMicroelectronics |
AMEYA360公众号二维码
识别二维码,即可关注
请输入下方图片中的验证码: