想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

发布时间:2023-12-20 11:47
作者:AMEYA360
来源:纳芯微
阅读量:3218

  作为当下热门的第三代半导体技术,GaN在数据中心、光伏、储能、电动汽车等市场都有着广阔的应用场景。和传统的Si器件相比,GaN具有更高的开关频率与更小的开关损耗,但对驱动IC与驱动电路设计也提出了更高的要求。

  按照栅极特性差异,GaN分为常开的耗尽型(D-mode)和常关的增强型(E-mode)两种类型;按照应用场景差异,GaN需要隔离或非隔离、低边或自举、零伏或负压关断等多种驱动方式。针对不同类型的GaN和各种应用场景,纳芯微推出了一系列驱动IC解决方案,助力于充分发挥GaN器件的性能优势。

  01、耗尽型(D-mode)GaN 驱动方案

  一、D-mode GaN类型与特点

  由于常开的耗尽型GaN本身无法直接使用,需要通过增加外围元器件的方式,将D-mode GaN从常开型变为常关型,主要包括级联(Cascode)和直驱(Direct Drive)两种技术架构;其中,级联型的D-mode GaN更为主流。如下图1,级联型的D-mode GaN是通过利用低压Si MOSFET的开关带动整体的开关,从而将常开型变为常关型。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  尽管低压Si MOS在导通时额外串入沟道电阻,并且参与了器件的整体开关过程,但由于低压Si MOS的导通电阻和开关性能本身就很理想,所以对GaN器件的整体影响非常有限。

  级联型的D-mode GaN最大的优势在于可用传统Si MOS的驱动电路,以0V/12V电平进行关/开的控制。但需要注意的是,尽管驱动电路和Si MOS相同,但由于级联架构的D-mode GaN的开关频率和速度远高于传统的Si MOS,所以要求驱动IC能够在很高的dv/dt环境下正常工作。

  如下图2和图3所示为氮化镓采用半桥拓扑典型应用电路,GaN的高频、高速开关会导致半桥中点的电位产生很高的dv/dt跳变,对于非隔离驱动IC,驱动芯片的内部Level shifter寄生电容会在高dv/dt下产生共模电流;对于隔离驱动IC,驱动芯片的输入输出耦合电容同样构成共模电流路径。这些共模电流耦合到信号输入侧会对输入信号造成干扰,可能会触发驱动芯片的误动作,严重时甚至会引发GaN发生桥臂直通。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  因此,共模瞬变抗扰度(CMTI)是选择GaN驱动IC的一个重要指标。对于GaN器件,特别是高压、大功率应用,推荐使用100V/ns以上CMTI的驱动IC,以满足更高开关频率、更快开关速度的需求。

  二、纳芯微D-mode GaN驱动方案

  纳芯微提供多款应用于D-mode GaN的驱动解决方案,以满足不同功率段、隔离或非隔离等不同应用场景的需求。

  1)NSD1624:高可靠性高压半桥栅极驱动器

  传统的非隔离高压半桥驱动IC一般采用level-shifter架构,由于内部寄生电容的限制,通常只能耐受50V/ns的共模瞬变。NSD1624创新地将隔离技术应用于高压半桥驱动IC的高边驱动,将dv/dt耐受能力提高到150V/ns,并且高压输出侧可以承受高达±1200V的直流电压。此外,NSD1624具有+4/-6A驱动电流能力,能工作在10~20V 电压范围,高边和低边输出均有独立的供电欠压保护功能(UVLO)。NSD1624 可提供SOP14,SOP8,与小体积的LGA 4*4mm封装,非常适合高密度电源的应用,可适用于各种高压半桥、全桥电源拓扑。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  2)NSI6602V/NSI6602N:第二代高性能隔离式双通道栅极驱动器

  NSI6602V/NSI6602N是纳芯微第二代高性能隔离式双通道栅极驱动器, 相比第一代产品进一步增强了抗干扰能力和驱动能力,同时提高了输入侧的耐压能力,且功耗更低,可以支持最高2MHz工作开关频率。每个通道输出以快速的25ns传播延迟和5ns的最大延迟匹配来提供最大6A/8A的拉灌电流能力,150V/ns的共模瞬变抗扰度(CMTI) 提高了系统抗共模干扰能力。NSI6602V/NSI6602N有多个封装可供选择,最小封装是4*4mm LGA 封装,可用于GaN等功率密度要求高的场景。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  3)NSI6601/NSI6601M:隔离式单通道栅极驱动器

  NSI6601/6601M 是隔离式单通道栅极驱动器,可以提供分离输出用于分别控制上升和下降时间。驱动器的输入侧为3.1V至17V电源电压供电,输出侧最大电源电压为32V,输入输出电源引脚均支持欠压锁定(UVLO)保护。它可以提供5A/5A 的拉/灌峰值电流,最低150V/ns的共模瞬变抗扰度(CMTI)确保了系统鲁棒性。此外,NSI6601M还集成了米勒钳位功能,可以有效抑制因米勒电流造成的误导通风险。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  02、增强型(E-mode)GaN驱动方案

  一、E-mode GaN类型与特点

  不同于Cascode D-mode GaN通过级联低压Si MOS来实现常关型,E-mode GaN直接对GaN栅极进行p型掺杂来修改能带结构,改变栅极的导通阈值,从而实现常断型器件。

  根据栅极结构不同,E-mode GaN又分为欧姆接触的电流型和肖特基接触的电压型两种技术路线,其中电压型E-mode GaN最为主流,下文将主要介绍该类型GaN的驱动特性和方案。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  这种类型E-mode GaN的优点是可以实现0V关断、正压导通,并且无需损害GaN的导通和开关特性。由于GaN没有体二极管,不存在二极管的反向恢复问题,在硬开关场合可以有效降低开关损耗和EMI噪声。然而,电压型E-mode GaN驱动电压范围较窄,一般典型驱动电压范围在5~6V,并且开启阈值也很低,对驱动回路的干扰与噪声会比较敏感,设计不当的话容易引起GaN误开通甚至栅极击穿。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  *不同品牌的E-mode GaN栅极耐受负压能力差别较大,有的仅能耐受-1.4V,有的可耐受-10V负压。

  在低电压、小功率,或对死区损耗敏感的应用中,一般可使用0V电压关断;但是在高电压、大功率系统中,往往推荐采用负压关断来增强噪声抗扰能力,保证可靠关断。在设计栅极关断的负压时,除了需要考虑GaN本身的栅极耐压能力外,还需要考虑对效率的影响。如下表所示,这是因为E-mode GaN在关断状态下可以实现电流的反向流动即第三象限导通,但是反向导通压降和栅极关断的负压值相关,用于栅极关断的电压越负,反向压降就越大,相应的会带来更大的死区损耗。一般,对于500W以上高压应用,特别是硬开关,推荐-2V~-3V的关断负压。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  ➯ 考虑E-mode GaN的以上驱动特性,对驱动器和驱动电路的设计一般需要满足:

  ◆ 具备100V/ns以上的CMTI,以满足高频应用的抗扰能力;

  ◆可提供5~6V的驱动电压,并且驱动器最好集成输出级LDO;

  ◆ 驱动器最好有分开的OUTH和OUTL引脚,从而不必通过二极管来区分开通和关断路径,避免了二极管压降造成GaN误导通的风险;

  ◆ 在高压、大功率应用特别是硬开关拓扑,可以提供负压关断能力;

  ◆ 尽可能小的传输延时和传输延时匹配,从而可以设定更小的死区时间,以减小死区损耗。

  二、E-mode GaN驱动方案

  分压式方案

  E-mode GaN可以采用传统的Si MOS驱动器来设计驱动电路,需要通过阻容分压电路做降压处理。如图8所示驱动电路,开通时E-mode GaN栅极电压被Zener管稳压在6V左右,关断时被Zener管的正向导通电压钳位在-0.7V左右。因此,GaN的开通和关断电压由Dz决定,和驱动器的供电电压无关。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  更进一步的,如果在Dz的基础上,再反向串联一个Zener管,那么就可以实现负压关断。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  如图10所示,为NSD1624采用10V供电,通过阻容分压的方式用于驱动E-mode GaN的典型应用电路。同样的,隔离式驱动器NSI6602V/NSI6602N、NSI6601/NSI6601M也可以采用这种电路,用于驱动E-mode GaN。对于阻容分压电路的原理与参数设计在E-mode GaN厂家的官网上都有相关应用笔记,在此不展开详解。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  直驱式方案

  尽管阻容分压式驱动电路,可以采用传统的Si MOSFET驱动器来驱动E-mode GaN,但是需要复杂的外围电路设计,并且分压式方案的稳压管的寄生电容会影响到E-mode GaN的开关速度,应用会有一些局限性。对此,纳芯微针对E-mode GaN推出了专门的直驱式驱动器,外围电路设计更简单,可靠性更高,可以充分发挥E-mode GaN的性能优势。

  1)NSD2621:E-mode GaN专用高压半桥栅极驱动器

  NSD2621是专为E-mode GaN设计的高压半桥驱动芯片,该芯片采用了纳芯微的成熟电容隔离技术,可以支持-700V到+700V耐压,150V/ns的半桥中点dv/dt瞬变,同时具有低传输延时特性。高低边的驱动输出级都集成了LDO,在宽VCC供电范围内均可输出5~6V的驱动电压,并可提供2A/-4A的峰值驱动电流,同时具备了UVLO 功能,保护电源系统的安全工作。NSD2621 可提供高集成度的LGA (4*4mm) 封装,适用于高功率密度要求的应用场景。图5为NSD2621的典型应用电路,相比分压式电路,采用NSD2621无需电阻、电容、稳压管等外围电路,简化了系统设计,并且驱动更可靠。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  2)NSD2017:E-mode GaN专用单通道低边栅极驱动器

  NSD2017是专为驱动E-mode GaN设计的车规级单通道低边驱动芯片,具有欠压锁定和过温保护功能,可以支持5V供电,分离的OUTH和OUTL引脚用于分别调节GaN的开通和关断速度,可以提供最大7A/-5A的峰值驱动电流。NSD2017动态性能出色,具备小于3ns的传输延时,支持1.25ns最小输入脉宽以及皮秒级的上升下降时间,可应用于激光雷达和电源转换器等应用。NSD2017有1.2mm*0.88mm WLCSP和2mm*2mm DFN车规级紧凑封装可选,封装具有最小的寄生电感,以减少上升和下降时间并限制振铃幅值。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  3)NSI6602V/NSI6602N:E-mode GaN隔离驱动

  专门针对E-mode GaN隔离驱动的需求,纳芯微调节NSI6602V/NSI6602N的欠压点,使其可以直接用于驱动E-mode GaN:当采用0V关断时,选择4V UVLO版本;当采用负压关断时,可以选择6V UVLO版本。需要注意的是,当采用NSI6602V/NSI6602N直接驱动E-mode GaN时,上管输出必须采用单独的隔离供电,而不能采用自举供电。这是因为当下管E-mode GaN在死区时进入第三象限导通Vds为负压,此时驱动上管如果采用自举供电,那么自举电容会被过充,容易导致上管E-mode GaN的栅极被过压击穿。图13为NSI6602V/NSI6602N直驱E-mode GaN时的典型应用电路,提供+6V/-3V的驱动电压。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  03、GaN功率芯片方案

  NSG65N15K是纳芯微最新推出的GaN功率芯片产品,内部集成了半桥驱动器和两颗耐压650V、导阻电阻150mΩ的E-mode GaN HEMT。NSG65N15K通过将驱动器和GaN合封在一起,消除了共源极电感Lcs,并且将栅极回路电感Lg也降到最小,避免了杂散电感的影响。NSG65N15K是9*9mm的QFN封装,相比传统分立方案的两颗5*6mm DFN封装的GaN开关管加上一颗4*4mm QFN封装的高压半桥驱动,加上外围元件,总布板面积可以减小40%以上。此外,NSG65N15K内置可调死区时间、欠压保护、过温保护功能,有利于实现GaN 应用的安全、可靠工作,并充分发挥其高频、高速的特性优势,适用于各类中小功率GaN应用场合。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  04、纳芯微GaN驱动方案选型指南

  综上所述,纳芯微针对不同类型的GaN和各种应用场景,推出了一系列驱动IC解决方案,客户可以根据需求自行选择相应的产品:

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微携手联合电子与英诺赛科,共创新能源汽车功率电子新格局
  025年9月29日,苏州纳芯微电子股份有限公司(以下简称:纳芯微)、联合汽车电子有限公司(以下简称:联合电子)与英诺赛科(苏州)科技股份有限公司(以下简称:英诺赛科)共同签署战略合作协议。三方将聚焦新能源汽车功率电子系统,联合研发智能集成氮化镓(GaN)相关产品。全新开发的智能GaN产品将依托三方技术积淀,提供更可靠的驱动及GaN保护集成方案,进一步提升系统功率密度。三方还将协同推动相关解决方案的产业化落地,助力新能源汽车产业的可持续发展与价值提升。签约仪式现场合影  见证代表  图中:联合电子副总经理 郭晓潞博士  图右:英诺赛科首席执行官 吴金刚博士  图左:纳芯微创始人、董事长、CEO 王升杨  签约代表  图中:联合电子电力驱动业务部电力电子业务总监 林霖  图右:英诺赛科销售副总裁 蔡定辉  图左:纳芯微功率与驱动产品线总监 张方文  GaN凭借其优越的材料特性,正在成为重塑新能源汽车功率电子系统的核心力量。相较于传统硅基器件,GaN可显著提升系统效率与功率密度,帮助系统打造体积更紧凑、重量更轻便的优势,满足汽车电气化、轻量化的核心需求。  此次合作,三方将充分发挥各自优势,以联合研发与应用验证为抓手,突破效率、可靠性与成本等关键挑战,为行业客户提供兼具性能与成本优势的创新解决方案。纳芯微在高性能模拟与混合信号芯片领域积累深厚,联合电子拥有丰富的整车及系统集成经验,英诺赛科则专精于GaN等先进功率器件研发。三方将携手构建跨领域协同创新平台,共同应对未来系统应用的发展需求。  联合电子副总经理郭晓潞博士表示:“联合电子深耕汽车电子领域多年,始终以创新回应行业需求。GaN技术是汽车电气化升级的关键突破口,纳芯微与英诺赛科则在芯片设计、器件技术上积淀深厚。三方携手可实现从器件到系统的全链条能力融合,快速推进GaN技术产业化,为行业用户提供高效、可靠且具成本优势的解决方案。”  纳芯微创始人、董事长、CEO王升杨表示:“新能源汽车产业的升级离不开产业链的深度协同,尤其新技术的突破和新产品的落地更需跨领域专长的联动。联合电子的系统集成经验与英诺赛科的GaN技术优势,与纳芯微的芯片设计能力形成完美互补。此次三方以协同之势打通产业链上下游,共建核心竞争力,实现技术突破与市场价值的共赢,为行业协作树立了新标杆。”  英诺赛科首席执行官吴金刚博士表示:“GaN的应用潜力远未达上限,其在汽车功率电子领域的深度落地,亟需器件端与系统端的精准对接。我们非常期待三方携手,以战略合作为契机,持续拓展GaN在汽车电气化场景的应用边界,让先进功率器件的技术优势能够真正赋能产业升级。”  此次战略合作标志着纳芯微、联合电子与英诺赛科在新能源汽车功率电子领域的合作迈出了坚实且关键的一步。作为汽车芯片领域领先的国产供应商,纳芯微以模拟及混合信号芯片技术积淀、近10亿颗汽车芯片出货的市场验证为基础,与联合电子的系统集成经验、英诺赛科的GaN器件优势形成有效互补。未来,三方将以此次战略合作为基石,持续打通技术链条、突破应用瓶颈,推动新能源汽车产业朝着更高效率、更可持续的方向实现创新升级。
2025-09-30 13:47 阅读量:282
纳芯微以高集成度 SoC 技术,破解智驾感知、座舱与热管理核心难题
  纳芯微以高集成度车规级 SoC 技术为核心抓手,聚焦智驾落地过程中的感知痛点、座舱体验升级与整车热管理效率优化,形成覆盖多场景的解决方案矩阵。  一、智驾感知升级:超声波 SoC 破解行业核心痛点  在高阶智驾感知体系中,超声波传感器是辅助泊车(APA)、自主泊车(AVP)等低速场景的关键硬件,但当前行业普遍面临扫描效率与多发多收能力低、抗干扰能力薄弱、探测边界有限、原始数据支持不足、主机与机端互联互通壁垒等挑战,且客户定制化难度高。针对这些痛点,纳芯微推出 NovoGenius® 系列超声波 SoC 解决方案——超声雷达探头芯片 NSUC1800,实现技术突破:  1. 编码升级:解决多传感器干扰,提升扫描效率  传统超声波传感器因 “同频信号叠加” 易产生干扰,纳芯微通过多模式编码技术(支持定频、线性 Chirp、非线性 Chirp、FSK+Chirp 等),让不同传感器差异化发波,避免信号冲突。该技术可实现 2 个周期内完成保杠扫描,大幅提升传感器刷新率,满足智驾车辆运动中实时刷新数据的需求。  2. 探测边界突破:近场 10cm 内无盲区,远场延伸至 6-7 米  为适配复杂泊车与低速安全场景,纳芯微超声波 SoC通过模拟前端时变增益控制和近场门限自适应算法,将探测盲区压缩至10cm 以内(最优测试达 4.5cm),可精准识别车身附近低矮障碍(如路沿、墙角),避免泊车剐蹭;远场探测则通过低噪声信号链路(LNA 噪声 < 4nV/sqrt (Hz))和18 位高精度 ADC(市场现有方案14bit),将有效距离延伸至6-7 米,为低速自动紧急制动(AEB)提供更早的障碍物预警数据。  3. 原始数据回传:赋能智驾算法迭代  针对智驾“端到端决策”需求,纳芯微超声波 SoC 支持全链路原始数据上传—— 包括事件数据、包络数据、ADC 采样原始数据,并提供 1-16 倍数据抽取与压缩算法,匹配 DSI3 总线带宽。芯片内置10K SRAM(行业平均 4K),保障数据传输效率,帮助智驾系统更精准分辨障碍物类型(高低、大小),减少误判与漏判。  4. 功能安全与国产化:ASIL-B 认证+灵活定制  纳芯微超声波 SoC 满足 ISO26262 ASIL-B 功能安全等级,集成电源过欠压检测、内存 ECC 纠错、通信 CRC 校验等诊断功能。同时,纳芯微可快速响应客户对功能、性能的定制化需求。  邀您前往!SENSOR CHINA期间  超声雷达探头芯片专题演讲  二、座舱与热管理:高集成 SoC 赋能场景体验  除智驾感知外,纳芯微 NovoGenius® 系列 SoC 还覆盖座舱舒适性与热管理系统,通过 “单芯片集成多功能” 降低硬件复杂度,提升系统可靠性:  1. 座舱场景:氛围灯驱动 SoC 点亮座舱新体验  针对座舱个性化需求,纳芯微推出氛围灯驱动 SoC NSUC1500(4 通道),集成 Cortex-M3 内核、LIN 收发器、高压 LDO 与 LED 驱动,支持 64mA / 通道电流输出,且通过 ADC 采集 RGB 差分电压,实现温度补偿与长期漂移校准,保障灯光一致性。  2. 热管理系统:电机驱动 SoC 覆盖全场景需求  汽车热管理(电池、空调、电驱)依赖大量电机控制,纳芯微推出全集成嵌入式电机驱动 SoC,覆盖不同功率场景:  • 低功率场景:如 NSUC1612B(空调出风口)、NSUC1612E(主动进气格栅),集成 3-4 路半桥驱动,RMS 电流 0.35A-1.4A;  • 中高功率场景:如 NSUC1610(水泵、座椅通风)、NSUC1602(冷却风扇、鼓风机),支持 BDC/BLDC 电机控制,符合 AEC-Q100 Grade 0 标准(最高结温 175℃)。  三、生态兼容与国产化优势:降低客户开发门槛  为加速方案落地,纳芯微在技术创新外,还从生态兼容与服务支持两方面降低客户门槛:  1. 全兼容现有生态,无需重构硬件  纳芯微超声波 SoC、电机驱动 SoC 等均兼容行业主流协议与架构:如超声波方案支持 DSI3 总线,可与 “现有 DSI Master+纳芯微 Slave(NSUC1800)”或“纳芯微 Master(NSUC1802)+现有 DSI Slave” 混合搭配,无需改动整车硬件架构;LIN 收发器符合 LIN2.2 与 SAE J2602 标准,EMC 性能通过 CISPR-25 Class 5 认证,适配各类整车电气环境。  2. 一站式开发支持,缩短项目周期  纳芯微为客户提供上位机评估软件 + 定制化套件:上位机可直观展示传感器探测距离、信号强度等参数,无需客户自建测试平台;硬件套件则根据客户探头尺寸、结构特性定制,配套调试固件,实现即插即用,帮助客户快速完成方案验证与项目导入。  纳芯微通过 NovoGenius® 系列车规级 SoC,构建了 “智驾感知 - 座舱体验 - 热管理” 全场景芯片解决方案:以超声波 SoC 突破感知痛点,以高集成驱动 SoC 优化系统效率,以国产化服务响应客户定制需求。
2025-09-23 13:53 阅读量:282
纳芯微NSSine™超高性价比新品:NS800RT113x实时控制MCU,开启“M7平权”新时代
  随着行业对算力与实时性的要求不断提升,传统 MCU 平台在运算能力、存储速度与外设性能方面逐渐显现瓶颈。为解决这一挑战,纳芯微推出 NS800RT113x 系列 MCU,该系列基于 Arm® Cortex®-M7 内核,集成自研 mMATH 数学加速核、高速 ADC、精细 PWM 及可编程逻辑模块等创新功能,全面满足电机控制、电力电子等对高性能与高实时性要求严苛的应用需求。此次发布标志着 M7 内核 MCU 进入更广泛的应用场景,为客户带来前所未有的性能平衡与价值体验。  高性能高性价比M7内核,突破算力门槛  NS800RT1135/1137 搭载主频 200MHz 的 Cortex®-M7 内核,支持 ECC 的 128~256KB Flash 与 80KB TCM(CPU核内0等待内存),均支持ECC功能,显著提升实时计算性能。配合纳芯微自研的 mMATH 数学加速核,可高效处理三角函数、超越函数与浮点运算,全面增强控制类应用的算力支持。  在 MCU 市场中,Cortex®-M4 内核是最常见的主流选择,而 NS800RT113x 系列率先将 Cortex®-M7 内核引入更广泛应用。相较于M4 内核,M7 内核在 DMIPS/Hz 与 CoreMark/Hz 上分别提升 83% 与 49%,并原生支持核内 TCM,实现 CPU 同频 0 等待访问。  当前“算力单价”日益受到行业关注,许多应用创新与成本优化都面临算力瓶颈的制约。NS800RT113x 系列高性价比 MCU 的推出,将推动 M7 内核在电机驱动、电力电子及工业控制等场景实现更广泛应用,让客户能够以合理成本获得高性能计算能力,突破算力限制,释放更多创新潜能。  先进的控制外设,轻松驾驭复杂场景  该系列集成 14 路 PWM,由专用事件管理器控制,并支持多达 8 个比较点的配置,实现高精度 PWM 输出和快速波形响应。其中 2 路高精度 PWM 更可达 80ps 分辨率。高速 ADC 最高采样率达 4.375Msps,支持双模组 21 通道采集,满足复杂信号实时监测需求。片上独创的 2 个 CLB 可编程逻辑模块,可灵活实现复杂时序控制与保护电路,减少外部器件依赖,降低系统成本。  多样接口与封装,灵活适配设计需求  NS800RT113x 系列配备 3 路 UART、2 路 SPI、2 路 I2C 及 1 路 CAN 2.0 接口,适配多样化系统需求,并提供 LQFP64、LQFP48、QFN48 与 QFN32 多种封装,兼顾高性能与灵活设计。NS800RT113x系列选型表  供货和价格信息  NS800RT113x系列现已正式发布并可送样。其中,量产后 NS800RT1135-DQNGY2(封装:QFN32)在1千片采购数量的基础上,含税单价仅需5元人民币起。如需了解更多供货及价格详情,欢迎垂询。
2025-09-09 13:50 阅读量:325
纳芯微车用电机驱动一站式解决方案:助力客户高效选型,应对系统设计新挑战
  在电机驱动系统加速迈向高效率、高集成、小型化与高可靠性的演进趋势下,纳芯微面向车身域控与热管理等关键应用场景,提供覆盖多类负载的电机驱动IC全方案选型,满足车规级高性能与高可靠性需求。  纳芯微车身电机驱动选型  当下,汽车电子电气架构正在由传统分布式汽车控制器(ECU)向集中式域控制器(ZCU)快速演化,基于新区域域控理念,区域控制器承接特定区域(左域/右域/后域)下所有电机、继电器、电磁阀、LED等不同负载的控制。功率与驱动电路布置在区域控制器里以实现传统方案中多个ECU的功能,这种实现方式对负载驱动芯片的集成化、智能化、可靠性提出了更高要求。  为顺应此趋势,纳芯微推出NSD83xx-Q1系列多通道半桥驱动器,最高集成12路半桥驱动,内部集成PWM生成器,支持SPI通信控制,集成故障检测功能,以高集成化的特性广泛应用在新型电子电气架构下的域控制器和热管理等应用中。  纳芯微NSD83xx系列选型  此外,纳芯微NSD731x-Q1系列直流有刷电机驱动不仅内置了功率N-MOSFET,还提供全方位保护机制,包括供电欠压保护、输出过流保护和芯片过温保护,确保芯片在异常负载情况下的安全稳定运行。NSD731x系列还推出了A版本产品,通过增加功率路径电流镜像功能,实现了负载电流的实时监测,大大优化了PCB版图面积,降低了采样电阻成本,为客户带来了显著的经济效益。  纳芯微NSD73xx系列选型  随着汽车电子电气架构和智能化升级,集成式热管理、头灯精密控制、HUD抬头显示、隐藏式出风口等需要精密位置控制的步进电机应用日益普及。这些应用的快速落地,促使主机厂对车规级步进类驱动器的需求急剧增长。同时,行业对步进电机驱动的性能要求也水涨船高,更高的细分精度、更平滑的电流与位置控制、更优异的噪声表现成为关键指标,以进一步优化电机性能、减少振动、提升运行稳定性。  纳芯微推出的NSD8381-Q1与NSD8389-Q1这两款细分步进电机驱动器,更是针对特定应用场景进行了深度优化,芯片集成反电势检测可实现堵转和失速检测,适用于集成式热管理、头灯位置控制、HUD抬头显示、隐藏式出风口等步进电机驱动应用。  纳芯微NSD83xx系列选型  在汽车电子电气架构转变过程中,整车电机类负载系统设计面临诸多挑战。系统端不仅要通过平台化设计适配不同功率等级电机负载,在负载异常时保护外部MOSFET或线材,还要实时监测并上报电机运行状态,这离不开底层驱动器的功能支撑。  为满足这些需求,纳芯微NSD360x-Q1系列预驱产品集成了智能驱动配置与实时监测、保护及故障诊断功能,可实现有刷电机的大电流驱动,为区域控制器设计提供了强有力的支持。  智能驱动配置提供可配置时序充放电电流型驱动,用户能够依外部负载(MOSFET)参数、占空比、EMI等指标优化其开通关断时序。CCPD模块将MOSFET导通关断分为三个阶段,各阶段时长与驱动电流可独立配置,还能基于内部比较器反馈时序,通过MCU实现闭环控制。  实时监测与保护及故障诊断功能可以实时监控电源及电荷泵电压,实现多种欠压过压诊断保护;监控驱动模块实现VGS及VDS保护;检测运行与关闭时负载开路、短路;还有过热报警与保护、看门狗、刹车保护、支持SPI配置或信息读取等功能。
2025-09-08 14:59 阅读量:317
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码