村田“超声波透射超材料”,有哪些应用场景

发布时间:2025-07-09 13:28
作者:AMEYA360
来源:村田
阅读量:906

  每年定期进行健康检查的人很多,但是,很少有人定期检查大脑,因为可以直接观察大脑的CT扫描和核磁共振成像(MRI)是大型且昂贵的装置,需要医学以外的高水平专业知识才能安全地使用它们。因此,目前只有在大型医疗机构才能接受这样的检查。

  村田制作所开发了一种新技术,有可能通过用于了解子宫内胎儿状态的超声波回波检查来检查头骨内的大脑状态。通过将这种名为“超声波透射超材料”的特别结构薄片贴在头皮表面,有可能透过头骨传输超声波。如果能够实现这一点,更多的医疗机构就能简便地进行脑部检查了。

村田“超声波透射超材料”,有哪些应用场景

  村田在“CEATEC 2023”上展示了这种超声波透射超材料(上图)。这项技术的应用领域将不仅仅限于医疗,有可能在汽车智能化、社会基础设施的维护管理等多种领域推动超声波应用的扩大。这里,我们简单介绍一下“超声波透射超材料”的原理以及其应用可能性。

  实现什么功能?

  超声波的频率(20kHz或更高)高于人耳能听到的频率,普遍应用于从工业设备、医疗设备到家用电器等各个领域。一般大众熟悉的应用如辅助汽车自动泊车的超声波传感器、探鱼器、清洗眼镜的超声波清洗机、超声波加湿器等。如果将其用作传感介质,则即使是位于暗处的透明固体和液体等小物体以及电波反射率较低的物质也能对其进行检测,这个原理已经应用在医疗、微电子等领域的无损检查。

  超声波可用于多种用途,但缺点是无法穿过金属或树脂等制成的墙壁等障碍物,这限制了它的应用范围。这是因为超声波具有一种性质:它在碰到与传输介质(在大气中即为空气)之间的声阻抗差较大的物质时,大部分会发生反射,几乎都不会穿透。

  这里所说的声阻抗是指声音传播难易程度的指标,声阻抗在分子稀疏地分散的空气中的值较小,而在金属和树脂等高密度物质中的值较大,因此,超声波在空气和墙壁的分界处将不再透射。

  超声波透射超材料是一种实现了让超声波穿过墙壁等障碍物的功能的材料。之所以在这里被称为“超材料”,因为这是一种人工开发的物质,它在电磁波和声波等波传播时,拥有实现自然界中无法看到的方式的功能。

  村田制作所开发的超声波透射超材料(上图)通过使用弹簧摆结构在成为阻挡物的物质上创建共振机制,缓和声阻抗的差异,并提高超声波透射率。

  采用什么原理?

  村田开发的超声波透射超材料在片材上制作了将由配重部分和弹簧部分构成的“极小单元格”周期性排列的结构。而且,通过调整配重部分和弹簧部分的形状和尺寸,将单元格设计成与根据超声波入射而移动的弹簧摆具有相同的作用。通过让其与入射超声波在垂直方向上产生共振,穿过声阻抗有较大差异的阻挡物,从而高效地传播超声波。

  在试制品中,村田使用3D打印机在1mm厚的不锈钢板上形成极小的单元格。将其浸入水中,从发射器发射500kHz的超声波,不锈钢板另一侧的接收器成功地接收到了透射率为60%的超声波(下图)。

  不锈钢板并不是唯一可以使用该技术让超声波透射的材料。如果根据障碍物与传播介质之间的声阻抗差异来设计单元格,则可以将该技术应用于多种物质。

  有哪些可能的应用场景?

  村田希望能将已开发的技术应用于社会的业务中,通过进一步的技术开发,完善超声波透射超材料,并提供能够发挥所需效果的解决方案。目前关注的应用前景有以下三个:

  医疗领域

  村田设想将超声波透射超材料作为医疗领域的检查材料。

  在医疗领域,超声波回波被作为可以获得X射线、CT和MRI无法获得的重要信息的检查方法使用。

  能在视频中观看体内患处的运动是只有超声波回波才具备的特长。

  此外,它还与CT等使用X射线进行的检查不同,不存在遭受辐射的担心。

  超声波回声有很多优点,但由于超声波不能穿透骨骼,所以无法检查骨骼内部的脏器和器官的状态。因此,超声波回波无法用于检查被头骨覆盖的大脑。如果应用超声波透射超材料,也许就可以使用超声波回波对大脑进行检查。我们希望即使是小型医疗机构也能够简便地进行详细检查,同时将患者的负担控制在尽可能小的限度。

  车载应用

  超声波透射超材料有望在不影响汽车设计性的情况下设置超声波传感器,比如让用于汽车泊车辅助等的超声波传感器不暴露到车体外面。

  迄今为止,汽车用的超声波传感器需要安装在车体表面。这是因为如果用盖罩盖住,超声波就无法穿透。怎样能在不影响汽车设计性的情况下设置超声波传感器?

  可以肯定的是,在不久的将来,为了实现无人驾驶,车辆的各个地方都会设置各式各样的传感器。有许多消费者将汽车视为观赏对象,认为有很多粗陋的传感器裸露在外面可能会降低汽车作为商品的价值。此外,将传感器暴露在车体外部可能会降低耐用性。因此,需要一种能够在不影响美观和可靠性的情况下安装超声波传感器的技术。如果使用超声波透射超材料,即可以将超声波传感器嵌入到保险杠内部。

  非接触方式水下检查

  以非接触方式对水下电缆护套内部进行检查,是超声波透射超材料可能的另一个应用场景。

  远距离通信和海上风力发电等的水下电缆需要维护管理。为了使水下电缆稳定工作,在维护管理时不仅需要定期检查电缆的外部,还要定期检查电缆的内部。但是,以前的实际情况是没有办法调查被覆盖的电缆内部情况。

  如果在水下电缆的护罩中添加超声波透射超材料,则可以通过安装在水下无人机上的超声波传感器或从船上投放传感器来以非接触方式对电缆内部进行检查。由此可以减轻海洋和河流等当中的水下对象物体的检查作业负担。

  总 结

  以上介绍的三个例子只是村田目前正在设想的部分应用案例。超声波透射超材料特别的技术特性将扩大超声波的利用场景。除了传感器之外,我们开发的技术在将超声波用于加工和清洗等的用途中也可能会产生适用价值。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
活动预告 | 村田面向多种定位场景的高性能GNSS定位融合解决方案
2026-01-13 13:12 阅读量:273
村田:工业设备电磁噪声对无线通信的影响及EMC对策
  近年来,运用IoT、AI、机器人和5G等前沿技术的智能工厂在制造业迅速普及。这些技术创新提高了自动化程度,节省了人力,并提高了生产效率。  然而,随着从传统的有线控制向无线控制的转变,确保工厂内部稳定的无线通信已成为一个重要的课题。特别是工业机器人和控制设备产生的电磁噪声对Wi-Fi、LTE和5G等无线信号造成干扰,可能会导致严重的运行问题,例如:  生产设备误动作  因通信错误而导致生产线停工  随着智能工厂的发展,电气和电子设备不仅需要正常运行,而且还需具备不对其他设备造成电磁干扰且不受外部干扰的能力。应对这些EMC(Electromagnetic Compatibility,电磁兼容性)风险对于维持稳定且有效的运行不可或缺。  01 智能工厂电磁噪声来源  智能工厂中潜在的对无线通信产生威胁的电磁噪声很多。在现在的生产现场,同时运行着多种多样的工业机器人、电机和控制设备,会产生从低频到GHz频带的多种电磁噪声。  测量结果也表明,这些噪声频带与Wi-Fi(2.4GHz/5GHz)、LTE和5G等无线通信频带重叠。  因此,在智能工厂中经常出现无线设备接收灵敏度不足和通信出错并威胁到其稳定有效地运行的情况。  表1 无线通信标准的频带  02 智能工厂潜在EMC风险  智能制造环境中,电磁噪声会带来两大风险:“外部干扰”和“设备自身的自干扰”。  首先是外部电磁噪声导致的误动作风险。  在工厂内的实验中,在无噪声环境中仅观察到了LTE信号。然而,在实际的工厂环境中,人们已经确认:信号和电磁噪声水平接近,接收灵敏度下降量可能会达到18dB。  其次,工业机器人和控制设备可能会产生“自干扰”。  自干扰(Self-Interference)是指设备自身发射的电磁波干扰其自身运行的现象,特别是在工业机器人和控制设备等复杂系统中,这可能会导致性能不足或意外行为。  设备自身产生的电磁噪声干扰其自身的运行,特别是DC-DC转换器(将直流电压转换为其他直流电压的装置),人们已经确认:DC-DC转换器会成为噪声源,电缆和金属外壳充当天线,导致接收灵敏度降低量可能会达到13dB。  03 工业机器人的噪声对策  要应对工业机器人电磁噪声,首先我们来分析EMI的产生机理。  工业机器人由三个要素组成:驱动部分(机械臂)、控制部分(包含电路板和DC-DC转换器在内的金属外壳)以及连接两者的电缆。  对电磁噪声源的调查表明,DC-DC转换器是主要的噪声源。而且,已确认电缆和金属外壳会起到像天线一样的作用,向周围辐射噪声。  因此,EMC对策应以下面两点为中心:  遏制来自DC-DC转换器的电磁噪声  预防噪声通过电缆和外壳传播  这些对策对于维持智能工厂中的无线通信质量和稳定运行不可或缺。  04 从案例中学习噪声对策  我们通过工厂现场的接收灵敏度改进,从实际事例中学习总结了对应噪声对策。  在实际生产现场,通过将静噪滤波器(扼流圈)插入DC-DC转换器的输出DC线路,无线通信性能得到了显著改进。具体而言,机器人工作时的LTE下限接收灵敏度改进了约11dB。噪声允许值参考了通用标准IEC61000-6-3(住宅和商业环境)  该对策之所以有效,是因为DC-DC转换器产生的高频噪声被滤波器的阻抗特性反射并返回到转换器侧,从而预防了其泄漏到输出侧。  选择滤波器时,重要的是考虑频率特性和插入损耗(由于插入滤波器而导致的信号衰减)等因素。  在本事例中,我们使用了村田制作所的LQW18CAR16(1.6×0.8×0.8mm,额定电流为1.3A)。另一种选择是村田制作所的BLM系列(铁氧体磁珠电感器),然而,其电流叠加特性与LQW系列不同,因此,请根据所需的噪声消除性能进行选择。  村田建议  静噪滤波器LQW18CAR16:  尺寸:1.6×0.8×0.8mm  额定电流:1.3A  LQW18CAR16  05 EMC标准的新近动向  适用于工业设备和机器人的EMC标准“CISPR11第7版”于2024年2月发布。与上一版(第6.2版)相比,新增了1至6GHz的发射限值。  今后,需要在更宽的频带范围内采取电磁噪声对策并符合相关标准,因此,在现场和设计部门双方及时掌握新近信息并采取实用的对策不可或缺。  在本文中,对实用的电磁噪声对策的思考方法和EMC标准的新近动向进行了相关解说。如有任意疑问或希望讨论具体事例,请随时联系我们。  06 总 结  随着智能工厂的发展,电磁噪声问题预计将在生产现场日益凸显。因此,更加强有力的EMC(电磁兼容性)对策不可或缺。为了有效应对这一问题,以下举措至关重要:  对工厂内的电磁噪声环境进行评估;  在工业设备和机器人中实施电子元件级别的噪声对策(特别是针对DC-DC转换器、电缆和外壳的对策)。  其中,电子元件级别的噪声对策应该是特别优先的事项之一。这是因为它直接影响无线通信的稳定性和设备的可靠性,在现场进行实际应对不可或缺。
2026-01-13 13:03 阅读量:269
村田首款,1210英寸、额定电压1.25kV、静电容达15nF的汽车用陶瓷电容器
  株式会社村田制作所初次*开发并开始量产了1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV、具备C0G特性的、15nF静电容量的多层片式陶瓷电容器。该产品可用于车载充电器(OBC)及高性能民用电子设备的电源电路,有助于实现高效率的电力变换,并在高电压条件下稳定运行。(*由村田调查得出,截至2025年12月1日。)  主要特点  在1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV且具备C0G特性的前提下,实现了15nF特大静电容量的多层片式陶瓷电容器。  1.25kV高耐压,适配SiC MOSFET。  C0G特性带来低损耗与稳定的电容值。  车载充电器(OBC)安装于电动汽车(EV)上,从外部电源为车载电池充电的装置。在电动汽车搭载的车载充电器以及民用设备的电源电路中,通常会包含用于高效电力变换的谐振电路,以及用于遏制电流、电压峰值的缓冲(吸收)电路。由于这两类电路中高电压与大电流反复作用,元件性能的轻微变化就可能导致效率下降、设备发热,进而可能引发工作异常或故障。因此,市场亟需具备在温度变化下性能稳定、损耗低且能承受高电压的电容器。  近年来,电源电路中的开关器件正从Si MOSFET向能够实现更高效率与高速开关的SiC MOSFET转移。开关半导体器件以高速对电流进行通断控制,实现电压与频率变换的,Si MOSFET采用硅半导体的电力控制用开关器件,多用于低至中耐压场景。SiC MOSFET是采用碳化硅的高耐压、高效率电力控制用开关器件,多用于超过1.2kV的场景,通常要求1.2kV的耐压规格,因此对额定电压高于该水平的电容器需求在增加。  为此,村田通过特有的陶瓷材料与内部电极薄层化技术,首次在1210英寸尺寸实现了额定电压1.25kV、具备C0G特性、静电容量为15nF的本产品,并已开始量产。借助C0G特性的低损耗及电容随温度变化的稳定性,本产品适用于谐振电路与缓冲(吸收)电路。
2026-01-07 10:25 阅读量:364
高绝缘、低漏电、高可靠!村田新一代DC-DC转换器,是如何做到的?
  在医疗、工业与能源领域,设备对电源性能与可靠性的要求日益提高。无论是工业和能源中的储能系统、可再生能源设施,还是直接接触人体的医疗设备,这些高性能应用都依赖具备高绝缘性与高可靠性的DC-DC转换器,以保障电子设备更高效、稳定地运行。  村田针对高性能市场,推出了新一代表面贴装型小型化DC-DC转换器“NXJ1T系列”。该产品具有4.2kV DC高绝缘耐压、低漏电流及高可靠性。  NXJ1T系列主要特性  高绝缘性能、低漏电流设计及高可靠性:有助于提高应用场景的可靠性和安全性。  效率提升:实现了约80%的效率,并且支持低开关频率(500kHz至2MHz)。  小型化设计:尺寸为13.70mm(L)*10.55mm(W)*4.04mm(H),有助于节省设备空间。  符合与安全和医疗相关的标准:本产品支持UL62368和2ANSI/AAMI ES60601-1。  高绝缘、低漏电、高可靠:如何做到?  村田的这款新一代DC-DC转换器,是怎么做到高绝缘、低漏电、高可靠的呢?  首先,NXJ1T系列具有高绝缘耐压优势,一个主要原因是其得益于村田专有的封装制造技术。  这款小型化表面贴装型的DC-DC转换器,采用了村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压,即使开关或控制器发生故障,也能形成隔离屏障,从而实现了出众的热性能、机械性能和绝缘性能,加强了产品的安全性。村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压  传统的DC-DC转换器采用隔离材料形成隔离屏障,树脂灌封层内部的微小局部放电可能导致微孔的形成,这些微孔随着时间的推移而聚结,导致隔离屏障的永久性击穿,从而使任意的高压放电都能够从输出端传导到输入端,反之亦然。  这款新型转换器模塑封装所采用的实心隔离材料,具有远超传统转换器好几倍的局部放电耐受能力。即使发生放电,依然能够维持隔离屏障的完整性,有效遏制微孔的产生。  其次,传统的DC-DC转换器通常采用双绞线绕制的变压器,线圈间距较近,容易导致较高的电容耦合。这意味着输出侧开关产生的任意噪声都可能被反射至输入电路。这可能导致控制电路出现误触发,从而需要使用更多的滤波元件,进而增加成本。  而这款新型转换器内的变压器则采用实心骨架上的独立绕组,可实现行业内居先的低绕组间容抗,形成高频隔音屏障,其共模瞬态抗扰度(CMTI)超过200kV/uS。  通过村田专有的封装技术,NXJ1T实现了更优的热性能表现,产品能够承受1,000次以上的-40°C至125°C的温度循环测试。更强的热循环表现能够使其具有更长的使用寿命。  此外,NXJ1T系列的封装能预防粉尘和细小颗粒侵入,保护内部器件及电路,确保更高的可靠性。因此,能够应对从工业和能源领域到医疗领域的大量应用。  需要进一步指出的是,这些性能优势都得以集成在这个行业标准封装中。NXJ1T采用符合行业标准的封装尺寸,且向后兼容现有的表面贴装方案,不需要变更设计即可实现更强的性能。
2025-12-22 11:34 阅读量:343
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码