电感线圈被烧坏是哪些因素导致的

发布时间:2022-10-08 14:35
作者:Ameya360
来源:网络
阅读量:2929

    电感线圈作为一个电子产品中的实用零件,有的时候我们会发现电感线圈出现了烧坏的现象,那么大家知道电感线圈被烧坏是哪些因素导致的吗?电感线圈烧坏的原因总结可以分为:负载,电源、电机绝缘、缺相等。我们可以从以下因素来预防:

电感线圈被烧坏是哪些因素导致的

    1、电感线圈的设计裕度不够;厂家为了节约成本没有留有一定余地的,设计裕度本来是产品在设计过程中考虑到产品会遇到各种因素,而故意多设计出的一部分。

    2、漆包线的质量问题;厂家为了为了降低生产的成本,而使用了耐温在130℃~150℃以下的漆包线。

    3、电感线圈温升问题;一般来来说电感线圈的设计要求达到60K以下,合要求聚脂漆包线的耐热应使用耐热达到155℃,有的设计厂家为了降低成本削减了电感线圈匝数,提高电感线圈温升至75K~90K,使电感线圈漆包线长期处在高温状态下工作,一旦长期运行这样处于过负荷状态,可能使导电部位接触不良,接触电阻增大,将大大的降低了电感线圈绝缘强度。

    4、电感线圈吸力之间的反力配合问题;电压低时,吸合将变得困难,电感线圈的动作时间长,电感线圈承受起动强电流的时间变长,更加使电感线圈发热,同时使吸力更明显欠缺,吸合更加困难,直至不能吸合。电感线圈高温下工作,导致电阻增大,电流也将变得非常的大。

    5、产品设计的工作电压范围不够宽,电压一旦处于80%~85%就有可能会出现热态不能吸合情况,当电压高于120%时,电感线圈就容易过热。

    6、生产过程中控制不严或失控;在生产时,电感线圈的绕组内层部分浸漆不够透,干燥得不彻底,容易引起绕组引线接头的焊接不良、绝缘不完整导致匝间、层间短路,而失去绝缘性。

    7、电感线圈绕制工艺存在不足;在绕线机在生产的时候,绕线涨力不能太松,也不能太紧,否则将使漆包线拉长,造成局部的绝缘耐压降低。

    8、电感线圈投入前,因为天气潮湿、多雨、湿度在80%,容易造成湿气侵入到电感线圈内部,导致绝缘部分受潮。

    9、电感线圈在储存和运输的过程途中,报错不当的话将使得水分、油脂等杂质混入,使绝缘强度大幅降低。

    10、在使用途中电感线圈的绝缘部分损坏或机械损伤,造成了电感线圈匝间短路或者是碰地,那么电感线圈中就产生很大的短路电流,使温度激剧上升,并将热量传递到邻近线匝,最终将有可能会把整个线圈烧毁。

    11、人为原因部分;当使用者对无电感线圈的使用不熟悉,经常出现调压不正确;安装工艺差,对电感线圈的检查不仔细,造成电感线圈混入了其他的杂质,运行维护不到位,没有严格执行相关的使用技术,多数电感线圈从安装到烧毁的这段期间,重来未进行过日常的常规维护与污垢处理,导致电感线圈的散热条件变差而烧毁。

    12、雷击;电感线圈的一般和其他电子元件以前使用安装在设备之中,有机率线路遭雷击,在电感线圈绕组上将产生高于额定电压几十倍以上的冲击电压,则电感线圈遭雷击损坏将难以避免。

    以上原因引起电感线圈烧毁,只要通过简单的修理,就可以继续使用。办法是将线圈重新绕制,只要短路的匝数不是特别多多,短路又处于线圈的端头位臵,而其余电感线圈的部分都完好无缺,那么就可以拆去已损坏的部分,将剩下的继续使用,这对一部分的电感线圈工作性能的影响不大。

    电感线圈烧坏的事故,其实有一部分完全可以避免的,还有一些只要按照生产要求,严格质量要求操作,说明使用,可以有效把事故消除在萌芽状态。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
绕线型片式电感应用噪声变大的原因解析
  绕线型片式电感作为电子设备中常见的元件,在各种电路中起着重要的滤波和能量存储作用。然而,有时候在实际应用中会发现片式电感会产生不同程度的噪声。本文将探讨绕线型片式电感应用中噪声增大的原因,并提供相关分析和解决方法。  1. 片式电感的基本结构  绕线型片式电感通常由磁性材料芯、绝缘层、绕线和外壳等组成。在电路中,片式电感通过绕制导线在芯片上形成多层线圈结构,以储存能量并滤波。  2. 噪声产生原因分析  2.1 漏磁感应:  当片式电感中的电流变化较大时,可能会产生漏磁感应,导致磁场的变化,进而引起电感周围的其他元件产生干扰和噪声。  2.2 磁芯损耗:  磁芯在工作过程中由于磁通密度的变化而产生磁滞和涡流损耗,这些损耗会转化为热能和声音,引起噪声增大。  2.3 绕线间互感:  片式电感中绕线之间的相互感应会影响电感的性能,若设计不当或线圈绕制不规范,可能导致绕线间互感增大,进而产生噪声。  2.4 电流涌动:  在电路中,电感承担着能量存储的任务,当负载突然改变时,可能引起电流的快速涌动,造成电感内部热量和振动,从而产生噪声。  3. 解决方法与优化建议  3.1 选择合适的磁性材料:  选用低损耗、低噪声的磁性材料制作芯片,减小磁芯损耗对噪声的影响。  3.2 合理设计线圈结构:  优化绕线型片式电感的线圈结构,减少绕线间互感,降低噪声水平。  3.3 添加滤波元件:  在电路中添加合适的滤波器,可以有效抑制片式电感产生的噪声。  3.4 控制电路设计:  合理设计电路,避免电流涌动和负载突变,减少因此引起的噪声问题。
2025-04-10 17:27 阅读量:281
判断电感饱和的方法有哪些
  电感饱和是指电感元件在通电过程中,由于磁场强度达到一定限制而失去对电流的降阻作用,从而导致电感元件性能下降或损坏的现象。本文将探讨判断电感饱和的方法,包括直观观察、测量方法以及电路特性的变化等方面。  1. 直观观察方法  1. 外观检查:通过外观检查电感元件,观察是否有明显变形、膨胀或烧焦等现象,这些都可能是电感饱和的迹象之一。  2. 异常发热:饱和电感在通电时可能会出现异常发热现象,因此观察电感是否产生异常的高温也是一种判断方法。  3. 磁场变化:使用磁场检测仪器,观察电感周围的磁场变化情况,饱和状态下磁场强度变化可能较大。  2. 测量方法  1. 饱和电感电压:测量电感两端的电压随时间变化,当电感达到饱和状态时,电压呈现不同于正常工作状态的变化规律。  2. 饱和电感电流:通过测量电感的电流波形,可以观察电感电流是否达到饱和状态所表现出的特征,如峰值增加或波形剧烈变化。  3. 饱和电感特性曲线:绘制电感的电流-磁通特性曲线,观察其是否存在饱和段,即随着电流增加,磁通增长趋于饱和。  3. 电路特性的变化  1. 频率响应:观察电路的频率响应曲线,饱和状态下电感的频率响应可能会出现畸变或截断现象。  2. 谐振特性:饱和状态下的电感可能影响电路的谐振特性,使得谐振频率发生变化或失真。  3. 功耗变化:饱和电感的存在可能导致电路功耗增加或效率下降,因此观察电路的功耗变化也是判断电感饱和的方法之一。  4. 实验验证  1. 模拟实验:设计合适的模拟电路,通过实验验证电感在不同电流下的工作特性,观察是否存在饱和现象。  2. 数值仿真:利用电路仿真软件进行仿真分析,模拟电感在不同工作条件下的响应,进一步验证是否存在饱和状态。  判断电感饱和的方法包括直观观察、测量方法、电路特性的变化以及实验验证等多个方面。工程师在电路设计和实际应用中需要结合多种方法来准确判断电感是否处于饱和状态,以避免因饱和引起的性能问题和损坏。
2024-09-02 17:43 阅读量:653
电感的作用和工作原理
  今天给大家分享一下关于电感的知识,主要是关于电感的作用以及电感的工作原理。  什么是电感?  电感是一种由线圈组成的无源电气元件,是用于滤波、定时、电力电子应用的两端元件,属于一种储能元件,可以把电能转换成磁能并储能起来。常用字母“L”表示。  在实际中,电感的种类繁多,分类方式也多种多样,这里就不具体讲了。  电感的工作原理  电感就是将导线绕制成线圈形状,当电流流过时,在线圈(电感)两端就会形成较强的磁场。由于电磁感应的作用,会对电流的变化起阻碍作用。  因此,电感对直流呈现很小的电阻(近似于短路),对交流呈现的阻抗较高,其阻值的大小与所通过交流信号的频率有关。  同一电感元件,通过交流电流的频率越高,呈现的阻值越大。  电感的两个重要特性  1、电感对直流呈现很小的电阻(近似于短路),对交流呈现的阻抗与信号频率成正比,交流信号频率越高,电感呈现的阻抗越大;电感的电感量越大,对交流信号的阻抗越大。  2、电感具有阻止电流变化的特性,流过电感的电流不会发生突变,根据电感的特性,在电子产品中常作为滤波线圈、谐振线圈 等。  电感的功能及作用  1、电感的滤波功能  LC滤波电路  在电感滤波中,纹波系数与负载电阻成正比,另一方面,在电容滤波中,它与负载电阻成反比,因此如果将电感滤波与电容结合起来,纹波系数将几乎与负载滤波无关。它也被称为电感输入滤波电路、扼流输入滤波电路、RC滤波电路。  在该电路中,扼流圈与负载串联,为交流分量提供高电阻,并允许直流分量流过负载。负载两端的电容并联连接,过滤掉流过扼流圈的任何交流分量。通过这种方式,就可以得到整流,并通过负载提供平滑的直流电。  电感滤波电路  这种类型也叫做扼流过滤电路,由插在整流器和负载电阻R之间的电感组成。整流包含交流分量和直流分量。当输出通过电感时,为交流分量提供高电阻,而对直流分量没有电阻。因此整流输出的交流分量被阻断,只有直流分量到达负载。  2、电感的谐振功能  电感通常和电容并联构成LC谐振电路,主要用来阻止一定频率的信号干扰。  天线感应射频信号,经电容Ce耦合到由调谐线圈L1和可变电容CT组成的谐振电路,经L1和CT谐振电路的选频作用,把选出的广播节目载波信号通过L2耦合传送到高频放大器。  图中的黄色圈起来的部分为CT、L1构成的谐振电路进行调谐选台。  3、LC串联、并联谐振电路  LC串联谐振电路  将电感与电容串联,可构成串联谐振电路,如下图所示。  该电路可简单理解为与LC并联电路相反。LC串联电路对谐振频率信号的阻抗几乎为0,阻抗最小,可实现选频功能。电感和电容的参数值不同,可选择的频率也不同。  LC并联谐振电路  电感与电容并联能起到谐振作用,阻止谐振频率信号输入。电感对交流信号的阻抗随频率的升高而变大。电容的阻抗随频率的升高而变小。  电感和电容并联构成的LC并联谐振电路有一个固有谐振频率,即共谐频率。  在这个频率下,LC并联谐振电路呈现的阻抗最大。利用这种特性可以制成阻波电路,也可制成选频电路。  电感的应用  电感的两个主要应用领域是电力电子和射频电路。电感是各种DC-DC转换电路以及LC调谐振荡的射频电路中必不可少的元器件。下面,我将从这两个方面举个例子。  1、DC-DC转换电路  DC-DC转换电路或者开关稳压器用于几乎所有的电子设备中,因为在直流电压的升压和降压期间具有高效率,下面是用于降低直流电压的降压转化器的简化图。  在实际应用中,在一些DC-DC转换电路中也常用晶体管来代替二极管来进行同步整流。  2、射频电路  电感用于各种射频电路,包括滤波器、振荡器等。以下图为例,是连接在单级晶体管放大器的集电极和基极之间的 LC 谐振电路。  放大器是必不可少的,因为 LC 电路本身会由于组件的寄生电阻而产生阻尼振荡。振荡电路中的放大器确保无阻尼振荡。  要选择射频扼流圈,需要选择自谐振频率 (SRF) 接近需要扼流圈的频率的电感。这是因为电感的阻抗在其自谐振频率处最大。  对于LC电路选择电感,自谐振频率要比工作频率高很高,还必须考虑电感的容差,不然会导致频率选择出现不必要的偏移。  当然,电感的应用还有很多,不仅仅只有我说的这些。
2024-07-23 11:14 阅读量:690
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码