<span style='color:red'>ROHM</span> Develops an Ultra-Compact MOSFET Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
Key word:
Release time:2025-07-08 17:04 reading:229 Continue reading>>
<span style='color:red'>ROHM</span> Introduces a New MOSFET for AI Servers with Industry-Leading* SOA Performance and Low ON-Resistance
  ROHM has released of a 100V power MOSFET - RY7P250BM - optimized for hot-swap circuits in 48V power systems used in AI servers and industrial power supplies requiring battery protection to the market.  As AI technology rapidly advances, data centers are facing unprecedented processing demands and server power consumption continues to increase annually. In particular, the growing use of generative AI and high-performance GPUs has created a need to simultaneously improve power efficiency while supporting higher currents. To address these challenges, the industry is shifting from 12V systems to more efficient 48V power architectures. Furthermore, in hot-swap circuits used to safely replace modules while servers remain powered on, MOSFETs are required that offer both wide SOA (Safe Operating Area) and low ON-resistance to protect against inrush current and overloads.  The RY7P250BM delivers these critical characteristics in a compact 8080-size package, helping to reduce power loss and cooling requirements in data centers while improving overall server reliability and energy efficiency. As the demand for 8080-size MOSFETs grows, this new product provides a drop-in replacement for existing designs. Notably, the RY7P250BM achieves wide SOA (VDS=48V, Pw=1ms/10ms) ideal for hot-swap operation. Power loss and heat generation are also minimized with an industry-leading low ON-resistance of 1.86mΩ (VGS=10V, ID=50A, Tj=25°C), approximately 18% lower than the typical 2.28mΩ of existing wide SOA 100V MOSFETs in the same size.  Wide SOA tolerance is essential in hot-swap circuits, especially those in AI servers that experience large inrush currents. The RY7P250BM meets this demand, achieving 16A at 10ms and 50A at 1ms, enabling support for high-load conditions conventional MOSFETs struggle to handle.  ROHM’s new product has also been certified as a recommended component by leading global cloud platform provider, where it is expected to gain widespread adoption in next-generation AI servers. Especially in server applications where reliability and energy efficiency are mission-critical, the combination of wide SOA and low RDS(on) has been highly evaluated for cloud infrastructure.  Going forward, ROHM will continue to expand its lineup of 48V-compatible power solutions for servers and industrial equipment, contributing to the development of sustainable ICT infrastructure and greater energy savings through high-efficiency, high-reliability products.  Application Examples  • 48V AI server systems and power supply hot-swap circuits in data centers  • 48V industrial equipment power systems (i.e. forklifts, power tools, robots, fan motors)  • Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  • UPS and emergency power systems (battery backup units)  Online Sales InformationSales Launch Date: May 2025  Pricing: $5.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  Applicable Part No: RY7P250BM  EcoMOS™ BrandEcoMOS™ is ROHM's brand of silicon MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  TerminologyHot-Swap Circuit  A circuit that enables components to be inserted or removed while the system remains powered on.  It typically consists of MOSFETs, protection elements, and connectors, and is responsible for suppressing inrush current and protecting against overcurrent conditions, ensuring stable operation of the system and connected components.  Power MOSFET  A MOSFET designed for power conversion and switching applications. N-channel MOSFETs are the dominant type, turning on when a positive voltage is applied to the gate relative to the source. They offer lower ON-resistance and higher efficiency than P-channel variants. Due to their low conduction loss and high-speed switching performance, power MOSFETs are commonly used in power supplies, motor drives, and inverter circuits.  SOA (Safe Operating Area)  The defined range of voltage and current in which a device can operate reliably without risk of failure. Operating outside this boundary may result in thermal runaway or permanent damage. SOA is especially critical in applications exposed to inrush currents or overcurrent conditions.  Low ON-resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) reduces power loss during operation.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered on. Proper control of this current reduces stress on power circuit components, helping to prevent device damage and stabilize the system.
Key word:
Release time:2025-07-03 14:52 reading:222 Continue reading>>
<span style='color:red'>ROHM</span>'s SiC MOSFET Adopted for Mass Production in Toyota's New BEV
  ~Integration in traction inverters extends the cruising range and improves performance~  The power module equipped with ROHM Co., Ltd.'s 4th generation SiC MOSFET bare chip has been adopted in the traction inverter of Toyota Motor Corporation's (hereinafter "Toyota") new crossover BEV "bZ5" for the Chinese market.  The "bZ5" is a crossover-type BEV jointly developed by Toyota, BYD TOYOTA EV TECHNOLOGY Co., Ltd. (hereinafter "BTET"), FAW Toyota Motor Co., Ltd. (hereinafter "FAW Toyota"), etc., and was launched by FAW Toyota in June 2025.  The power module adopted this time has started mass production shipments from HAIMOSIC (SHANGHAI) Co., Ltd., a joint venture between ROHM and Zhenghai Group. ROHM's power solutions centered on SiC MOSFETs contribute to the extended range and enhanced performance of the new BEV.  ROHM aims to complete the construction of the production line for the next-generation 5th generation SiC MOSFET by 2025, and is also accelerating the market introduction plans for the 6th and 7th generations, focusing on the development of SiC power devices. ROHM will continue to work on improving device performance and production efficiency, and strengthen the system to provide SiC in various forms such as bare chips, discrete components, and modules, promoting the spread of SiC and contributing to the creation of a sustainable mobility society.  About the "bZ5"  The "bZ5" is a crossover BEV jointly developed by Toyota, BTET, FAW Toyota, etc., with the concept of "Reboot." It features active and iconic styling and is designed to provide a personal space for young users known as Generation Z. The driving range is 550 km for the lower grade and 630 km (CLTC mode) for the higher grade. Reservations began on April 22, 2025, the day before the opening of the 2025 Shanghai Motor Show, attracting significant attention.  About HAIMOSIC (SHANGHAI) Co., Ltd.  HAIMOSIC (SHANGHAI) CO.,LTD. is a Joint venture initiated by Zhenghai Group Co., Ltd. (China) and ROHM Co., Ltd. (Japan). HAIMOSIC is mainly engaged in the R&D, design, manufacturing and sales of the silicon carbide power module, with an estimated annual capacity of 360,000 pieces/year. The total investment of the project is 450 million RMB and the registered capital is 250 million RMB. For more details, please visit HAIMOSIC's website: http://www.haimosic.com/
Key word:
Release time:2025-06-23 14:11 reading:305 Continue reading>>
<span style='color:red'>ROHM</span> Builds the Future of AI with Optimized Solutions for NVIDIA 800V Architecture
  As artificial intelligence continues to redefine the boundaries of computing, the infrastructure powering these advancements must evolve in parallel. A recognized leader in power semiconductor technology, ROHM is proud to be among the key silicon providers supporting NVIDIA’s new 800 V High Voltage Direct Current (HVDC) architecture. This marks a pivotal shift in data center design, enabling megawatt-scale AI factories that are more efficient, scalable, and sustainable.  ROHM’s power device portfolio spans both silicon and wide bandgap technologies, including silicon carbide (SiC) and gallium nitride (GaN), offering a strategic path for data center designers. The company’s silicon MOSFETs are already widely adopted across automotive and industrial sectors, providing a cost-effective and reliable solution for today’s power conversion needs. These are ideal for applications where price, efficiency, and reliability must be balanced, making them a strong fit for transitional stages of AI infrastructure development.  A standout example is the RY7P250BM, a 100V power MOSFET endorsed by major global cloud providers designed specifically for hot-swap circuits in 48V power systems—an essential component in AI servers. Key features include best-in-class SOA (Safe Operating Area) performance and ultra-low ON resistance (1.86 mΩ) in a compact 8080 package. These characteristics help reduce power loss and improve system reliability—crucial requirements in high-density, high-availability cloud platforms. As data centers transition from 12V to 48V and beyond, hot-swap capability becomes critical for maintaining uptime and protecting against inrush currents.  Industrial-grade rectification with minimal losses is an area where ROHM’s SiC devices excel and align with NVIDIA’s plans to begin large-scale deployment of its 800V HVDC data center architecture to power 1 MW compute racks and beyond. At the heart of NVIDIA’s new infrastructure is the conversion of 13.8kV AC from the grid directly into 800V DC. The initiative is designed to address the inefficiencies of traditional 54V rack power systems, which are constrained by physical space, copper overload, and conversion losses.  ROHM’s SiC MOSFETs deliver superior performance in high-voltage, high-power environments, offering higher efficiency through reduced switching and conduction losses, greater thermal stability for compact, high-density systems, and proven reliability in mission-critical applications. These characteristics align perfectly with the requirements of the NVIDIA 800 V HVDC architecture, which aims to reduce copper usage, minimize energy losses, and simplify power conversion across the data center.  Complementing SiC, ROHM is advancing gallium nitride technologies under the EcoGaN™ brand. While SiC is best-suited for high voltage, high current applications, GaN offers exceptional performance in the 100V to 650V range, with superior breakdown field strength, low ON resistance, and ultra-fast switching. ROHM’s broad EcoGaNTM lineup includes 150V and 650V GaN HEMTs, gate drivers, and integrated power stage ICs. At the same time, proprietary Nano Pulse ControlTM technology further improves switching performance, reducing pulse widths to as low as 2ns. These innovations support the growing demand for smaller, more efficient power systems in AI data centers.  Beyond discrete devices, ROHM offers a lineup of high-power SiC modules, including top-side cooling molded packages such as the HSDIP20, equipped with advanced 4th Gen SiC chips. These 1200V SiC modules are optimized for LLC topologies in AC-DC converters and primary-side applications in DC-DC converters. Engineered for high-efficiency, high-density power conversion, they are particularly well-suited for the centralized power systems envisioned in NVIDIA’s architecture. Their robust thermal performance and scalability make them ideal for 800 V busways and MW-scale rack configurations.  The transition to an 800V HVDC infrastructure is a collaborative effort. ROHM is committed to working closely with industry leaders like NVIDIA as well as data center operators and power system designers to provide the foundational silicon technologies needed for this next generation of AI factories. Our expertise in power semiconductors, particularly in wide-bandgap materials like SiC and GaN, positions us as a key partner in developing solutions that are not only powerful but also contribute to a more sustainable and energy-efficient digital future.
Key word:
Release time:2025-06-13 16:52 reading:334 Continue reading>>
<span style='color:red'>ROHM</span> Develops Compact Surface-Mount Near-Infrared LEDs Featuring Industry-Leading* Radiant Intensity
  ROHM has expanded its portfolio of surface-mount near-infrared (NIR) LEDs with new compact top-view types. They are optimized for applications such as VR/AR devices, industrial optical sensors, and human detection sensors.  The demand for advanced sensing technologies utilizing near-infrared (NIR) has grown in recent years, particularly in VR/AR equipment and biosensing devices. These technologies are used in applications such as eye tracking, iris recognition, and blood flow/oxygen saturation measurements that require high accuracy. At the same time, miniaturization, energy efficiency, and design flexibility are becoming increasingly important. In industrial equipment, near-infrared LEDs are playing a greater role with the rise of precise printer control and automation systems. In response, ROHM is expanding customer options by developing a lineup of compact packages and wavelengths that offer greater design flexibility, while contributing to higher precision and power savings by achieving high radiant intensity.  The new lineup consists of six models in three package configurations, including two ultra-compact (1.0mm × 0.6mm), ultra-thin (t=0.2mm) products as part of the PICOLED™ series: SML-P14RW and SML-P14R3W. In addition, there are four variants in the industry-standard (1.6mm × 0.8mm) size, featuring a narrow beam circular lens package (CSL0902RT, CSL0902R3T) and flat lens design that emits light over a wide range (CSL1002RT, CSL1002R3T). Each package is available in two wavelengths, 850nm (860nm for the SML-P14RW) and 940nm, allowing customers various options for their specific application needs. The 850nm wavelength is ideal for phototransistors and camera sensors, making it suitable for high-sensitivity applications such as eye tracking and object detection in VR/AR. At the same time, the 940nm wavelength is less affected by sunlight and does not appear red when emitting light, making it suitable for motion sensors. It is also widely used in biosensing applications such as pulse oximeters to measure blood flow and oxygen saturation (SpO2).  The light source incorporates an NIR element with an optimized emission layer structure utilizing proprietary technology developed through in-house manufacturing expertise. This has made it possible to achieve industry-leading* radiant intensity in a compact package, which was previously considered difficult. For example, compared to a standard 1006 size product, the SML-P14RW delivers approx. 1.4 times the radiant intensity at the same current. In other words, the SML-P14RW consumes 30% less power to achieve the same radiation intensity. This technology improves sensing accuracy and power savings for the entire system.  Going forward, ROHM will continue to provide innovative light source solutions that support next-generation sensing technologies, creating new value in the VR/AR and industrial equipment markets, while contributing to the realization of a sustainable society.  Compact NIR LED Lineup  *1:Ta=25°C *2:IF=30mA *3:IF=20mA  ROHM also offers NIR-sensitive phototransistors.  Application Examples  • VR/AR licenses (eye tracking, gesture recognition)  • Pulse oximeters (blood flow/oxygen saturation measurement)  • Industrial optical sensors (object passage detection, position detection), self-checkout systems (bill/card detection), mobile printers (paper detection)  • Home appliance remote controls (IR data communication), robot vacuum cleaners (floor detection)  Terminology  VR/AR (Virtual Reality/Augmented Reality)  Virtual reality immerses users in a completely digital environment through small high-resolution monitors or screens within an enclosed space. Augmented reality enhances the real world by overlaying digital content onto a headset or smart glasses, enabling users to interact with 3D images. Collectively, these technologies are sometimes referred to as XR (Cross Reality or Extended Reality).  Near-Infrared (NIR)  Refers to light in the wavelength range of 780nm to 1000nm. Primarily used in sensors, communication and measurement applications, it is suitable for high accuracy distance measurement and recognition.  PICOLED™ Series  ROHM's ultra-small, ultra-thin chip LEDs designed for compact mobile devices and wearables, developed using a proprietary element manufacturing process.  Radiant Intensity  An index representing the strength of energy emitted by a light-emitting device in a specific direction (unit: W/sr). This is an important factor that affects the LED’s output intensity and detection performance on the receiving side.  Note: DigiKey™, Mouser™ and Farnell™ are trademarks or registered trademarks of their respective companies.  *PICOLED™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-05-26 14:54 reading:380 Continue reading>>
DENSO and <span style='color:red'>ROHM</span> Reach Basic Agreement to Establish a Strategic Partnership in the Semiconductor Field
  DENSO CORPORATION and ROHM Co., Ltd. are pleased to announce that the two companies have reached a basic agreement to establish a strategic partnership in the semiconductor field. This agreement follows discussions and considerations that began in September 2024.  Recently, the importance of semiconductors that support the electrification and intelligence of vehicles has been increasing significantly. This is driven by the development and spread of electric vehicles aimed at achieving carbon neutrality, as well as the realization of automated driving, which is expected to contribute to zero fatalities in traffic accidents.  DENSO and ROHM have a long-standing collaboration in the trade and development of automotive semiconductors. Going forward, both companies will integrate DENSO's advanced system construction capabilities in the automotive sector with ROHM's cutting-edge semiconductor technology, cultivated in the consumer market. This partnership will focus on enhancing the lineup of high-quality devices, particularly analog ICs, that support vehicle electrification and intelligence, and deepening collaboration in development. Additionally, in highly compatible fields within their semiconductor businesses, both companies will discuss broad collaboration. By globally supplying products created through this co-creation, both companies aim to contribute to technological innovation in the automotive field and realize a sustainable mobility society.  To further solidify this partnership, DENSO and ROHM will continue to consider strengthening their capital relationship.  DENSO CORPORATION President & CEO, Shinnosuke Hayashi  DENSO positions semiconductors as key devices to realize next-generation vehicle systems and has been deepening its cooperative relationships with semiconductor manufacturers that possess rich experience and knowledge. ROHM has a wide range of semiconductor lineups that are crucial for automotive electronics products, essential for vehicle intelligence and electrification. We are very pleased that the partnership with ROHM is progressing smoothly. By further deepening the collaboration between both companies and integrating DENSO's accumulated automotive technology and expertise, we believe we can contribute to the development of the mobility society through stable supply and enhanced product value.  ROHM Co., Ltd. President (Representative Director), Katsumi Azuma  We are very pleased to deepen our collaborative relationship with DENSO, a leader in technological innovation for the mobility society. This partnership not only strengthens our relationship as suppliers but also envisions broad collaboration in the semiconductor business of both companies. Initially, we will focus on the development of analog ICs related to next-generation systems such as electrification, automated driving, and connected vehicles. Furthermore, without narrowing the scope, we will integrate our respective technologies, knowledge, and assets across a wide range of fields to contribute to technological innovation and stable supply in the automotive industry.
Key word:
Release time:2025-05-13 15:12 reading:370 Continue reading>>
Semikron Danfoss’ Module with <span style='color:red'>ROHM</span>’s latest 2kV SiC MOSFETs Integrated into SMA’s Large Scale Solar System
  SMA Solar Technology AG, a leading global specialist in photovoltaic and storage system technology, adopts Semikron Danfoss’ Module with ROHM’s latest 2kV SiC MOSFETs inside its new large scale solar system “Sunny Central FLEX”, a modular platform designed to streamline and enhance grid connections for large-scale photovoltaic installations, battery storage systems, and emerging technologies.  “ROHM’s new 2kV class SiC MOSFETs are designed to enable simple and highly efficient converter topologies for 1500V DC-links. It is developed with high reliability targets and cosmic radiation robustness – addressing the stringent conditions and extended converter lifetime requirements of the photovoltaic sector and beyond,” says Wolfram Harnack, President at ROHM Semiconductor GmbH. “The technology of our SiC device structure and integrated on-chip gate resistance eases device paralleling and simplifies high power module designs. The mass production has started,” adds Harnack.  Semikron Danfoss’ SEMITRANS® 20 has designed for high power applications and fast-switching operations, it represents the next generation of power modules for large converters. SEMITRANS® 20 with ROHM’s 2kV SiC MOSFETs is an integral part of SMA’s Sunny Central FLEX. “Semikron Danfoss and ROHM have collaborated for over a decade, focusing primarily on the implementation of silicon carbide (SiC) in power modules. More recently, we have teamed up to integrate silicon IGBTs as well”, says Peter Sontheimer, Senior Vice President of Semikron Danfoss’ Industry division.  “The new SEMITRANS® 20 offers simple, efficient solutions for 1500VDC applications. These modules are ideal for solar and energy storage inverters. Upcoming high-power electric truck chargers, as well as wind converters, will also benefit,” adds Sontheimer.  "The cooperation between SMA, Semikron Danfoss and ROHM is proof of how the seamless integration of innovative technologies creates the conditions for future-oriented energy projects," said Bernd Gessner, Product Manager Power Conversion Systems at SMA. "The demands on these solutions are higher than ever. SMA has decades of expertise and fulfills the highest requirements in terms of performance, reliability, durability and flexibility. The fact that Sunny Central FLEX meets these highest future-proof standards is also the result of the excellent cooperation with our partners who share the same commitment to excellence."  About SMA Solar Technology AG        As a leading global specialist in photovoltaic and storage system technology, the SMA Group is setting the standards today for the decentralized and renewable energy supply of tomorrow. SMA’s portfolio contains a wide range of efficient PV and battery inverters, holistic system solutions for PV and battery-storage systems of all power classes, intelligent energy management systems and charging solutions for electric vehicles and power-to-gas applications. Digital energy services as well as extensive services round off SMA’s range. SMA inverters installed throughout the world within the last 20 years with a total output of approximately 144 GW help avoid the emission of more than 64 million tons of CO2. SMA’s multi-award-winning technology is protected by more than 1,600 patents and utility models. Since 2008, the Group’s parent company, SMA Solar Technology AG, has been listed on the Prime Standard of the Frankfurt Stock Exchange (S92) and is listed on the SDAX index.  About Semikron Danfoss        Semikron Danfoss is a global technology leader in power electronics. Our product offerings include semiconductor devices, power modules, stacks and systems. In a world that is going electric, Semikron Danfoss technologies are more relevant than ever. With our innovative solutions for automotive, industrial and renewable applications we help the world utilize energy more efficiently and sustainably and thus to significantly reduce overall CO2 emissions – facing one of the biggest challenges today. We take care of our employees and create value for our customers by investing significantly in innovation, technology, capacity and service to deliver best-in-industry performance and for a sustainable future. Semikron Danfoss is a family-owned business, merged by SEMIKRON and Danfoss Silicon Power in 2022. We employ more than 3,500 people in 28 locations across the world. Our global footprint with production sites in Germany, Brazil, China, France, India, Italy, Slovakia and the United States ensures an unmatched service for our customers and partners. We offer more than 90 years of combined expertise in power module packaging, innovation and customer applications – making us the ultimate partner in power electronics.
Key word:
Release time:2025-04-29 10:49 reading:408 Continue reading>>
<span style='color:red'>ROHM</span> Develops New High Power Density SiC Power Modules Compact high heat dissipation design sets a new standard for OBCs
  ROHM has developed the new 4-in-1 and 6-in-1 SiC molded modules in the HSDIP20 package optimized for PFC and LLC converters in onboard chargers (OBC) for xEVs (electric vehicles). The lineup includes six models rated at 750V (BSTxxx1P4K01) and seven products rated at 1200V (BSTxxx2P4K01). All basic circuits required for power conversion in various high-power applications are integrated into a compact module package, reducing the design workload for manufacturers and enabling the miniaturization of power conversion circuits in OBCs and other applications.  In recent years, the rapid electrification of cars is driving efforts to achieve a decarbonized society. Electric vehicles are seeing higher battery voltages to extend the cruising range and improve charging speed, creating a demand for higher output from OBCs and DC-DC converters. At the same time, there is an increasing need in the market for greater miniaturization and lighter weight for these applications, requiring technological breakthroughs to improve power density - a key factor - while enhancing heat dissipation characteristics that could otherwise hinder progress. ROHM’s HSDIP20 package addresses these technical challenges that were previously becoming difficult to overcome with discrete configurations, contributing to both higher output and the downsizing of electric powertrains.  The HSDIP20 features an insulating substrate with excellent heat dissipation properties that suppresses the chip temperature rise even during high power operation. When comparing a typical OBC PFC circuit utilizing six discrete SiC MOSFETs with top-side heat dissipation to ROHM’s 6-in-1 module under the same conditions, the HSDIP20 package was verified to be approx. 38°C cooler (at 25W operation). This high heat dissipation performance supports high currents even in a compact package, achieving industry-leading power density more than three times higher than top-side cooled discretes and over 1.4 times that of similar DIP type modules. As a result, in the PFC circuit mentioned above, the HSDIP20 can reduce mounting area by approx. 52% compared to top-side cooled discrete configurations, greatly contributing to the miniaturization of power conversion circuits in applications such as OBCs.  Going forward, ROHM will continue to advance the development of SiC modules that balance miniaturization with high efficiency while also focusing on the development of automotive SiC IPMs that provide higher reliability in a smaller form factor.  Product Lineup  *1: Tc=25°C VGS=18V *2: Combines chips with different ON resistances  *3: Q1, Q4 pins *4: Q2, Q3, Q5, Q6 pins  Application Examples  Power conversion circuits like PFC and LLC converters are commonly used in the primary side circuits of industrial equipment, allowing the HSDIP20 to also contribute to the miniaturization of applications in both the industrial and consumer electronics fields.  ◇ Automotive systems  Onboard chargers, electric compressors and more.  ◇ Industrial equipment  EV charging stations, V2X systems, AC servos, server power supplies, PV inverters, power conditioners, etc.  Sales Information  Pricing: $100/unit (samples, excluding tax)  Availability: OEM quantities (April 2025)  Supporting Information  ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered such as simulations and thermal designs that enable quick evaluation and adoption of HSDIP20 products. Two evaluation kits are available as well, one for double-pulse testing and the other for 3-phase full bridge applications, enabling evaluation under close to actual circuit conditions.  For more information, please contact AMEYA360 or visit the contact page on ROHM’s website.  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSIC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Power Factor Correction (PFC)  A circuit that enhances the power factor by shaping the waveform of input power in the power supply circuit. By using a PFC circuit, the input power is made closer to a sine wave (power factor = 1), improving power conversion efficiency. While PFC circuits typically rely on diode rectification, OBCs often employ active bridge rectification using MOSFETs or bridgeless PFC. This approach is favored because MOSFETs offer lower switching losses, and especially in high power PFCs, using SiC MOSFETs reduces heat generation and power losses.  LLC Converter  A type of resonant DC-DC converter known for its high efficiency with low noise power conversion. The name LLC comes from its basic configuration, which combines two inductors (L) and a capacitor (C) in the circuit. By forming a resonant circuit, switching losses are significantly reduced, making it ideal for applications requiring high efficiency, such as OBCs, power supplies for industrial equipment, and server power supplies.
Key word:
Release time:2025-04-24 17:23 reading:373 Continue reading>>
<span style='color:red'>ROHM</span> at PCIM Europe 2025: Powerful Highlights for E-Mobility and Industrial Applications
  From May 6th to 8th ROHM will exhibit at the PCIM Expo & Conference, the leading international event for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, taking place in Nuremberg. On its booth 304 in hall 9, ROHM will showcase reference projects with renowned partners and present the evolution of its package designs and evaluation boards.  "PCIM 2025 in Nuremberg is the meeting place for innovation and progress in power electronics. This is where the brightest minds in the industry come together to shape the future of e-mobility and industrial applications. We will be presenting great customer applications to showcase the possibilities offered by our products in the best possible way. Whether in the PV industry or e-mobility sectors – we are involved and would like to talk to our customers on site about the key projects of the future," says Wolfram Harnack, President at ROHM Semiconductor Europe.  Highlights of ROHM’s presence at PCIM 2025 include:  For automotive applications, ROHM will exhibit an inverter unit utilizing the TRCDRIVE pack™ that consists of a 2-in-1 SiC Molded Module. Valeo and ROHM have been collaborating since 2022, initially focusing on technical exchange to enhance the performance and efficiency of motor inverters, a key component in the propulsion systems of electric vehicles (EVs) and plug-in hybrids (PHEVs).  Power solutions for on-board chargers (OBCs), essential for e-mobility applications, will also be on the booth. ROHM will showcase the new EcoSiC™ molded power modules suitable for OBCs, along with OBC applications adopting ROHM’s power semiconductor devices.  ROHM’s Power Eco Family products: ROHM has grouped the four product lines of power semiconductors under the brand concept “Power Eco Family” and is contributing to the development of a sustainable ecosystem through improved application performance. We will show featured solutions and case studies at the booth.  In this context, one application example is the new GaN Lineup: ROHM’s EcoGaN™ series of 650V GaN HEMTs in the TOLL package has been adopted for AI server power supplies by Murata Power Solutions, a subsidiary of the Murata Manufacturing Group and a leading supplier of electronic components, batteries and power supplies in Japan. Integrating ROHM’s GaN HEMTs, which combine low loss operation with high-speed switching performance, in Murata Power Solutions’ 5.5kW AI server power supply unit achieves greater efficiency and miniaturization.  For more information, please refer to AMEYA360’s related news release.  The details of the Power Eco Family are as follows.  ● EcoSiC™ is a brand of devices leveraging silicon carbide which is attracting attention in the power device field for performance that surpasses silicon.  ● EcoGaN™ comprises compact, energy-efficient devices that utilize the low ON resistance, high-speed switching characteristics of GaN to achieve lower application power consumption, smaller peripheral components, and simpler designs requiring fewer parts.  ● EcoIGBT™ is ROHM’s brand of IGBTs consisting of both devices and modules designed to meet the needs of high-voltage applications in the power device field.  ● EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  During the fair, ROHM’s power experts will participate in several panel discussions and conference presentations. Additionally, they will hold poster sessions at the PCIM Europe 2025 conference.  More information regarding ROHM’s key highlights at PCIM 2025 is available here: www.rohm.com/pcim  *EcoSiC™, EcoGaN™, EcoIGBT™, EcoMOS™ and TRCDRIVE pack™ are trademarks or registered trademarks of ROHM Co., Ltd.
Key word:
Release time:2025-04-23 17:01 reading:349 Continue reading>>
<span style='color:red'>ROHM</span> Develops Class-Leading* Low ON-Resistance, High-Power MOSFETs for High-Performance Enterprise and AI Servers
  ROHM has developed N-channel power MOSFETs featuring industry-leading* low ON-resistance and wide SOA capability. They are designed for power supplies inside high-performance enterprise and AI servers.  The advancement of high-level data processing technologies and the acceleration of digital transformation have increased the demand for data center servers. At the same time, the number of servers equipped with advanced computing capabilities for AI processing is on the rise and is expected to continue to grow. These servers operate 24 hours a day, 7 days a week – ensuring continuous operation. As a result, conduction losses caused by the ON-resistance of multiple MOSFETs in the power block have a significant impact on system performance and energy efficiency. This becomes particularly evident in AC-DC conversion circuits, where conduction losses make up a substantial portion of total power loss – driving the need for low ON-resistance MOSFETs.  Additionally, servers equipped with a standard hot-swap function, which allow for the replacement and maintenance of internal boards and storage devices while powered ON, experience a high inrush current during component exchanges. Therefore, to protect server components and MOSFETs from damage, a wide Safe Operating Area (SOA) tolerance is essential.  To address these challenges, ROHM has developed its new DFN5060-8S package that supports the packaging of a larger die compared to conventional designs, resulting in a lineup of power MOSFETs that achieve industry-leading* low ON-resistance along with wide SOA capability. These new products significantly contribute to improving efficiency and enhancing reliability in server power circuits.  The new lineup includes three products. The RS7E200BG (30V) is optimized for both secondary-side AC-DC conversion circuits and hot-swap controller (HSC) circuits in 12V power supplies used in high-performance enterprise servers. The RS7N200BH (80V) and RS7N160BH (80V) are ideal for secondary AC-DC conversion circuits in 48V AI server power supplies.  All three models feature the newly developed DFN5060-8S package (5.0mm × 6.0mm). The package increases the internal die size area by approximately 65% compared to the conventional HSOP8 package (5.0mm × 6.0mm). As a result, the RS7E200BG (30V) and RS7N200BH (80V) achieve ON-resistances of 0.53mΩ and 1.7mΩ (at VGS = 10V), respectively – both of which rank among the best in the industry in the 5.0mm × 6.0mm class, significantly contributing to higher efficiency in server power circuits.  Moreover, ROHM has optimized the internal clip design to enhance heat dissipation, further improving SOA tolerance, which contributes to ensuring application reliability. Notably, the RS7E200BG (30V) achieves an SOA tolerance of over 70A at a pulse width of 1ms and VDS = 12V, which is twice that of the conventional HSOP8 package MOSFETs under the same conditions, ensuring industry-leading SOA performance in a 5.0mm × 6.0mm footprint.  Going forward, ROHM plans to gradually begin mass production of power MOSFETs compatible with hot-swap controller circuits for AI servers in 2025, continuing to expand its lineup that contributes to greater efficiency and reliability across a wide range of applications.  Product Lineup  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Application Examples  ・AC-DC conversion and HSC circuits for 12V high-performance enterprise server power supplies  ・AC-DC conversion circuits for 48V AI server power supplies  ・48V industrial equipment power supplies (i.e. fan motors)  Terminology  Low ON-Resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) results in lower power loss during operation.  SOA (Safe Operating Area) Tolerance  The range of voltage and current within which a device can operate safely without damage. Exceeding this range can lead to thermal runaway or device failure, making SOA tolerance a critical factor, especially in applications prone to inrush current or overcurrent.  Power MOSFET  A type of MOSFET used for power conversion and switching applications. N-channel MOSFETs are the mainstream choice, as they become conductive when a positive voltage is applied to the gate relative to the source, offering lower ON-resistance and higher efficiency than P-channel variants. Due to their low loss and high-speed switching capabilities, power MOSFETs are widely used in power circuits, motor drive circuits, and inverters.  Hot-Swap Controller (HSC)  A specialized integrated circuit (IC) that enables hot-swap functionality, allowing components to be inserted or removed while the power supply system remains active. It plays a crucial role in managing inrush current that occurs during component insertion, protecting both the system and connected components from damage.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered ON. Proper control of this current reduces stress on power circuit components, helping to prevent device failure and stabilize the system.
Key word:
Release time:2025-04-10 13:10 reading:468 Continue reading>>

Turn to

/ 7

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
model brand To snap up
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code