士兰微8英寸碳化<span style='color:red'>硅</span>项目披露新进展
  6月26日,中建三局一公司承建的厦门士兰微8英寸碳化硅功率器件芯片制造生产线项目(一期)首台设备提前搬入。该项目是2025年福建省及厦门市重点建设项目,也是厦门最大的碳化硅项目。  项目位于福建省厦门市,总建筑面积 23.45万平方米,建成后将极大提升士兰微碳化硅芯片制造能力,助推厦门市第三代半导体产业加快发展。  2024年5月,士兰微宣布拟与厦门半导体投资集团有限公司、厦门新翼科技实业有限公司共同向子公司厦门士兰集宏半导体有限公司增资41.50亿元,并于2024年5月21日签署《8英寸SiC功率器件芯片制造生产线项目之投资合作协议》。  当时消息显示,该项目拟建设一条以SiC-MOSEFET为主要产品的8英寸SiC功率器件芯片制造生产线,产能规模6万片/月。  其中,第一期项目总投资70亿元,其中资本金42.1亿元,占约60%;银行贷款27.9亿元,占约40%。  第二期投资50亿元,在第一期的基础上实施(第二期项目资本结构暂定其中30亿元为资本金投资,其余为银行贷款)。第二期建成后新增8英寸SiC芯片2.5万片/月的生产能力,与第一期的3.5万片/月的产能合计形成6万片/月的产能。  士兰微电子董事会秘书、副总裁陈越表示,他们总投资70亿元的一期项目,将尽最大努力争取在今年年底实现初步通线,明年一季度投产,到2028年底最终形成,年产42万片8英寸SiC功率器件芯片的生产能力。
关键词:
发布时间:2025-07-04 16:27 阅读量:220 继续阅读>>
<span style='color:red'>硅</span>IGBT与碳化<span style='color:red'>硅</span>MOSFET的优缺点
  随着电力电子技术的不断发展,硅IGBT和碳化硅MOSFET作为主要功率开关器件,在电力变换、驱动等领域都扮演着重要角色。两者在性能、功耗、效率等方面有着不同特点,本文将探讨硅IGBT和碳化硅MOSFET的特性,并对它们的优缺点进行详细对比分析。  1. 硅IGBT的优缺点  优点:  低导通压降:硅IGBT具有较低的导通压降,能够减少功耗和散热需求。  稳定性强:在高温、高电压条件下仍能保持稳定工作。  成熟技术:已经经过长期发展和改进,技术相对成熟,生产工艺稳定。  缺点:  开关速度慢:IGBT的开关速度较慢,导致在高频应用中性能受限。  功耗较高:由于导通压降存在,会产生一定的功耗损耗。  温升较高:在高负载情况下容易产生较高的温度升高,需要额外散热处理。  2. 碳化硅MOSFET的优缺点  优点:  高开关速度:碳化硅MOSFET具有极快的开关速度,适合高频应用。  低导通损耗:由于导通特性优秀,功耗损耗较低。  低温升:在高负载情况下温升较低,对散热要求不高。  缺点:  价格较高:碳化硅器件相对硅IGBT价格较高,成本较大。  新技术:相对硅IGBT,碳化硅器件的生产工艺和技术较新,仍在不断完善中。  抗干扰能力差:对于电磁干扰的抵抗能力相对较弱。  3. 对比分析  性能比较:  开关速度:碳化硅MOSFET具有更快的开关速度,适合高频应用;而硅IGBT则速度较慢。  功耗:在功耗方面,碳化硅MOSFET表现较优,而硅IGBT存在一定的功耗损失。  稳定性:硅IGBT在高温高压条件下的稳定性较好,而碳化硅MOSFET则更适合高频、高效率应用。  成本和可靠性:  成本:硅IGBT的成本相对较低,技术相对成熟,生产规模大;而碳化硅MOSFET的价格较高,因为生产工艺和材料技术要求较高。  可靠性:硅IGBT在长期应用中表现出稳定的可靠性,且故障率较低;碳化硅MOSFET作为新技术,其长期稳定性尚待进一步验证。  应用领域:  硅IGBT:电力电子、工业变频器、风力发电等领域,对稳定性和成本要求较高。  碳化硅MOSFET:高频变换器、电动汽车驱动系统、太阳能逆变器等需要高效率、高频率开关的领域。
关键词:
发布时间:2025-06-06 11:31 阅读量:334 继续阅读>>
<span style='color:red'>硅</span>二极管和锗二极管的区别是什么
  二极管是一种重要的半导体器件,广泛应用于电力、通信、计算机等各个领域。硅二极管和锗二极管作为最早被发明和广泛应用的两种二极管类型,它们在材料特性、工作性能、温度稳定性等方面存在显著差异。本文将探讨硅二极管和锗二极管之间的区别。  1. 硅二极管与锗二极管的材料特性  1.1 硅二极管:  硅(Silicon) 是一种常见的半导体材料,具有较高的热稳定性和机械强度,适用于高温环境。硅二极管的导电性较好,具有较高的击穿电压和较短的载流子寿命。  1.2 锗二极管:  锗(Germanium) 是另一种常见的半导体材料,比硅具有较低的禁带宽度,因此其导电性也较好。然而,锗材料相对脆弱,导致其应用范围受到一定限制。  2. 工作特性比较  2.1 导电性:  硅二极管:由于硅的禁带宽度较大,硅二极管的导电性较差,需要较高的电压才能使其导通。  锗二极管:锗的禁带宽度较小,因此锗二极管具有较好的导电性,只需较低电压即可导通。  2.2 温度稳定性:  硅二极管:硅材料具有较好的热稳定性,在高温环境下仍能保持较好的性能。  锗二极管:锗材料对温度变化较为敏感,温度升高会影响其性能表现。  3. 应用场景对比  3.1 硅二极管:  由于硅二极管具有较高的击穿电压和热稳定性,常用于功率放大器、整流器等高功率应用场合。  3.2 锗二极管:  锗二极管由于其导电性能优良,常用于射频放大器、检波器等低功率高频电路中。
关键词:
发布时间:2025-06-06 11:29 阅读量:284 继续阅读>>
捷捷微电可控<span style='color:red'>硅</span>BTA16-600CW助力徕芬高速电吹风SE 02
森国科推出第五代Thinned MPS® 碳化<span style='color:red'>硅</span>二极管KS10065(650V/10A)
  深圳市森国科科技股份有限公司发布了第五代Thinned MPS® 碳化硅二极管KS10065(650V/10A), 该系列产品提供多达八种封装,充分满足客户在OBC、工业电源、数据电源、储能逆变器、变频驱动、快充头、适配器等多个应用场景的需求。  森国科KS10065系列产品拥有超低的VF值,可降低正向导通损耗;少子器件零反向恢复,在反向恢复过程中极大的减少了反向恢复损耗,同时又减少了EMI干扰,可大大提升整机效率,整体损耗的减少也带来更小的温升;卓越的IFSM值,在抗雷击/浪涌等产品可靠性上有极其出色的表现;灵活多样的封装形式,助力客户在不同场景中的高效应用。  KS10065(650V/10A) 碳化硅二极管, 主要应用于5种PFC电路和IGBT续流二极管,以下是典型应用电路:  无桥PFC: D1,D2,使用SiC二极管和SiC MOS替代了传统的整流二极管,可明显提高效率。  单向PFC: D5,电路简单,成本低,初级无电解电容。  交错并联PFC: D5, D6,可以减小输入电流纹波和输出电容纹波电流的有效值,并提升电路的功率等级。  维也纳(VIENNA)PFC :具有谐波含量低、功率因数高、动态性能良好的特性。  IGBT续流二极管:降低开关损耗,增大开关频率。  森国科深耕宽禁带半导体领域多年,目前已与国内外TOP级工艺厂商(X-FAB\积塔等)达成友好合作,秉承着“做最合适的功率器件”的理念,致力于打造性能优越、尺寸体积可控的功率器件全系列产品,助力来自OBC、工业电源、数据电源、储能逆变器、变频驱动、快充头、适配器等多个领域的客户实现高耐压、耐高温、耐高频、低功耗、低成本的应用需求,持续赋能低碳发展。  名词释义  TMPS:是Thinned Merged PIN Schotty Diode 的缩写, 中文翻译为:减薄的混合型PN结势垒肖特基二极管,森国科将该系列产品注册商标为:Thinned MPS®  PFC:英文全称为“PowerFactorCorrecTIon”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。  维也纳整流桥:Vienna 整流桥是脉冲宽度调变的整流器,可以接收三相交流电源,也是功率因数修正电路,是Johann W. Kolar在1990年发明。
关键词:
发布时间:2025-05-12 14:27 阅读量:342 继续阅读>>
半导体芯片中,什么是多晶<span style='color:red'>硅</span>耗尽效应?
  1. 引言:多晶硅栅极的重要性及耗尽效应的问题  在现代集成电路制造领域,多晶硅栅极是场效应晶体管(FET)的核心组件,其性能直接决定着晶体管的开关特性与集成电路的整体功能。凭借良好的电学性能、与现有硅基工艺的高兼容性,多晶硅栅极长期以来成为集成电路制造的首选材料,在推动晶体管尺寸不断缩小、性能持续提升方面发挥了关键作用。  然而,随着集成电路制造工艺向纳米级不断迈进,多晶硅栅极耗尽效应逐渐成为制约器件性能提升的关键瓶颈。该效应不仅影响晶体管的开关速度与驱动能力,还会导致电路功耗增加、可靠性下降,严重阻碍了集成电路产业的进一步发展。  2. 耗尽效应的物理机制  多晶硅栅极耗尽效应的产生源于栅极与硅衬底间的电荷分布变化。当栅极施加电压时,会在电介质与沟道界面吸引少数载流子,形成反型载流子分布。为维持电中性,电介质与多晶硅界面附近会出现载流子积累,进而耗尽附近半导体的电荷。当半导体电荷完全耗尽时,该区域呈现绝缘特性,等效增大了栅介质的有效厚度。尽管耗尽层厚度极薄,仅相当于几个埃的二氧化硅厚度(NMOS 约 2 - 4 埃,PMOS 约 3 - 6 埃),但在栅介质厚度不断缩减的纳米级工艺中,其对器件性能的影响变得不容忽视。此外,栅介质厚度变薄时,相同栅极电压下内建电场增强,促使更多载流子积累,进一步加剧耗尽效应。  3. 耗尽效应对器件性能的影响  耗尽效应会显著降低器件的电学性能。由于耗尽层的存在,栅极对沟道的控制能力减弱,导致晶体管的阈值电压漂移、亚阈值摆幅增大,影响器件的开关速度与信号传输能力。同时,耗尽效应还会增加栅极电容,导致充放电时间延长,进一步降低电路的工作频率。此外,耗尽效应引起的电荷分布不均会使器件的漏电流增大,不仅增加了电路的静态功耗,还会产生额外的热量,影响集成电路的稳定性与可靠性。  4. 传统解决方法的局限(如掺杂浓度)  提高多晶硅栅极的掺杂浓度曾是缓解耗尽效应的常用方法。通过增加自由载流子浓度,可减少耗尽现象的发生。然而,随着工艺节点的不断缩小,如28纳米以下,这一方法逐渐面临诸多限制。一方面,栅极掺杂浓度已接近饱和状态,难以进一步提升;另一方面,高浓度掺杂会引发严重的工艺问题。以 PMOS 为例,高浓度的硼掺杂极易穿透栅介质,破坏器件结构,影响器件性能与可靠性。目前,NMOS 掺杂浓度需控制在 10²⁰ cm⁻³ 以下,PMOS 掺杂浓度需控制在 10¹⁹ cm⁻³ 以下,这使得通过提高掺杂浓度解决耗尽效应的途径愈发困难。  5. 金属栅极的引入及其优势  鉴于传统方法的局限性,金属栅极在 28nm 节点及以下工艺中逐步得到应用,如HKMG工艺28纳米以下先进制程为何离不开HKMG。金属具有极高的自由载流子浓度,从根本上避免了耗尽效应的产生。采用金属栅极后,晶体管的阈值电压稳定性显著提高,亚阈值摆幅减小,开关速度与驱动能力大幅提升。同时,金属栅极还能有效降低栅极电阻与电容,减少信号传输延迟,提高电路的工作频率。此外,金属栅极与高K电介质的结合使用,进一步优化了器件的电学性能,降低了功耗,为集成电路的持续发展提供了有力支撑。  6. 结论与未来展望  多晶硅栅极耗尽效应是集成电路纳米级工艺发展过程中面临的重要挑战,传统解决方法的局限性促使金属栅极成为主流解决方案。金属栅极的引入有效克服了耗尽效应的影响,推动了集成电路性能的大幅提升。然而,随着集成电路向更小尺寸、更高性能方向发展,新的挑战依然存在。未来,需要进一步探索新型栅极材料与工艺技术,优化器件结构设计,以满足不断增长的高性能、低功耗需求,持续推动集成电路产业的创新与发展。
发布时间:2025-05-07 09:48 阅读量:455 继续阅读>>
硅二极管系列产品" alt="森国科推出广泛用于"光、风、储、充、荷"的1200V碳化二极管系列产品">
  深圳市森国科科技股份有限公司日前发布了第五代Thinned MPS®1200V碳化硅二级管,涵盖了10A、15A、20A、30A、40A、50A系列等数十款型号,相比Si器件,碳化硅肖特基二极管具有导通电阻低,开关损耗小的特点,完美满足中高压系统的需求,成为了光伏逆变器、风能逆变器、储能双向逆变器、充电桩模块、大功率工业电源、车载充电机等领域客户的不二选择,碳化硅功率器件的使用对于能源领域朝着轻量化、节能低碳化的转型升级也具有重要的意义。  碳化硅作为第三代宽禁带半导体的代表性材料之一,与传统Si基材料相比,其电子饱和漂移速率是硅的2倍,更加适合在高频电路中使用;热导率相当于Si的3倍,因而散热效果更佳,可靠性更高;SiC材料的临界击穿场强能力高达硅的10倍之多,可使器件更加耐高压;禁带宽度上来说,SiC材料是Si材料的3倍,使其具备了低漏电的优异性能。  此外,经过多轮测试与验证,森国科1200V碳化硅二级管拥有强大的抗浪涌冲击能力、抗雪崩能力,强健性和鲁棒性。较高的热性能降低了对冷却系统的需求,同时由于反向恢复时间短,可降低电磁干扰的问题。在"风、光、储、充、荷"等领域常用的电路可参考:  交错并联PFC: D5, D6:可以减小输入电流纹波和输出电容纹波电流的有效值,并提升电路的功率等级。  维也纳(VIENNA)PFC:具有谐波含量低、功率因数高、动态性能良好的特性。  IGBT续流二极管:降低开关损耗,增大开关频率。  森国科深耕集成电路领域多年,目前已与国内外多家著名的FAB厂达成紧密的合作关系。秉承着“做最合适的功率器件”的理念,致力于打造性能优越、尺寸体积可控的功率器件全系列产品,助力来自新能源汽车、充电桩、光伏逆变器、OBC、工业电源、数据电源、储能逆变器、变频驱动、快充头、适配器等多个领域的客户实现高耐压、耐高温、耐高频、低功耗、低成本的应用需求,持续赋能低碳发展。
关键词:
发布时间:2025-05-07 09:09 阅读量:376 继续阅读>>
佑风微:SiC Schottky Diode碳化<span style='color:red'>硅</span>肖特基二极管应用及产品选型
英飞凌:采用电平位移驱动器和碳化<span style='color:red'>硅</span>SiC MOSFET交错调制图腾柱5kW PFC评估板
  电子设备会污染电网,导致电网失真,威胁着供电系统的稳定性和效率。  为此,电源设计中需要采用先进的功率因数校正(PFC)电路。PFC通过同步输入电流和电压波形来确保高功率因数。通过使用PFC,电源系统可以减少失真,保持稳定高效的供电。  英飞凌新品EVAL-1EDSIC-PFC-5KW是用于5kW交错图腾柱PFC(功率因数校正)的完整系统解决方案。图腾柱PFC电路采用EiceDRIVER™ 1ED21271S65F和CoolSiC™ MOSFET IMBG65R022M1H。  测试结果显示,在230 VAC半负载条件下,功率达98.7%。  产品型号:  ■ EVAL-1EDSIC-PFC-5KW  所用器件:  ■ EiceDRIVER™ 1ED21271S65F驱动CoolSiC™ MOSFET  ■ CoolSiC™ MOSFET IMBG65R022M1H  ■ EiceDRIVER™ 2ED2182S06F驱动CoolMOS™  ■ CoolMOS™ S7 SJ MOSFET 600V IPQC60R010S7  ■ Controller:XMC™ 4200 Arm® Cortex®-M4  ■ 辅助电源:ICE2QR2280G  产品特点  采用CoolSiC™和CoolMOS™的交错图腾柱设计,由电平位移驱动器驱动1ED21271驱动  高压侧电源开关的硬件击穿保护  CCM图腾柱PFC  提高性能和稳健性  应用价值  半负载时效率高达97.8%  输入电压范围:100-240伏  固定400V输出直流电压  峰值电流限制50A  竞争优势  高压侧驱动器集成保护  高速直通保护  创新的PFC级设计  框图  应用领域  暖通空调(HVAC)  家用电器  功率变换系统  通用驱动器
关键词:
发布时间:2025-03-21 09:17 阅读量:606 继续阅读>>
埃肯有机<span style='color:red'>硅</span>ELKEM斩获2025首个创新奖项

跳转至

/ 14

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码