俄罗斯公布自研<span style='color:red'>光刻机</span>路线图:2036年实现10nm以下工艺!
  9月28日消息,俄罗斯计算机与数据科学博士Dmitrii Kuznetsov近日通过X平台曝光了俄罗斯最新的光刻机研发路线图,显示俄罗斯最快将在2026年完成65-40nm分辨率的光刻机的研发,2032年前完成28nm分辨率的光刻机的研发,并最终在2036年底前完成可以生产10nm以下先进制程的全新极紫外线光(EUV)光刻机的研发。  其实,早在2024年12月,俄罗斯科学院微观结构物理研究所就已经公布由其主导研发的EUV光刻机计划,该EUV光刻机将采用波长为11.2nm的镭射光源,而非ASML 使用的标准13.5nm波长,目标是打造比ASML 系统更经济的EUV光刻机。而最新曝光的俄罗斯光刻机路线图则相比之前得到了进一步完善,研发周期也一直延伸到了2036年。  具体来说,俄罗斯光刻机路线图包括三个主要阶段:  第一个阶段:计划于 2026 年至 2028 年推出分辨率为 60-40nm 的光刻机,具有双镜物镜光学系统、套刻精度可以达到10nm、曝光区域为 3 x 3mm,生产效率为每小时超过 5 片晶圆。  第二阶段:计划于2029-2032 年推出分辨率为 65-28nm (潜力为 14 nm)的光刻机,将采用四镜物镜光学系统、套刻精度5nm、曝光区域为26 x 0.5 mm,生产效率为每小时超过50片晶圆。  第三阶段:计划于2033-2036 年推出分辨率为 28-13nm(潜力为9nm)的光刻机,将采用六镜物镜光学系统、套刻精度2nm、曝光区域为26 x 2 mm,生产效率将提升至每小时超过100片晶圆。  需要指出的是,俄罗斯的光刻机路研发技术路线与ASML完全不同。比如,ASML 的 EUV 光刻机采用的是激光轰击金属锡滴产生13.5nm波的EUV光源,然后通过反射镜收集并修正路线,最终达到晶圆表明的光刻胶。但是金属锡会产生碎屑,从而污染光掩模(也称光罩)。  相比之下,而俄罗斯光刻机则选择采用的是基于氙(xenon)气的激光器来产生波长为11.2nm的EUV光源,不仅能将分辨率提升约20%,还可以简化设计并降低整个光学系统的成本。此外,该设计还可减少光学元件的污染,延长收集器和保护膜等关键零件的寿命。  俄罗斯科学院微观结构物理研究所称,由于光刻工艺的简化,其认为11.2nm的光刻技术将成为真正的193nm浸没式DUV光刻机的真实替代品,这主要在于其无需浸没系统,且分辨率高,成本低廉。  但是,俄罗斯的这个EUV光刻机路线并不仅仅是改换采用 11.2nm 的激光器这么简单。尽管11.2nm波长仍属于EUV范畴,但这并非单纯的小幅调整。因为所有光学元件包括反射镜及涂层、光罩设计以及光阻剂,都需要针对新的波长进行特别设计与优化。  比如,ASML EUV光刻机的反射镜采用的是硅与钼的镀膜反射镜,而11.2nm波长的EUV光刻机则需要由钌和铍(Ru/Be) 制成的反射镜。所以,激光光源、反射镜、光阻化学、污染控制及其他支持技术也须重新设计,才能确保在11.2nm波长下的有效运作。  所以,以11.2nm波长为基础的工具很难直接兼容现有以13.5nm为基础EUV 架构与生态系统,甚至连电子设计自动化(EDA)工具也需要进行更新。虽然现有EDA 工具仍可完成逻辑综合、布局和路由等基本步骤,但涉及曝光的关键制程,如光罩数据准备、光学邻近校正(OPC)和解析度增强技术(RET),则需要重新校准或升级为适合11.2nm的新制程模型。  总结来说,俄罗斯的自研的EUV光刻机技术虽然简化了原本复杂的光源系统,并降低了这部分的成本,但是其并不能复用现有的EUV技术的零部件和材料,因此也会带来很多的复杂性和成本的挑战,需要俄罗斯自行开发配套的生态系统,而这可能需要数年甚至十年以上时间。  更为关键的是,俄罗斯研发的EUV光刻机还面临着生产效率低下的问题。虽然曝光的图片显示,其第三阶段推出的EUV光刻机的生产效率可达每小时超过100片晶圆,但是这只有ASML EUV光刻机的一半。
关键词:
发布时间:2025-09-29 17:14 阅读量:277 继续阅读>>
日本首台<span style='color:red'>光刻机</span>制造工厂,关闭!
  尼康公司宣布将于2025年9月30日关闭横滨制造工厂。在该工厂的人员和运营将迁移至其他工厂,预计对尼康2025年的财务业绩影响甚微。这标志着半导体先驱时代的终结。  据公开资料,尼康横滨工厂成立于1967年,历经58年,是尼康内部历史上第二悠久的部门,也是该公司最早在总部以外设立的生产基地。该工厂主要专注于制造精密光学设备,包括用于平板显示器生产的显微镜和曝光系统。该工厂在日本半导体行业发挥了重要作用,尤其是在1980年生产了日本第一台半导体曝光系统,这是一台尼康步进式光刻机,型号是NSR-1010G。  横滨工厂的关闭,标志着尼康应对长期存在的行业挑战的一个时代的终结。由于经济停滞、日本人口结构变化以及半导体和显示器市场需求萎缩,尼康精密设备部门的收入一直面临下滑。英特尔等主要客户的运营困难以及包括美国关税在内的持续贸易紧张局势,进一步加剧了这些压力。  这些因素导致尼康精密设备业务2025财年的收入预计将下降8.4%,预计收入为1850亿日元(约合12.4亿美元),多年来首次跌破2000亿日元大关。  尼康正将重点转向医疗保健、光学设备和包括3D打印在内的数字制造技术等新兴增长领域。精密设备业务将重点关注半导体封装、测试工艺光刻系统和精密检测设备等领域的新应用,这表明其战略重心已从传统的曝光系统制造转向其他领域。  尼康横滨工厂的未来用途尚未披露。然而,此次工厂关闭被广泛视为尼康公司历史上的象征性转折点,凸显了该公司在不断变化的市场动态和技术趋势中调整业务结构的努力。
关键词:
发布时间:2025-08-26 16:37 阅读量:497 继续阅读>>
新型<span style='color:red'>光刻机</span>工厂,9月量产!
  在半导体制造设备这一全球高门槛、高技术、高投入的战场上,佳能(Canon)正试图以新姿态重返赛道。2025年7月30日,佳能宣布在日本宇都宫的生产基地正式启用其21年来首座专注于半导体制造设备的新工厂,意图借助生成式AI热潮带来的芯片需求拐点,重新冲击光刻机市场。  这座新工厂坐落于佳能宇都宫生产中心,占地达67,518平方米,计划于2025年9月正式投产。总投资额高达500亿日元(折合约3.36亿美元),用于新厂房建设与先进设备引入。投产后,佳能半导体光刻设备的整体产能预计将提升50%。佳能董事长兼首席执行官御手洗富士夫(Fujio Mitarai)在开幕式上表示:“新工厂汇集了佳能多年来在光学、精密控制、材料工程等领域的核心技术,将成为支持全球半导体产业发展的重要力量。”  光刻设备是芯片制造中最关键的一环,主要用于将精密的电路图案转移至硅晶圆表面。一般而言,线宽越小,芯片的性能越强、功耗越低。当前最先进的极紫外(EUV)光刻系统能够将线宽压缩至7纳米以下,属于前端制程的尖端利器。  在这一领域,荷兰巨头ASML垄断全球市场,其EUV设备市占率超过90%,是唯一的EUV光刻系统供应商。相比之下,日本的佳能与尼康曾在20世纪末掌控全球光刻市场,但在21世纪初的微缩竞争中败下阵来,被ASML远远甩在身后。  这次佳能的新工厂并不生产高端EUV设备,而是聚焦i-line(365nm)与氟化氪(KrF,248nm)光刻机,这些主要用于90nm以上节点的“成熟制程”芯片,例如驱动IC、电源管理芯片、MCU、功率器件等。  值得注意的是,这家工厂还将生产纳米压印光刻(NIL)设备,一种“像图章一样”在基板上直接印出电路图案的下一代技术。尽管这项技术仍处于应用探索阶段,但佳能已是全球少数掌握该技术的厂商之一。  佳能重新关注“成熟光刻技术”的背后,是AI芯片制造新趋势的变化。生成式AI(如ChatGPT、文心一言等)的爆发式增长,推动服务器、GPU等高算力芯片需求暴增,而单芯片的微缩已接近极限,摩尔定律放缓,先进封装成为突破口。  在先进封装中,制造商倾向于将多个芯片(如CPU、GPU、HBM)“捆绑”成一个系统级模块(SIP),需要依赖高精度的后端布线与中介层(Interposer)连接。这一过程中,光刻机的角色重新重要起来。佳能早在2011年就推出面向后端封装的光刻设备,目前这些设备已占其整体销售的三成。  佳能高级常务董事竹石宏昭(Hiroaki Takeishi)称:“我们几乎垄断了主要芯片制造商在后端工艺中使用的光刻设备。”客户包括台积电、三星、英特尔等一线晶圆厂商,尤其在中介层布线、先进封装领域具有不可替代性。  受益于AI与先进封装工艺的持续火热,佳能在光刻设备领域的销量也在逐年上升。官方数据显示,2025年公司计划销售225台光刻设备,同比增长9%;而在2015年到2020年间,佳能年均出货仅约90台,增速明显。  尽管佳能在成熟制程与先进封装光刻设备领域已有较强话语权,但市场并非没有对手。老对手尼康(Nikon)已宣布将在2026年前推出新一代后端封装光刻设备,重新进军这一领域,正面挑战佳能的优势地位。  在EUV领域已经无缘“C位”的佳能,选择了一条更务实但潜力巨大的路线:不正面对抗ASML,而是深耕AI驱动下的后端封装和成熟制程市场。随着先进封装成为摩尔定律放缓下的“下半场”,佳能有望凭借多年积累的技术与设备,在这一新蓝海中逆风翻盘。  而下一步的关键,将是其纳米压印设备能否真正商用化,以及是否能持续保持在后端封装市场的领先优势。未来2~3年,将是佳能光刻命运重写的关键窗口期。
关键词:
发布时间:2025-08-05 16:50 阅读量:1627 继续阅读>>
新款<span style='color:red'>光刻机</span>,明年交付!
  日本光学巨头尼康近日宣布,从今年7月起正式接受其全新数字光刻系统DSP-100的订单,首批设备预计在2026财年内交付客户产线。这款专为半导体后道封装工艺设计的设备,瞄准了人工智能芯片爆发催生的先进封装需求。  DSP-100的最大突破在于能够处理600×600毫米的巨型方形基板,这一尺寸超越了目前行业普遍采用的510×515毫米标准。在技术参数上,它实现了1.0微米线宽分辨率以及±0.3微米的套刻精度,对510×515毫米规格基板,每小时产能达到50片。  与传统光刻设备不同,DSP-100采用了一项关键创新——无掩模曝光技术。它取消了传统工艺中必不可少的物理光掩模板,转而通过空间光调制器(SLM)将电路图案直接投射到基板上。  这一设计消除了光掩模的物理尺寸限制,使设备能够灵活应对大型封装基板的生产需求。同时省去光掩模制作环节,大幅缩短了芯片封装的设计迭代周期。  设备核心采用了尼康独有的多镜头阵列技术,该技术移植自其平板显示面板曝光设备。通过精确控制多个投影镜头协同工作,系统实现了如同使用单一大镜头的曝光效果,在超大基板上完成无缝图案拼接。  在效率方面,DSP-100展现了革命性的进步。以生产100毫米见方的大型封装为例,600×600毫米面板上可同时产出36个单元,其生产效率达到传统300毫米晶圆工艺的九倍。  设备特别强化了对基板变形问题的处理能力。在面板级封装过程中,树脂或玻璃基板极易出现翘曲和变形,这曾是制约良率提升的关键因素。DSP-100通过高精度形变校正技术,有效解决了这一行业痛点。  固态光源的采用是另一项实用创新,显著降低了设备的维护成本和使用门槛。整套系统通过优化设计,支持更环保的制造工艺,符合半导体产业可持续发展趋势。  尼康进军半导体设备领域并非一日之功。这家创立于1917年7月25日的企业,最初以“日本光学工业株式会社”之名诞生。早期主要为日本军方生产光学仪器,直到二战后转向民用市场。  1946年,公司首次采用“尼康”品牌名,该名称融合了“日本光学”的日文发音与德国蔡司相机“ZeissIkon”中的“kon”。尽管公众熟识尼康源自其相机产品,但它在半导体制造设备领域已有数十年积累。  1980年,尼康推出首台半导体曝光设备“NSR-1010G”。1986年,它进一步开发出液晶曝光设备“NSR-L7501G”。2006年,公司发布液浸扫描曝光机“NSR-S609B ArF”,展示了在尖端光刻领域的技术实力。  2017年,尼康做出战略调整,关闭了无锡相机生产基地,将资源更多投向高精尖设备制造。2024年4月,公司完成对美国专业摄像机制造商RED的收购,强化了影视制作领域布局。  DSP-100的面世正值半导体行业向面板级封装(PLP)加速转型的关键时期。随着人工智能和高性能计算芯片复杂度飙升,传统300毫米晶圆已难以满足封装需求。  台积电、英特尔和三星等巨头正积极布局面板级封装技术。台积电计划于2027年启动扇出面板级封装(FOPLP)的试点生产,初期将采用300×300毫米基板。  三星已将该技术应用于Galaxy Watch的Exynos W920芯片和Pixel手机的Google Tensor G4芯片。但行业专家指出,三星目前的应用仍集中于移动芯片领域,需向AI和HPC领域扩展才能保持竞争力。  随着物联网和生成式AI的爆发式增长,数据中心对**高性能半导体**需求激增。芯片封装技术正朝着更精细的电路图案和更大封装尺寸演进。使用树脂或玻璃基板的面板级封装,因能突破传统晶圆尺寸限制,成为行业突破的新方向。  尼康DSP-100的推出,标志着这家百年光学企业在半导体制造关键环节的深度布局。当2026年首批设备交付产线时,全球芯片封装领域的竞争格局或将迎来新变量。  随着2026年交付节点的临近,台积电、三星等芯片制造巨头对面板级封装技术的布局加速推进。尼康这款支持600毫米基板的设备,为芯片封装工艺突破物理限制提供了可能。  光学大厂的技术底蕴与半导体产业的迫切需求在此交汇,芯片封装领域的技术竞赛已悄然升级。
关键词:
发布时间:2025-07-25 15:45 阅读量:1441 继续阅读>>
上海12寸项目,<span style='color:red'>光刻机</span>成功搬入!
  7月14日上午,舜宇奥来微纳光学(上海)有限公司(以下简称“舜宇奥来”)设备搬入暨战略合作签约仪式举行。舜宇奥来临港项目首台核心光刻机正式迁入,此举标志着该项目已从规划蓝图全面转向实质性量产冲刺,填补了国内在这一领域的规模化、高端化量产空白。临港新片区党工委委员、管委会常务副主任杨正伟,上海国有资本投资有限公司董事长袁国华,上海市经济信息化工作党委委员、市经济和信息化委员会副主任汤文侃,临港集团副总裁龚伟, 舜宇光学科技(集团)有限公司(以下简称“舜宇集团”)总裁王文杰参加活动。  活动上,上海国有资本投资有限公司、临港集团和舜宇集团签订战略合作协议,将技术、资本和场景三重优势叠加,实现微纳光学在人工智能、高端制造、智能网联汽车等优势产业应用,提供全新的赋能场景和超级入口,形成“芯片设计—光学制造—整机应用”的完整闭环。  同时,舜宇集团子公司——舜宇奥来和上海天岳半导体材料有限公司签订战略合作协议,开启了微纳米光学领域和新材料领域两家龙头企业合作新篇章。  舜宇奥来与中微半导体(上海)有限公司也在活动上签订了战略合作协议,启动国产集成电路设备在微纳光学领域的在地协作。  当天下午,舜宇集团还在临港中心举办了“AR智能眼镜产业链峰会”,协同产业链上下游企业关于AR眼镜市场发展趋势、引领微纳光学量产制造的产业化标杆等主题进行深入探讨,发挥龙头企业优势,吸引、集聚、争取带动更多上下游的合作伙伴落地临港。  2023年,临港集团服务舜宇光学临港项目落地临港蓝湾,作为舜宇集团半导体光学的战略支点,其微纳光学器件突破高精度光学芯片国产化瓶颈,直接赋能XR(扩展现实)硬件轻量化与高透光率需求,将推动我国元宇宙近眼显示技术自主化进程。临港集团高度关注XR产业发展,围绕光学器件、显示技术、图像传感器等XR核心材料,在舜宇光学之外,已引进鲲游光电、创亿达、韦尔股份、显耀显示等业内龙头企业。此外,XR终端作为泛半导体产业在消费电子领域的核心应用载体之一,其技术演进与半导体创新深度绑定。临港新片区作为国内集成电路产业的重要增长极,已落地的半导体企业将与XR核心零部件企业形成生态交融协同。  本次仪式吸引舜宇光学供应链伙伴的多家企业参与,凸显临港新片区打造XR生态“朋友圈”的基础优势。未来,临港集团将统筹协同签约三方的资源,构建 “技术-资本-场景”全链条创新体系,加速新质生产力培育,强化临港新片区作为上海科创中心建设的主体承载功能。
关键词:
发布时间:2025-07-16 14:11 阅读量:469 继续阅读>>
深入剖析<span style='color:red'>光刻机</span>的核心技术及特点
  光刻机,作为半导体制造过程中不可或缺的设备,是实现芯片高精度图案转移的关键工具。随着电子技术的快速发展,光刻技术已成为推动半导体行业进步的支柱。  光刻机的核心技术  光源技术  光源是光刻机核心部件之一,其波长直接影响光刻的分辨率。早期的光刻机使用汞灯等光源,随着技术的发展,深紫外光(DUV)和极紫外光(EUV)成为主流。DUV光源如波长为193nm的ArF准分子激光器和波长为248nm的KrF准分子激光器在工业上广泛应用。而EUV光源使用波长为13.5nm的极紫外光,能够支持制造3纳米及以下制程的芯片,极大提升了芯片计算能力。  光学系统技术  光学系统负责将掩模上的图案精确地缩小并投影到硅片上。它由一系列精密的透镜和反射镜组成,需要具备高度精确的光学特性和极低的畸变。现代光刻机采用的投影式光刻技术,通过优化光学系统的设计和制造工艺,不断提高分辨率和成像质量。此外,焦深控制和光学畸变校正技术也是光学系统的重要组成部分,它们共同确保了光刻图案的精确转移。  对位系统技术  对位系统确保掩模上的图案与硅片上的图案精确对齐,这对于多层光刻过程中的图案叠加至关重要。现代光刻机采用高精度的对位系统,如激光对准和图像识别技术,以实现亚纳米级的对准精度。这种高精度的对位系统能够有效减少图案叠加误差,提高芯片制造的成品率。  精密机械系统  光刻机的精密机械系统包括硅片传输系统、对准系统、抛光和清洗系统等。硅片传输系统由精密的机械臂、夹具和运动控制单元组成,确保硅片在曝光过程中的精确定位和快速传输。对准系统则通过高精度的激光对准和图像识别技术,实现亚纳米级的对准精度。抛光和清洗系统可以去除硅片表面的微粒、有机物和氧化物,减少光刻图案的缺陷。  环境控制技术  光刻过程对环境条件要求极高,包括温度、湿度、洁净度和振动控制等。光刻机通常配备有高精度的环境控制系统,以确保光刻过程的稳定性和准确性。这些系统通过精确控制环境参数,减少外界干扰,提高光刻质量和效率。  光刻胶技术  光刻胶是一种光敏感材料,其性能直接影响光刻的质量。随着光刻技术的发展,光刻胶的分辨率、灵敏度和化学稳定性等性能也在不断提高。新型光刻胶材料的研发和应用,为实现更小的特征尺寸和更高的图案精度提供了支持。  计算光刻技术  计算光刻技术通过模拟和优化光刻过程,提高光刻的分辨率和图案精度。它包括光源掩模联合优化(SMO)、光学邻近效应修正(OPC)等技术。这些技术通过数学模型和算法,对光源和掩模图形进行优化,以补偿光学系统的像差和光刻过程中的邻近效应,从而实现更小的特征尺寸和更高的图案精度。  掩模技术  掩模是光刻过程中的关键部件,其质量和精度直接影响光刻图案的转移效果。现代光刻机采用高精度的掩模制造技术,包括电子束光刻和激光写入等方法,以确保掩模图案的精确度和一致性。同时,掩模的清洗和修复技术也在不断发展,以延长掩模的使用寿命。  量测与检测技术  量测与检测技术用于实时监控和评估光刻过程的质量和效果。现代光刻机配备了先进的量测和检测系统,如光学量测、电子束量测和散射ometry等技术。这些系统能够快速、准确地测量光刻图案的尺寸、形状和位置等参数,并及时反馈给光刻机的控制系统,以实现过程的闭环控制和优化。  光刻机的特点  高精度  光刻机的精度直接决定了芯片的性能。其光学系统和对位系统的高精度设计,使得光刻机能够在硅片上实现亚微米甚至纳米级的图案转移。这种高精度的制造能力是现代半导体产业发展的基础。  高复杂性  光刻机是集光学、机械、电子、材料和计算机等多学科技术于一体的复杂系统。其光源、光学系统、对位系统、精密机械系统和环境控制系统的协同工作,确保了光刻过程的稳定性和准确性。这种高度的复杂性使得光刻机的研发和制造难度极高。  高成本  光刻机的研发和制造需要大量的资金投入。从基础研究到工程化开发,再到大规模生产,每一个环节都需要顶尖的技术和设备支持。此外,光刻机的维护和升级也需要高昂的费用,这使得光刻机成为半导体制造中最昂贵的设备之一。  高集成性  光刻机的光学系统、机械系统、电子控制系统和软件系统等各个子系统之间需要高度集成和协同工作。这种高度的集成性不仅提高了光刻机的整体性能,也增加了其设计和制造的难度。  高技术壁垒  光刻机技术涉及多个领域的前沿技术,其研发和制造需要跨学科的协作和长期的技术积累。目前,全球范围内能够制造高端光刻机的国家和企业非常有限,形成了较高的技术壁垒。  光刻机作为半导体制造的核心设备,其技术和市场的发展对全球科技产业格局具有重要影响。随着半导体制造工艺的不断进步,光刻机技术将继续面临新的挑战和机遇。未来,光刻机的发展将集中在提高分辨率、增加产能、降低成本和增强可靠性等方面。同时,新型光源技术、计算光刻技术、新型光刻胶材料和多光束光刻技术等也将成为光刻机技术发展的重要方向。
关键词:
发布时间:2025-04-15 15:58 阅读量:908 继续阅读>>
ASML声称可远程瘫痪台积电<span style='color:red'>光刻机</span>引发关注
俄罗斯明年开始生产<span style='color:red'>光刻机</span>
  根据俄罗斯媒体报道指出,俄罗斯正在研发生产芯片的微影光刻机。其工业和贸易部副部长Vasily Shpak 在接受媒体访问时指出,2024 年将开始生产350 纳米微影光刻机,也就是说在明年俄罗斯就能拥有自己的光刻机了。此外,在2026年启动用于生产130 纳米制程芯片的微影光刻机。其生产将在莫斯科、泽列诺格勒、圣彼得堡和新西伯利亚的现有工厂进行。  Vasily Shpak 指出,当前全球只有两家公司生产此类设备,包括日本NIKON 和荷兰ASML。然而,其对于半导体的生产相当重要。Vasily Shpak 指出,一个简单的逻辑就是,如果没有半导体主权,那就没有技术主权,那么你在国防安全和政治主权方面就非常脆弱。而现在俄罗斯已经掌握了使用外国制造65 纳米微影光刻机的技术,但因为外国公司被禁止向俄罗斯出口先进的微影光刻机,所以俄罗斯正在匆忙开发自己的生产设备。  Vasily Shpak 表示,2024 年就将拨款2,114 亿卢布(约23亿美元)用于国内电子产品的开发。而俄罗斯决定开发350 纳米到65 纳米微影光刻机的原因,在于这一技术范围内的芯片多用于微控制器、电力电子、电信电路、汽车电子等方面上,这些应用大约占市场的60%。所以,这项设备在全世界市场的需求量很大,并且将在至少10 年内有持续的需求。  另外,当被问到可能遭遇的阻力时,Vasily Shpak 说,我不想抱怨,所有的问题都不是问题,因为这关系到我们拥有哪些机会,以及所设定的目标。
关键词:
发布时间:2023-11-06 11:18 阅读量:1980 继续阅读>>
<span style='color:red'>光刻机</span>核心供应商?蔡司超乎想象
  “芯片制造”无疑是工业4.0时代最火的“MVP(最有价值选手)”。而其中关键性的半导体光刻技术,在蔡司拥有悠久的历史,最早甚至可追溯到20世纪60年代末。  被很多半导体人所津津乐道的,当然还有蔡司与世界公认的“光刻巨擘”ASML(阿斯麦)之间,长达近40年的“神仙友谊”。  世界光刻机巨人ASML的战略伙伴  总部位于荷兰艾恩德霍芬(Veldhoven)的ASML,是全球最大半导体设备制造商之一。有评论说:ASML的“技术基石”,是“电动晶圆台、出色的对准技术和蔡司的镜头”。  “两家公司,一项业务”(Two companies, one business)——这项著名的合作原则,标示着ASML与蔡司就像是一对并联发光的双子星,向着共同的目标不断发力。  1983年,蔡司第一次为飞利浦实验室生产用于光刻机的光学部件;这也是蔡司与ASML至今已延续了近40年友谊的正式起点。  ASML光刻机中的蔡司光学模组  从2007年1月11日蔡司向ASML交付首台用于深紫外(DUV)光刻机的Starlith 19xyi透镜开始,到2020年10月11日,蔡司完成了第1000台——对于一款如此高度复杂的产品而言,这是一个重要的里程碑。  工业4.0时代:半导体领域,蔡司从未缺席  其实蔡司早已在光学领域探索多年:1847就已开始生产具有双合透镜和三合透镜的简单显微镜,1857年卖出了蔡司第一台复合显微镜。是光学领域当仁不让的“先行者”。  蔡司在显微镜技术方面的不断创新,提供芯片失效分析和工艺控制的解决方案,为高质量芯片的产出保驾护航:  半导体器件结构的复杂化和微缩需要更精确的缺陷定位手段和更高分辨能力的成像技术,蔡司提供光学常规检测、电性失效定位、样品制备、成像和分析的多尺度、多元化解决方案,帮助用户找到隐藏在复杂结构内部的微小缺陷并追溯失效来源。  先进封装技术的发展,使集成电路产品的集成度更高、更多三维堆叠结构,对失效的定位和高效的定点制样提出了更高的要求。创新的蔡司3D X射线显微镜到激光双束电镜LaserFIB的解决方案,满足了用户在大尺寸和集成度封装样品中快速找到并分析引起失效的微观缺陷的要求。  新能源、轨道交通、消费电子等下游应用的旺盛需求驱动了国内第三代半导体产业的快速发展,衬底和外延片的缺陷密度控制、器件制造的工艺优化、封装技术的研发等阶段需要不同的成像技术。多尺度的关联显微分析有助于高效率、自动化和智能化的失效分析。
关键词:
发布时间:2023-06-15 11:10 阅读量:2240 继续阅读>>
<span style='color:red'>光刻机</span>巨头ASML Q1净销售额67.5亿欧元
关键词:
发布时间:2023-04-20 09:39 阅读量:3108 继续阅读>>

跳转至

/ 3

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码