上海雷卯:<span style='color:red'>二极管</span>半导体器件的应用和参数对比
关键词:
发布时间:2025-08-19 16:44 阅读量:284 继续阅读>>
森国科推出用于5G微基站电源的碳化硅<span style='color:red'>二极管</span>(SiC JBS)
  第5代通信技术5G频率越高,穿透和绕射能力会相对下降,信号智能直射传播,很多偏僻地方就会收不到信号,微基站很好弥补了这项缺陷。因此5G将会采取“宏基站+微基站”组网覆盖的模式,整个5G网络基站近80%将由微基站承载。  微基站是一种从产品形态、发射功率、覆盖范围等方面都相比传统宏站小得多的低功率基站设备。特征是:小型化;低发射功率;可控性好;智能化;组网灵活。微基站电源应用场景如下:  直流远供电源  应用于BBU、RRU基站整合优化,运营商的室分系统、室外基站、灯杆站、微基站、直放站、综合接入 ONU 等设备;  光电一体箱供电  是对未来城市主干道信号覆盖提供支点,并与现有城市设施相融合,可应用于居民小区、沿街小巷、商业密集区、地下停车场。光电一体箱将传统的交流配电箱、光纤配线箱融为一体,有效解决了微基站配套设备的建设需求,满足了市政美化需求。微站电源产品,应用于小型程控交换机、接入网、传输设备、移动通信、卫星通信地面站、微波通信供电、室外基站、灯杆站、微基站、直放站、综合接入 ONU 等设备。  太阳能模块供电  主要安装在高山、公路、铁路等地,扩大基站的覆盖面,解决乡村信号盲区;高速公路、国道及铁路线上的信号覆盖;在需要建基站但又没有条件建的地方;解决业务边界问题。但是这些地方供电较为困难或有可能解决供电问题但耗资巨大,而且电力解决以后还有安全、维护等因素。具有可靠性、寿命长、连续阴雨天,全天侯、不间断地野外工作时间长的特点,与拉电力线相比有经济安全、故障率低、维护方便等优点。  智慧路灯电源  通过市政对路灯进行供电,解决路灯微基站供电问题。“智慧灯杆联网系统”,是以照明灯杆为基础,集成了音视频监控设备、无线基站、WIFI热点、多媒体屏幕、充电桩以及天气、环境等各种感知器的新型智能设备,结合应用“NB—IOT系统”技术通讯手段,将采集的交通信息、环境信息、河道信息和安防信息等进行运算、分析、形成大数据平台层,实现对城市照明、安防、交通、能源、市政等公共设施运营管控应用层面的智慧城市管理。  微基站内部电源系统系统中对交流接触器的选用、断路器熔断器及空气开关的选用、保护电路的设计、交流电量检测电路的设计、防雷及抗涌措施的选择等要符合规范。  下图是一款研发的5G基站建设的移动微站电源:  由上图可以看出,此款电源产品主要由4个单元组成,其中通信模块和开关电源部分决定了5G微基站运行的可靠性。开关电源部分:由于基站供电多样性和复杂性,决定了微基站电源需要综合考虑不同输入兼容问题,其开关电源的功率从1000W~3000W不等,处理大功率器件及相关模块的稳定性是非常关键的。对于如此之大的大功率开关电源开机瞬间的浪涌电流抑制成为了关键中的关键。森国科为此开发了高Bv、低Vf、高浪涌电流的碳化硅二极管KS06065,标称650V的Bv值,实际测试可以达到900V,冲击电流高达65A,典型漏电流低至1nA。  森国科SiC二极管系列产品主要分为650V和1200V系列,使用6寸晶圆生产,车规级的生产工艺,具有高耐温,高频,高效,高压特性,在广大高功率电源产品中得到广泛应用。主要应用于矿机电源、通信设备电源、5G微基站电源、服务器电源、工业电源、快充电源、轨道交通电源、充电桩电源模块、新能源汽车充电机、光伏逆变器等。
关键词:
发布时间:2025-08-19 11:43 阅读量:240 继续阅读>>
森国科推出极小封装碳化硅<span style='color:red'>二极管</span>,提升电源效率!
  深圳市森国科科技股份有限公司日前发布了第五代Thinned MPS® 碳化硅二极管KS02065(650V/2A),该系列二极管主要用来提升电源类产品的效率、减少体积、降低EMI问题、提升高温特性,进而全面提升功率密度。目前2A系列的碳化硅二极管已通过多家客户的测试验证,并实现了大批量供货。  森国科第五代650/2A TMPS二极管具有一流的鲁棒性和耐久性 ,具备高浪涌电流和雪崩能力,并通过100%雪崩(UIL)生产测试,技术参数对标国际一线公司的最新产品,足以满足高端领域的国产化替代需求。为了提升KS02065在不同应用中的灵活性,确保整个流程的稳定运行,森国科为客户提供TO-220, TO-252, SMA三种不同的封装:  TO-220-2L封装散热效果最佳,但是相对来说占用空间;  TO-252-2L封装具备优秀的散热能力,体积上也有一定的优势,在应用场景上的利用率较高;  SMA是碳化硅功率器件封装中体积最小的一款,约为4.5mm*2.7mm,也是目前国内少有的封装样式。SMA封装通常在硅二极管中比较常见,在一些电源类产品中如需使用碳化硅二极管来替代,可以在节省电路修改和PCB设计的前提下,保障系统效率的稳步提升,这对应用端来说是一举多得的选择。  典型应用电路如单向PFC电路: D5,电路简单,成本低,初级无电解电容。  森国科深耕宽禁带半导体领域多年,目前已与国内外TOP级工艺厂商(X-FAB\积塔等)达成友好合作,秉承着“做最合适的功率器件”的理念,致力于打造性能优越、尺寸体积可控的功率器件全系列产品,助力来自OBC、工业电源、数据电源、储能逆变器、变频驱动、快充头、适配器等多个领域的客户实现高耐压、耐高温、耐高频、低功耗、低成本的应用需求,持续赋能低碳发展。
关键词:
发布时间:2025-08-19 11:40 阅读量:311 继续阅读>>
森国科TOLL封装SiC<span style='color:red'>二极管</span>:高密度时代的封装新宠
  在功率半导体飞速迭代的进程中,碳化硅(SiC)功率器件凭借高频、高压、低损耗、耐高温等优异性能,成为高效功率转换的核心器件。而要将这些晶圆级的性能优势完美转化成系统级价值,先进封装技术的支撑不可或缺——它如同一座桥梁,直接影响着器件的散热、稳定性、功率密度及可靠性。特别是在追求极致空间利用率的砖块电源、服务器电源、新能源车载充电器(OBC)等场景下,传统封装正逐渐暴露瓶颈。  在这样的背景下,森国科(Gokeic)近期推出的1200V/50A SiC二极管KS50120-K2为何选择采用TOLL封装?  TOLL封装:为高功率密度应用而生  TOLL(TO-Leadless)封装是专为表面贴装(SMT)优化设计的新兴封装形式,在物理结构和性能层面都超越了传统主力TO-263(D²PAK)和TO-247:  01空间革命  TOLL的典型厚度仅约为2.3mm,相较同等性能等级厚度超5mm的TO-247有着显著的身材优势,TOLL通过独特的“翼型+底部大面积开窗”设计,同时实现了极其紧凑的占板面积与绝佳的双面散热能力,这对寸土寸金的高密度电源设计至关重要;  02高效散热  TOLL封装的灵魂在于底部开有大面积散热片(热焊盘),热阻较TO-263平均降低约30%,允许芯片热量通过回流焊PCB底部铜箔与散热器高效传导。这种“双面散热”结构配合2.3mm的低厚度,在大电流工况下能显著降低结温,提升稳定性和长期寿命;  03稳固可靠  无曲折、短平的粗壮引脚结构(TOLL名称来源),搭配优化的“翼型”结构设计,大幅提升贴装后的机械强度和抗热应力能力,尤其适合在汽车等振动与严苛温度循环的应用场景下使用,保证系统长期运行的稳健性;  04SMT便捷性  TOLL采用全表面贴装结构,与传统插件型TO-247相比消除了波峰焊的瓶颈和人工成本,尤其在高集成化、紧凑型模组设计中更易实现自动化回流焊,提升批量制造效率及良品率。  为满足电力电子产品小型化、高功率密度的需求,森国科首家推出了TOLL封装SiC二极管,成为行业领跑者。其推出的1200V/50A SiC JBS器件KS50120-K2,正是这一封装技术的首秀载体。这款高效续流二极管专为PFC电路、变频驱动或OBC中的桥臂应用深度优化。TOLL封装的引入显著缩小了系统占用空间,通过更优的低热阻路径和更高电流密度提升了系统的整体功率密度,同时兼顾了高频工况下的可靠性与散热需求。  随着SiC器件快速渗透入服务器电源、快充系统、新能源汽车等关键场景,系统的高功率密度和极端可靠性要求成为核心突破点。以森国科KS50120-K2为标志性代表的新一代TOLL封装SiC二极管,正在通过薄型化优化、热管理跃升与制造增效,为功率模块的小型化、自动化与集成化探索一条更优路径——封装不仅是芯片的“外衣”,更是解锁未来高效能源转换系统的物理钥匙。
关键词:
发布时间:2025-08-15 13:48 阅读量:383 继续阅读>>
力芯微推出TOF激光<span style='color:red'>二极管</span>驱动芯片ET75016
关键词:
发布时间:2025-08-07 11:02 阅读量:300 继续阅读>>
上海雷卯电子:如何选择合适电容值的ESD<span style='color:red'>二极管</span>
  作为一名关注通信接口和电子元器件的专业人士,你一定对ESD(Electrostatic Discharge)二极管非常感兴趣。让上海雷卯电子和AMEYA360带你来了解一下ESD二极管是什么,以及如何选择合适电容值的ESD二级管吧。  ESD二极管,也被称为静电保护二极管,是一种用于保护电子元器件免受静电放电(ESD)损害的器件。静电放电是一种常见的电磁干扰源,可能对通信接口和其他电子设备造成严重的损坏。ESD二极管能够迅速响应并吸收静电放电,将其引导到地线,保护接口和其他电路免受损害。  在选择合适的电容值ESD管时,需要考虑以下几个因素:  1. 通信接口的速率和带宽:不同速率和带宽的通信接口对ESD保护的要求不同。较高速率的接口可能需要更低的电容值,以确保快速的信号传输和响应。  2. 接口的电气特性:了解通信接口的特性阻抗、信号电平以及信号线的布局等,有助于选择合适的ESD管电容值。经过仔细计算和模拟,可以确定最佳的电容值范围。  3. ESD保护需求:根据应用场景和系统对ESD保护的需求,选择适当的电容值。一般情况下,较高的电容值可能增加对信号传输的影响。  上图这颗是低容值ESD ,可以用在高速通讯接口上。  通过综合考虑以上因素,可以选择适合特定通信接口的合适电容值的ESD管。此外,与供应商和技术专家的交流也是非常重要的,他们能够提供更具体的建议和指导。  保护通信接口免受ESD损害是确保系统稳定性和可靠性的关键。通过选择合适电容值的ESD管,我们能够提供可靠的ESD保护,确保通信接口的正常工作,同时保护其他电子元器件免受静电放电的危害。
关键词:
发布时间:2025-07-18 11:34 阅读量:305 继续阅读>>
TVS<span style='color:red'>二极管</span>和齐纳<span style='color:red'>二极管</span>的区别
  TVS(Transient Voltage Suppressors)二极管和齐纳二极管都具有在施加反向电压后,在某一电压下击穿、钳制电压的特性。本 应用笔记将对 TVS 二极管和齐纳二极管的区别予以说明。I-V 特性上的使用范围区别Figure 1 是齐纳二极管的 I-V 特性,Figure 2 是 TVS 二极管的 I-V 特性。这两个二极管都利用了反方向特性这一点,但是齐纳 二极管主要用于稳压用途,所以设计成在 1mA 到 40mA 这样 的小电流区域电压稳定,不能流过大电流(Figure 1 的阴影部 分)。在击穿区域内施加指定的小电流 IZ 时,二极管两端电压值 被规定为齐纳电压 VZ。齐纳二极管通常在使用时处于击穿状态。  对于 TVS 二极管,为了不妨碍保护电路的驱动电压,通常使 用在切断电压 VRWM 以下电压范围内(Figure 2 右侧的阴影部 分)。然后,施加浪涌等过电压时会击穿、流过数 A 到数十 A 的电流(左侧的阴影部分)。由于通常情况下不可以击穿,因此规定了绝对不会引起击穿的 电压最大值即截至电压 VRWM 和击穿电压 VBR 两种。  由于击穿电压 VBR 与齐纳电压 VZ 一样使用小电流进行测量,因 此与实际应用条件下的雪崩电压不同。因此,将流过大电流时 的最大击穿电压规定为钳位电压 VCL。Datasheet 上参数定义的区别TVS 二极管和齐纳二极管的 datasheet 上规定的差异如 Table 1 所示。在前面中也说明过,由于齐纳二极管主要用于稳压用 途,所以只规定了小电流域的齐纳电压 VZ。与此相对,TVS 二极管有着小电流区域的击穿电压 VBR、截至 电压 VRWM、高电流区域的钳位电压 VCL3 个参数的区分。只有 TVS 二极管会有表示在特定浪涌波形中能承受的最大浪 涌功率的峰值脉冲功率 PPP 和表示最大浪涌电流的峰值脉冲电 流 IPP 的定义。仅有 TVS 二极管有 ESD 对策用的 ESD 耐量的规定。对于端子间电容,在通信线路中使用时,需要选择数据波形不 会被电容影响而钝化的端子间电容值,因此仅 TVS 二极管有该 项规定。如上所述,齐纳二极管主要用于稳压,因此 datasheet 上的参 数定义主要是齐纳电压等,项目较少。而 TVS 二极管的目的是 保护其他设备不受浪涌的影响,所以电压的参数定义比较广泛, 还规定了 ESD 耐量和端子间容量等重要项目。
关键词:
发布时间:2025-07-10 15:01 阅读量:435 继续阅读>>
东芝研发出可降低沟槽型SiC MOSFET和半超结肖特基势垒<span style='color:red'>二极管</span>损耗的新技术
  日本川崎——东芝电子元件及存储装置株式会社(简称“东芝”)研发了一项创新技术,该技术可在增强沟槽型碳化硅(SiC)MOSFET[2]的UIS耐用性[3]的同时,显著降低其因导通电阻[1]而产生的损耗。同时,东芝还研发了半超结[4]肖特基势垒二极管(SJ-SBD),有效解决了高温下导通电阻增大的问题。这两项技术突破有望显著提升功率转换器件的可靠性与效率,尤其在电动汽车和可再生能源系统等领域。  功率半导体为所有电气设备供电并控制电力,对于节能和碳中和的实现至关重要。随着汽车的电气化和工业设备的微型化,预计对功率半导体的需求与日俱增。SiC MOSFET尤其如此。作为下一代器件,SiC MOSFET凭借其远超传统硅(Si)MOSFET的功率转换效率,正获得日益广泛的关注。其中,沟槽型SiC MOSFET以其独特的沟槽式栅极降低了导通电阻,SiC肖特基势垒二极管(SBD)则凭借金属半导体结实现了高效的功率转换,它们均广泛应用于电动汽车和可再生能源系统等高效功率转换领域。然而,这些应用场景通常伴随着高温工作环境,对可靠性和效率提升构成了严峻的考验。  沟槽型SiC MOSFET需要保护栅极氧化层免受高电场的影响。然而,由于电场保护结构[6]的UIS耐用性与接地电阻[5]之间的关系尚不明确,因此要同时实现高栅极氧化层可靠性与低导通电阻便极具挑战。  此外,尽管SiC SBD能承受比传统Si SBD更高的工作温度,但需要面对高温下电阻增加进而造成导通电阻变大的问题。  东芝研发了两项关键技术来解决这些问题。  1.提高沟槽型SiC MOSFET的UIS耐用性的技术  东芝研究发现,通过在沟槽型SiC MOSFET的沟槽中构建保护层(图1),并适当降低底部p阱的接地电阻,可提高UIS耐用性。这一发现明确了以往不确定的UIS耐用性与电场保护结构接地电阻之间的关系。与传统的平面型SiC MOSFET相比,东芝制作的沟槽型SiC MOSFET原型将导通电阻降低了约20%(图2)。图1. 沟槽型SiC MOSFET结构及底部p阱位置图2. 传统平面型SiC MOSFET与沟槽型SiC MOSFET的导通电阻比较(东芝测试结果)  2.SiC SJ-SBD特性的改进  此外,东芝还研发了SiC SJ-SBD,通过在漂移层中置入基极[7]来抑制高温下电阻的增加(图3(b))。通过比较传统的SiC SBD(图3(a))和SiC SJ-SBD在不同温度下的导通电阻变化[8],东芝证实了SiC SJ-SBD在高温下具有更低的导通电阻(图4)。这是由于超级结(SJ)结构实现了平坦的电场分布并降低了导通电阻。与传统的SiC SBD相比,东芝研发的650V SiC SJ-SBD在175℃(448.15K)高温下将导通电阻降低了约35%。图3. 传统SiC SBD与SiC SJ-SBD的结构图4. 传统SiC SBD与SiC SJ-SBD 导通电阻  与温度依赖性比较(东芝测试结果)  这两项技术进一步降低了沟槽型SiC MOSFET和SiC SBD的损耗,提高了未来用于高效功率转换应用的器件的可靠性和效率,尤其是在电动汽车和可再生能源系统等领域。东芝将致力于进一步优化这些技术并加速其产业化进程。  在6月1日至5日于日本熊本举行的第37届国际功率半导体器件与IC研讨会(ISPSD 2025 ISPSD)上,东芝介绍了这些新技术的详细信息。此项成就基于新能源产业技术综合开发机构(NEDO)的项目补贴而取得。
关键词:
发布时间:2025-06-20 13:34 阅读量:622 继续阅读>>
Littelfuse:利用SMFA系列非对称TVS<span style='color:red'>二极管</span>实现高效SiC MOSFET栅极保护
  碳化硅(SiC)MOSFET在电源和电力电子领域的应用越来越广泛。随着功率半导体领域的发展,开关损耗也在不断降低。随着开关速度的不断提高,设计人员应更加关注MOSFET的栅极驱动电路,确保对MOSFET的安全控制,防止寄生导通,避免损坏功率半导体。必须保护敏感的MOSFET栅极结构免受过高电压的影响。Littelfuse提供高效的保护解决方案,有助于最大限度地延长电源的使用寿命、可靠性和鲁棒性。  1.栅极驱动器设计措施  关于SiC-MOSFET驱动器电路的稳健性,有几个问题值得考虑。除了驱动器安全切换半导体的主要任务外,各种驱动器还提供短路保护功能。此外,采用适当的设计措施(如在关断状态下施加负栅极电压)来防止寄生开关是至关重要的。负栅极电压可确保增加MOSFET栅极阈值电压的偏移量,并提高开关单元对电压斜坡的抗扰度。另一项强制性措施是保护MOSFET的栅极,防止静电放电 (ESD)事件或电路中的寄生效应造成过压浪涌。  硅基功率半导体,如Si-IGBT和Si-MOSFET通常具有对称的栅极额定电压。这种额定值允许使用对称TVS二极管进行栅极保护,但这是不必要的,因为硅栅极电压的最大额定值足以高于应用的驱动电压。与硅器件不同,SiC-MOSFET的负栅极电压额定值通常明显低于正栅极电压额定值。因此,使用两个独立的TVS二极管(如图1所示)进行非对称保护是很常见的。Littelfuse现在提供SMFA型集成式非对称双向TVS二极管。这种解决方案有助于有效减少寄生效应和PCB面积,尤其是在快速开关SiC应用中。 图1 使用两个独立TVS二极管的标准栅极保护与一个集成非对称SMFA型TVS二极管的对比  2.产品选择  Littelfuse SMFA非对称系列TVS二极管可保护SiC-MOSFET栅极免受正向和负向过电压浪涌的影响。根据所需的SiC-MOSFET最大栅极额定电压,SMFA封装可从17.6~23.4 V的正击穿电压中选择,同时负向击穿电压被设置在7.15V。有关元件的详细信息,请参见表1。SMFA非对称TVS根据IEC 61000-4-2标准进行测试,采用SOD-123FL扁平封装。表1 SMFA系列产品组合  图2显示了SMFA型非对称TVS二极管的静态和动态箝位性能。出于测试目的,提高了驱动器电压以显示TVS二极管的动态箝位。SMFATVS二极管不适合永久限制过高的驱动器电压。图2 SMFA型集成非对称TVS二极管的钳位特性  3结论  凭借新型集成非对称TVS SMFA系列,Littelfuse提供了一种创新的解决方案,可最大限度地提高SiC MOSFET栅极驱动器电路的稳健性,同时实现具有成本效益、所需PCB空间更小、寄生效应最小的设计。
关键词:
发布时间:2025-06-19 10:36 阅读量:537 继续阅读>>
如何避免<span style='color:red'>二极管</span>过载
  如何避免二极管过载?  二极管作为电路中的基础元件,其过载可能导致性能下降甚至烧毁。以下从选型、安装、保护设计及散热四方面提供实用解决方案:  1.精准选型匹配需求  根据电路特性选择二极管类型:高频电路优先选用肖特基二极管(低反向恢复时间);高压场景采用快恢复二极管;大电流环境需考虑功率二极管。  核对关键参数:正向电流(IF)需预留20%以上余量,反向耐压(VRRM)应高于电路最大电压的1.5倍,避免长期运行在极限值。  2.规范安装降低风险  焊接控制:手工焊接时温度≤260℃,时间<3秒,避免高温导致PN结损伤;自动贴片机需设置预热坡度,防止热冲击。  引脚处理:高频电路中引线长度应<5mm,必要时采用镀金引脚或绞合线降低电感效应;反向安装二极管可能导致极性错误,需严格按丝印标识操作。  3.多级保护限制过流过压  电流限制:串联电阻需按公式R=(Vsupply-Vd)/If计算(Vd为二极管正向压降),例如12V转5V电路中,若If=1A,需串联7Ω电阻;对敏感电路可并联自恢复保险丝(PPTC)实现过流自保护。  电压箝位:并联双向TVS二极管时,其击穿电压应略高于电路工作电压峰值(如12V系统选15V TVS),可抑制ESD或雷电感应脉冲。  4.热管理与布局优化  散热设计:功率二极管必须加装散热片,材料推荐铝合金(导热系数200W/m·K),接触面涂抹导热硅脂(热阻<0.1℃·cm²/W);  PCB布局:高功率二极管周围保留≥2mm禁布区,避免与发热元件(如MOS管)相邻;多二极管并联时采用镜像布局,保证电流均流。  5.电路级预防措施  参数监控:在关键电路中串联采样电阻,通过运放构建过流检测电路,触发后切断电源或启动限流模式;  冗余设计:对不可修复场景(如航空航天),可采用N+1二极管并联备份,单管失效时负载自动分配至健康管。  示例场景:在开关电源设计中,选用600V/10A快恢复二极管,串联1Ω水泥电阻限流,并联1.5KE200CA型TVS管,配合L型散热片(尺寸50×30×10mm),实测在满载40℃环境下连续工作1000小时,壳温稳定在65℃以下,未出现性能衰减。  通过系统化的选型、安装规范及保护设计,可有效延长二极管使用寿命,提升电路可靠性。
关键词:
发布时间:2025-06-09 14:21 阅读量:596 继续阅读>>

跳转至

/ 17

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码