ROHM’s PMICs for SoCs have been Adopted in Reference Designs for Tele<span style='color:red'>chips</span>’ Next-Generation Cockpits
  ROHM has announced the adoption of its PMICs in power reference designs focused on the next-generation cockpit SoCs ‘Dolphin3’ (REF67003) and ‘Dolphin5’ (REF67005) by Telechips, a major fabless semiconductor manufacturer for automotive applications headquartered in Pangyo, South Korea. Intended for use inside the cockpits of European automakers, these designs are scheduled for mass production in 2025.  ROHM and Telechips have been engaged in technical exchanges since 2021, fostering a close collaborative relationship from the early stages of SoC chip design. As a first step in achieving this goal, ROHM’s power supply solutions have been integrated into Telechips’ power supply reference designs. These solutions support diverse model development by combining sub-PMICs and DrMOS with the main PMIC for SoCs.  For infotainment applications, the Dolphin3 application processor (AP) power reference design includes the BD96801Qxx-C main PMIC for SoCs. Similarly, the Dolphin5 AP power reference design developed for next-generation digital cockpits combines the BD96805Qxx-C and BD96811Fxx-C main PMICs for SoC with the BD96806Qxx-C sub-PMIC for SoC, improving overall system efficiency and reliability.  Modern cockpits are equipped with multiple displays, such as instrument clusters and infotainment systems, with each automotive application becoming increasingly multifunctional. As the processing power required for automotive SoCs increases, power ICs like PMICs must be able to support high currents while maintaining high efficiency. At the same time, manufacturers require flexible solutions that can accommodate different vehicle types and model variations with minimal circuit modifications. ROHM SoC PMICs address these challenges with high efficiency operation and internal memory (One Time Programmable ROM) that allows for custom output voltage settings and sequence control, enabling compatibility with large currents when paired with a sub-PMIC or DrMOS.  Moonsoo Kim,  Senior Vice President and Head of System Semiconductor R&D Center, Telechips Inc.“Telechips offers reference designs and core technologies centered around automotive SoCs for next-generation ADAS and cockpit applications. We are pleased to have developed a power reference design that supports the advanced features and larger displays found in next-generation cockpits by utilizing power solutions from ROHM, a global semiconductor manufacturer. Leveraging ROHM’s power supply solutions allows these reference designs to achieve advanced functionality while maintaining low power consumption. ROHM power solutions are highly scalable, so we look forward to future model expansions and continued collaboration.”  Sumihiro Takashima,  Corporate Officer and Director of the LSI Business Unit, ROHM Co., Ltd.“We are pleased that our power reference designs have been adopted by Telechips, a company with a strong track record in automotive SoCs. As ADAS continues to evolve and cockpits become more multifunctional, power supply ICs must handle larger currents while minimizing current consumption. ROHM SoC PMICs meet the high current demands of next-generation cockpits by adding a DrMOS or sub-PMIC in the stage after the main PMIC. This setup achieves high efficiency operation that contributes to lower power consumption. Going forward, ROHM will continue our partnership with Telechips to deepen our understanding of next-generation cockpits and ADAS, driving further evolution in the automotive sector through rapid product development.”  ・ Telechips SoC [Dolphin Series]  The Dolphin series consists of automotive SoCs tailored to In-Vehicle Infotainment (IVI), Advanced Driver Assistance Systems (ADAS), and Autonomous Driving (AD) applications. Dolphin3 supports up to four displays and eight in-vehicle cameras, while Dolphin5 enables up to five displays and eight cameras, making highly suited as SoCs for increasingly multifunctional next-generation cockpits. Telechips is focused on expanding the Dolphin series of APs (Application Processors) for car infotainment, with models like Dolphin+, Dolphin3, and Dolphin5, by leveraging its globally recognized technical expertise cultivated over many years.  ・ ROHM 's Reference Design Page  Details of ROHM’s reference designs and information on equipped products are available on ROHM’s website, along with reference boards. Please contact a sales representative or visit ROHM’s website for more information.  https://www.rohm.com/contactus  ■ Power Supply Reference Design [REF67003] (equipped with Dolphin3)  Reference Board No. REF67003-EVK-001  https://www.rohm.com/reference-designs/ref67003  ■ Power Supply Reference Design [REF67005] (equipped with Dolphin5)  Reference Board No. REF67005-EVK-001  https://www.rohm.com/reference-designs/ref67005  About Telechips Inc.Telechips is a fabless company specialized in designing system semiconductors that serve as the “brains” of automotive electronic components. The South Korean firm offers reliable, high-performance automotive SoCs. In response to the industry’s transition toward SDVs (Software Defined Vehicles), Telechips is broadening its core portfolio beyond car infotainment application processors (APs) to include MCUs, ADAS, network solutions, and AI accelerators.  As a global, comprehensive automotive semiconductor manufacturer, Telechips adheres to international standards such as ISO 26262, TISAX, and ASPICE, leveraging both hardware and software expertise for future mobility ecosystems, including not only automotive smart cockpits, but also E/E architectures. What’s more, Telechips provides optimal solutions for In-Vehicle Infotainment systems (IVI), digital clusters, and ADAS, all compliant with key automotive standards (AEC-Q100, ISO 26262). Telechips has established business relationships with major automakers both domestically and internationally, supported by a strong track record of shipments.  One flagship product is the Dolphin5 automotive SoC that integrates an Arm®-based CPU, GPU, and NPU to meet high-performance requirements. As a fabless company, Telechips outsources the manufacturing of its SoCs to Samsung Electronics’ foundry, delivering high-quality semiconductor products to domestic and overseas manufacturers. For more information, please visit Telechips’ website:  https://www.telechips.com/  *Arm® is a trademark or registered trademark of Arm Limited.  TerminologyPMIC (Power Management IC)  An IC that contains multiple power supply systems and functions for power management and sequence control on a single chip. It is becoming more commonplace in applications with multiple power supply systems in both the automotive and consumer sectors by significantly reducing space and development load vs conventional circuit configurations using individual components (i.e. DC-DC converter ICs, LDOs, discretes).  SoC (System-on-a-Chip)  A type of integrated circuit that incorporates a CPU (Central Processing Unit), memory, interface, and other elements on a single substrate. Widely used in automotive, consumer, and industrial applications due to its high processing capacity, power efficiency, and space savings.  AP (Application Processor)  Responsible for processing applications and software in devices such as smartphones, tablets, and automotive infotainment systems. It includes components such as a CPU, GPU, and memory controller to efficiently run the Operating System (OS), process multimedia, and render graphics.  DrMOS (Doctor MOS)  A module that integrates a MOSFET and gate driver IC. The simple configuration is expected to reduce design person-hours along with mounting area and to achieve efficient power conversion. At the same time, the built-in gate driver ensures high reliability by stabilizing MOSFET drive.
Key word:
Release time:2024-12-20 13:56 reading:717 Continue reading>>
Renesas Introduces Industry’s First Complete Memory Interface Chipset Solutions for Second-Generation DDR5 Server MRDIMMs
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first complete memory interface chipset solutions for the second-generation DDR5 Multi-Capacity Rank Dual In-Line Memory Modules (MRDIMMs).  The new DDR5 MRDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. They deliver operating speeds up to 12,800 Mega Transfers Per Second (MT/s), a 1.35x improvement in memory bandwidth over first-generation solutions. Renesas has been instrumental in the design, development and deployment of the new MRDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers.  Renesas has designed and executed three new critical components: the RRG50120 second-generation Multiplexed Registered Clock Driver (MRCD), the RRG51020 second-generation Multiplexed Data Buffer (MDB), and the RRG53220 second-generation Power Management Integrated Circuit (PMIC). Renesas also offers temperature sensor (TS), and serial presence detect (SPD) hub solutions in mass production, making it the only memory interface company that offers the complete chipset solutions for industry standard next-generation MRDIMMs as well as all other server and client DIMMs.  “The demand for higher performance systems driven by AI and HPC applications is relentless,” said Davin Lee, Senior Vice President and General Manager of Analog & Connectivity and Embedded Processing. “Renesas is at the forefront of this trend, working with industry leaders to develop next-generation technology and specifications. These companies depend on Renesas to deliver the technical know-how and the production capabilities they require to meet unprecedented demand. Our latest chipset solutions for second-generation DDR5 MRDIMMs showcase our leadership in this market.”  Renesas’ RRG50120 second-generation MRCD is used on the MRDIMMs to buffer the Command/Address (CA) bus, chip selects and the clocks between the host controller and DRAMs. It consumes 45% less power compared to the first-generation device, a critical specification for heat management in very high-speed systems. The RRG51020 Gen2 MDB is the other key device used in the MRDIMMs to buffer data from the host CPU to DRAMs. Both the new Renesas MRCD and MDB support speeds up to 12.8 Gigabytes per Second (GB/s). Additionally, Renesas’ RRG53220 next-generation PMIC offers best-in-class electrical-over-stress protection and superior power efficiency and is optimized for high-current and low-voltage operation.  Availability  Renesas is sampling the RRG50120 MRCD, the RRG51020 MDB, and the RRG53220 PMIC now, and expects the new products to be available for production in the first half of 2025. More information on these new products is available at www.renesas.com/DDR5.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, X, YouTube, and Instagram.  (Remarks) Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners.  The content in the press release, including, but not limited to, product prices and specifications, is based on the information as of the date indicated on the document, but may be subject to change without prior notice.
Key word:
Release time:2024-12-03 14:43 reading:605 Continue reading>>
ROHM's 4th Generation SiC MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:641 Continue reading>>
Vehicle-grade <span style='color:red'>chips</span> from Runic Technology
  We have recently released 11 Vehicle-grade chips that have passed AEC-Q100 Grade1&MSL 1 humidity level certification; The part number that have passed the vehicle specification certification this time include:  High-speed Comparator: LM2901XP-Q1; LM2903XK-Q1  General Operational Amplifier: RS8411XF-Q1; RS8414XQ-Q1  Analog Switch: RS2260XTSS16-Q1  Level Converter: RS0104XQ-Q1; RS0108XQ20-Q1  Logic Chip: RS1G125XC5-Q1;  Low Noise Operational Amplifier: RS622XTDE8-Q1  Parallel Voltage Reference Source: RS431AXSF3-Q1; RS432AXSF3-Q1  Vehicle-grade chips must have extremely low failure rates, high reliability, and normal operation at high and low temperatures, which requires high requirements for product design, development process, process design, process capability, and mass production control. All 11 Vehicle-grade chips released this time have passed the enhanced version of AEC-Q100 Grade 1 certification and humidity sensitivity level MSL 1 certification in authoritative third-party laboratories, with a theoretical design life of more than 25 years.  Currently, there are 38 Vehicle-grade chips from Runic Technology , and about 20 Vehicle-grade chips are still under certification; Runic's Vehicle-grade chips are widely applicable in various fields of automotive electronics, such as power domain, body domain, intelligent cockpit, etc. At the same time, they can be widely P2P compatible with equivalent signal chains, logic, analog switches, and other automotive grade chips from companies such as TI/ADI/Experia/Onsemi.
Key word:
Release time:2024-01-17 15:10 reading:2539 Continue reading>>
NVIDIA Confirms Development of “Compliance Chips” for the Chinese Market
  According to IJIWEI’s report, NVIDIA recently confirmed that it is actively working on new “compliant chips” tailored for the Chinese market. However, these products are not expected to make a substantial contribution to fourth-quarter revenue.  On November 21, during NVIDIA’s earnings briefing for the third quarter of 2024, executives acknowledged the significant impact of tightened U.S. export controls on AI. They anticipated a significant decline in data center revenue from China and other affected countries/regions in the fourth quarter. The controls were noted to have a clear negative impact on NVIDIA’s business in China, and this effect is expected to persist in the long term.  NVIDIA’s Chief Financial Officer, Colette Kress, also noted that the company anticipates a significant decline in sales in China and the Middle East during the fourth quarter of the 2024 fiscal year. However, she expressed confidence that robust growth in other regions would be sufficient to offset this decline.  Kress mentioned that NVIDIA is collaborating with some customers in China and the Middle East to obtain U.S. government approval for selling high-performance products. Simultaneously, NVIDIA is attempting to develop new data center products that comply with U.S. government policies and do not require licenses. However, the impact of these products on fourth-quarter sales is not expected to materialize immediately.  Previous reports suggested that NVIDIA has developed the latest series of computational chips, including HGX H20, L20 PCIe, and L2 PCIe, specifically designed for the Chinese market. These chips are modified versions of H100, ensuring compliance with relevant U.S. regulations.  As of now, Chinese domestic manufacturers have not received samples of H20, and they may not be available until the end of this month or mid-next month at the earliest. IJIWEI’s report has indicated that insiders have revealed the possibility of further policy modifications by the U.S., a factor that NVIDIA is likely taking into consideration.
Key word:
Release time:2023-11-23 13:24 reading:2533 Continue reading>>
What is a memory chip?  What are the types of memory <span style='color:red'>chips</span>?
  Memory chips are the main components used for storage In the realm of computing and digital devices, and play a very important role in the entire integrated circuit market.  These chips serve as the foundation upon which our digital world operates, facilitating the storage and retrieval of information in devices ranging from smartphones and laptops to complex servers and embedded systems.  What is a memory chip?A memory chip, fundamentally an integrated circuit (IC), is a crucial electronic component designed to store, retrieve, and manage data within a digital device. These chips come in various types and configurations, each tailored to serve specific purposes within electronic systems.  What are the types of memory chips?RAM (Random Access Memory): One of the most common types of memory chips, RAM is volatile memory used by computers to temporarily store data that the CPU needs quick access to during operation. It enables swift read and write operations, facilitating multitasking and overall system performance.  ROM (Read-Only Memory): Unlike RAM, ROM is non-volatile memory, meaning it retains data even when the power is turned off. ROM is commonly used to store firmware and permanent instructions essential for booting up devices and initializing hardware components.  Flash Memory: This non-volatile memory type finds its application in devices like USB drives, Solid State Drives (SSDs), memory cards, and embedded systems. Flash memory allows for both reading and writing operations, making it suitable for storing files, applications, and operating systems.  EEPROM (Electrically Erasable Programmable Read-Only Memory): EEPROM combines the qualities of both volatile and non-volatile memory. It’s rewritable and often used in smaller capacities to store configuration settings and small amounts of essential data.  What are the applications of memory chips?The ubiquity of memory chips spans across an extensive array of applications and devices, playing a pivotal role in their functionality:  • Computers and Laptops: RAM enables quick access to data during computations, while ROM stores firmware and BIOS instructions essential for system startup.  • Smartphones and Tablets: Memory chips in these devices handle data storage for applications, media files, and the operating system, ensuring smooth multitasking and user experience.  • Digital Cameras and Camcorders: These devices utilize memory chips to store photos, videos, and settings, allowing users to capture and retain precious moments.  • Embedded Systems and IoT Devices: Memory chips facilitate the functioning of embedded systems and IoT devices, managing data crucial for their operations in various industries like healthcare, automotive, and home automation.  How to make a computer chip?The creation of a memory chip involves intricate processes conducted in specialized semiconductor fabrication plants. The process can be summarized in several key steps:  Design and Layout: Engineers meticulously design the chip’s layout, determining the arrangement and connections of transistors and circuits.  Lithography: A crucial step where the chip’s design is imprinted onto a silicon wafer using photolithography techniques.  Etching and Doping: Unwanted portions of the silicon wafer are removed, and specific regions are doped with materials to alter their conductivity and create the desired electronic components.  Layering: Multiple layers of conductive and insulating materials are deposited onto the wafer to form intricate circuitry.  Testing and Packaging: The fabricated chips undergo rigorous testing to ensure functionality and quality. Once validated, they are packaged into final products for integration into various devices.  What is the difference between a logic chip and memory chip?While both logic and memory chips are essential components of electronic systems, they serve distinct functions:  Logic Chip:  A logic chip is designed to perform computational tasks, execute instructions, and manage the flow of data within a digital device. These chips contain integrated circuits that implement logical operations, arithmetic calculations, and control functions. They are the brains of a system, carrying out operations based on instructions received from software or firmware.  Examples of logic chips include Central Processing Units (CPUs), Graphics Processing Units (GPUs), microcontrollers, and Application-Specific Integrated Circuits (ASICs). CPUs, for instance, process data, perform calculations, and execute instructions, while GPUs specialize in handling graphics-related tasks.  Memory Chip:  In contrast, a memory chip is specifically dedicated to storing and retrieving data. These chips don’t perform computational or logical operations but instead focus on holding information temporarily or permanently within a system. Memory chips are responsible for enabling the storage and retrieval of data for various purposes, such as program execution, data manipulation, or long-term storage.  Types of memory chips include Random Access Memory (RAM), Read-Only Memory (ROM), Flash Memory, and Electrically Erasable Programmable Read-Only Memory (EEPROM). RAM, for example, stores data temporarily while the system is running, allowing quick access for the CPU to carry out operations. ROM holds essential instructions and data that remain intact even when the power is turned off. Flash memory is used for non-volatile storage in devices like USB drives and SSDs, while EEPROM allows for rewritable non-volatile storage in smaller capacities.  How long does a memory chip last?  The longevity of memory chips varies based on usage, quality, and environmental factors. Under normal operating conditions, these chips can last for many years, potentially even decades. However, excessive usage, high temperatures, or voltage fluctuations may impact their lifespan.
Key word:
Release time:2023-11-20 14:33 reading:1437 Continue reading>>
What are AI <span style='color:red'>chips</span> What types of mainstream AI <span style='color:red'>chips</span> are there
  AI chips are not equivalent to GPUs (graphics processing units). Although GPUs can be used to perform some AI computing tasks, AI chips are chips that are specifically designed and optimized for artificial intelligence computing.  First of all, the GPU was originally designed for graphics processing, and its main function is to process images, render graphics, and graphics acceleration. It features massively parallel processing units and a high-bandwidth memory system to meet image processing and computing needs. Since artificial intelligence computing also requires large-scale parallel computing, GPU has played a certain role in the field of AI.  However, compared with traditional general-purpose processors, AI chips have some specific designs and optimizations to better meet the needs of artificial intelligence computing. Here are some key differences between AI chips and GPUs:  1. Architecture design: AI chips are different from GPUs in architecture design. AI chips typically have dedicated hardware accelerators for performing common AI computing tasks, such as matrix operations and neural network operations. These hardware accelerators can provide higher computing performance and energy efficiency to meet the requirements of artificial intelligence computing.  2. Computing optimization: The design of AI chips focuses on optimizing computing-intensive tasks, such as the training and reasoning of deep learning models. They usually use specific instruction sets and hardware structures to accelerate common calculations such as matrix multiplication, convolution operations, and vector operations. Compared with this, the design of GPU focuses more on graphics processing and general computing, and may not be so efficient for some AI computing tasks.  3. Energy efficiency and power consumption: AI chips usually have high energy efficiency and low power consumption to meet the needs of large-scale AI computing and edge devices. They employ several power-saving techniques and optimization strategies to reduce power consumption while maintaining performance. In contrast, GPUs may require more power when handling complex graphics tasks.  4. Customization and flexibility: AI chips are usually designed for specific AI application scenarios and can be customized and developed according to specific computing needs. This custom design can provide better performance and effects, while GPU is a general-purpose processor suitable for a wide range of computing tasks.  What types of mainstream AI chips are there?  1. Graphics Processing Unit (GPU): GPU was originally designed for graphics processing, but due to its highly parallel computing capabilities, it is gradually being used to accelerate AI computing tasks. NVIDIA’s GPUs are widely used in the field of AI computing, such as NVIDIA Tesla series and GeForce series.  2. Application-Specific Integrated Circuit (ASIC): ASIC is a specially customized chip optimized for a specific application. In the field of AI, ASIC chips, such as Google’s Tensor Processing Unit (TPU) and Bitmain’s ASIC chips, have efficient AI computing capabilities.  3. Field-Programmable Gate Array (FPGA): FPGA is a reconfigurable hardware platform that allows users to customize programming according to specific needs. In AI computing, FPGA can be optimized according to different neural network architectures, with flexibility and scalability.  4. Neural Processing Unit (NPU): NPU is a chip specially designed for neural network computing tasks. They usually have a highly parallel structure and specialized instruction sets to accelerate the training and inference of neural network models. Huawei’s Kirin NPU and Asus’ Thinker series chips are common NPUs.  5. Edge AI Chips: Edge AI chips are AI chips specially designed for edge computing devices, such as smartphones, Internet of Things devices, and drones. These chips typically feature low power consumption, high energy efficiency, and small size to suit edge devices. For example, Qualcomm’s Snapdragon series chips integrate AI acceleration.  Leading companies and products of AI chips  1. Huawei  Kirin NPU: Huawei’s Kirin chip series integrates its own NPU to provide efficient AI computing capabilities. These chips are widely used in Huawei’s smartphones and other devices.  2 NVIDIA  GPU products: NVIDIA’s GPU series include GeForce, Quadro and Tesla, among which Tesla series GPUs are widely used in deep learning and AI computing.  Tensor Core: NVIDIA’s Tensor Core is a hardware unit specially designed to accelerate deep learning calculations, integrated in its GPU.  3. Google  Tensor Processing Unit (TPU): The TPU developed by Google is an ASIC chip specially used to accelerate artificial intelligence calculations. TPUs are widely used in Google’s data centers to accelerate machine learning tasks and inference workloads.  4. Intel  Intel Nervana Neural Network Processor (NNP): Intel NNP is an ASIC chip designed for deep learning reasoning. It has a highly parallel architecture and optimized neural network computing power.  5. AMD  Radeon Instinct: AMD’s Radeon Instinct series of GPUs are designed for high-performance computing and deep learning tasks. These GPUs have powerful parallel computing capabilities and support deep learning frameworks and tools.  6. Apple  Apple Neural Engine: Apple has integrated Neural Engine in its A-series chips, which is a hardware accelerator dedicated to speeding up machine learning and AI tasks. It is used to support functions such as face recognition and voice recognition.
Key word:
Release time:2023-09-25 15:39 reading:1975 Continue reading>>
How the touch chip works,How many <span style='color:red'>chips</span> does the touch chip have
  A touch chip is a microprocessor that can sense human touch and can convert human touch operations into electrical signal input that can be read by a computer. It is widely used in various digital devices such as mobile phones, tablets, and smart watches, and has become an indispensable part of modern electronic products.  “Touch” specifically refers to single-point or multi-point touch technology; the chip is an IC, which refers to a metal or non-metal sheet whose end surface can be integrated with the friction lining and friction material layer, and a circuit module that integrate a variety of electronic components on a silicon board to achieve a specific function. It is the most important part of electronic equipment, responsible for computing and storage functions. The application scope of integrated circuits covers almost all electronic equipment for military and civilian. A small piece of silicon containing integrated circuits, often is a part of a computer or other device.  Touch chip, also called touch IC. “Touch” refers to single or multi-touch technology. The touch chip is located between the touch sensor and the PC/or embedded system controller. The chip can be mounted on a controller board inside the system or placed on a flexible printed circuit (FPC) attached to the glass touch sensor. The chip extracts information from the touch sensor and converts it into information that the PC or embedded system controller can understand. Most touch chips now use the capacitive effect, that is, the proximity of the human body will increase the capacitance, thereby changing the original oscillation frequency or changing the charge and discharge time of the RC circuit.  How the touch chip works  This is achieved by sensing capacitance changes caused by human touch. When the human body approaches the touch screen surface, it will cause the capacitance between the touch screen and the human body to change, and a new electric field distribution will be formed. The chip will calculate the specific touch position and operation gesture based on this capacitance change. This process requires the use of a series of advanced sensor technologies, signal processing, algorithm optimization and other technologies to achieve high precision and sensitivity.  Touch chips basically use four multi-touch technologies  1. “LLP (laser light plane) technology” mainly uses infrared laser equipment to project infrared rays onto the screen. When the screen is blocked, infrared light is reflected, and a camera under the screen captures where the reflection goes. After systematic analysis, a response can be made.  2. “FTIR (Frustrated Total Internal Reflection) technology” will add LED light to the interlayer of the screen. When the user presses the screen, the light in the interlayer will cause different reflection effects. The sensor will receive the changes in light and capture the point of force application to react.  3. “ToughtLight technology” uses projection method to project infrared rays onto the screen. When the screen is blocked, infrared light is reflected, and a camera under the screen captures where the reflection goes. After systematic analysis, a response can be made.  4. “Optical Touch technology”, which has a lens at each end of the top of the screen to receive the user’s gesture changes and the position of the touch point. After calculation, it is converted into coordinates and then reacted.  How many chips does the touch chip have?1. Capacitive touch chip: Uses the capacitive principle to detect charge changes on the touch screen, with high accuracy, fast response, and supports multi-touch.  2. Resistive touch chip: It uses the principle of resistance to detect voltage changes on the touch screen. It is cheap, but does not support multi-touch, has low accuracy and short service life.  3. Acoustic wave touch chip: Uses acoustic wave sensors to detect sound reflections on the touch screen, which can support non-contact touch, but is sensitive to environmental noise and other interference.  4. Optical touch chip: Using optical sensors to detect optical changes on the touch screen has high accuracy, but is expensive and not suitable for large-scale applications.  5. Pressure-sensitive touch chip: Uses a pressure-sensitive sensor to detect pressure changes on the screen and supports multi-touch, but the price is higher.
Key word:
Release time:2023-09-21 16:42 reading:2155 Continue reading>>
What is the relationship between <span style='color:red'>chips</span>, semiconductors and integrated circuits
  Chips, semiconductors and integrated circuits are important concepts in the electronics field. As technology continues to develop, their application scope and influence are also expanding. So what is the relationship and difference between chips, semiconductors and integrated circuits? Let us find out together in this article.  What is a chip?A chip, also known as a microcircuit, microchip, or integrated circuit (IC), refers to a silicon chip containing an integrated circuit. It is very small and is often part of a computer or other electronic equipment.  Chip is the collective name for semiconductor component products. It is the carrier of integrated circuit (IC) and is divided into wafers. A silicon wafer is a small piece of silicon that contains an integrated circuit that is part of a computer or other electronic device.  What is semiconductor?Semiconductor refers to a material whose electrical conductivity at room temperature is between that of a conductor and an insulator. Semiconductors are widely used in radios, televisions and temperature measurement. For example, a diode is a device made of semiconductors. A semiconductor is a material whose conductivity can be controlled, ranging from an insulator to a conductor. Whether from the perspective of technology or economic development, the importance of semiconductors is huge.  The core units of most electronic products, such as computers, smartphones or digital recorders, are closely related to semiconductors. Common semiconductor materials include silicon, germanium, gallium arsenide, etc., and silicon is the most influential one in commercial applications among various semiconductor materials.  What is an integrated circuit?An integrated circuit is a miniature electronic device or component. Using a certain process, the transistors, resistors, capacitors, inductors and other components and wiring required in a circuit are interconnected, made on a small or several small semiconductor chips or dielectric substrates, and then packaged in a tube shell , becoming a microstructure with required circuit functions; all components in it have structurally formed a whole, making electronic components a big step towards miniaturization, low power consumption, intelligence and high reliability. It is represented by the letters “IC” in circuits.  The inventors of the integrated circuit are Jack Kilby (integrated circuits based on germanium (Ge)) and Robert Noyce (integrated circuits based on silicon (Si)).  Most applications in the semiconductor industry today are silicon-based integrated circuits. This is a new type of semiconductor device developed in the late 1950s and 1960s. It is a small piece of silicon that integrates semiconductors, resistors, capacitors and other components required to form a circuit with certain functions and the connecting wires between them through semiconductor manufacturing processes such as oxidation, photolithography, diffusion, epitaxy, and aluminum evaporation. on-chip, and then solder the electronic device packaged in a tube. Its packaging shell comes in various forms such as round shell type, flat type or dual in-line type.  Integrated circuit technology includes chip manufacturing technology and design technology, which is mainly reflected in processing equipment, processing technology, packaging and testing, mass production and design innovation capabilities.  What is the relationship between chips, semiconductors and integrated circuits?There is a close relationship between chips, semiconductors and integrated circuits.It can be said that a semiconductor is a material, a chip is a carrier of electronic components manufactured using semiconductors, and an integrated circuit is a technology and product that integrates multiple electronic components onto a chip.  Chip is the collective name for semiconductor component products. It is the carrier of integrated circuit (IC, integrated circuit) and is divided into wafers.  Integrated circuits refer to active devices, passive components and their interconnections that make up a circuit and are fabricated on a semiconductor substrate or an insulating substrate to form a structurally closely connected and internally related electronic circuit. It can be divided into three main branches: semiconductor integrated circuits, film integrated circuits, and hybrid integrated circuits.  Semiconductors are the basic materials needed to make chips and integrated circuits. A chip is a carrier made of semiconductor material on which multiple electronic components are integrated. These components can be transistors, resistors, capacitors, etc. and are used to perform various circuit functions.  Integrated circuits are technologies and products that integrate multiple electronic components onto a single chip. By integrating these components onto a chip, complex circuit functions can be implemented in a smaller, more efficient space. The invention and development of integrated circuits has greatly improved the performance of electronic devices and played an important role in computers, communications, consumer electronics and other fields.  Therefore, semiconductors are the basic materials for chips and integrated circuits. Chips are the carrier of integrated circuits, while integrated circuits are technologies and products that integrate multiple electronic components on a chip to achieve various functions. The relationship between them can be understood as a hierarchical relationship from materials to products.  If you need to purchase chips, please visit AMEYA mall to consult online customer service!
Key word:
Release time:2023-09-20 14:09 reading:2510 Continue reading>>
NOVOSENSE NSUC1610: Micro&Special Motor Driver SoC for Automotive-qualified Chips
  As integrated thermal management technology continues its relentless evolution, the quest for enhanced model selection and the platformization of electronic valves and pump components has ushered in an era of single-chip integrated micro&special motor driver System-on-Chips (SoCs). This innovative solution takes the original components, including the MCU, power supply, MOS drive, and LIN communication module, and amalgamates them into a single cohesive package. This integration not only simplifies peripheral circuits but also significantly reduces the need for additional peripheral devices. Furthermore, it fosters standardization of interfaces and control algorithms while simultaneously slashing system costs and elevating reliability to new heights.  NOVOSENSE NSUC1610 integrates a Cortex M3 processor, power MOSFET and DAC. It supports a 4-wire LIN bus and dual-channel temperature sensor which can be used for power-side over temperature shutdown and low-voltage-side temperature detection inside the chip.  This highly integrated product NSUC1610 can be used to design small-sized, low power, high-efficiency motor intelligent actuator applications for automotive, include but are not limited to electronic water valves in thermal management systems, air conditioning electronic vents, active air intake grille system actuators (AGS/AGM), seat ventilation brushless direct current motor (BLDC) drives, with light steering headlights (AFS), and more. Rotating/lifting large screen control, automatic charging port and automatic door handle.
Key word:
Release time:2023-09-20 13:49 reading:4113 Continue reading>>

Turn to

/ 6

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code