Renesas Sets New MCU Performance Bar with 1-GHz RA8P1 Devices with AI Acceleration
Unprecedented 7300+ CoreMarks1 with Dual Arm CPU coresTSMC 22ULL Process Delivers High Performance and Low Power ConsumptionEmbedded MRAM with Faster Write Speeds and Higher Endurance and RetentionDedicated Peripherals Optimized for Vision and Voice AI plus Real-Time AnalyticsNew AI Software Framework Eases Development and Enables Easy Migration with MPUsLeading-Edge Security Features Ensure Data Privacy  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, introduced the RA8P1 microcontroller (MCU) Group targeted at Artificial Intelligence (AI) and Machine Learning (ML) applications, as well as real-time analytics. The new MCUs establish a new performance level for MCUs by combining 1GHz Arm® Cortex®-M85 and 250MHz Cortex-M33 CPU cores with the Arm Ethos™-U55 Neural Processing Unit (NPU). This combination delivers the highest CPU performance of over 7300 CoreMarks and AI performance of 256 GOPS at 500 MHz.  Designed for Edge/Endpoint AI  The RA8P1 is optimized for edge and endpoint AI applications, using the Ethos-U55 NPU to offload the CPU for compute intensive operations in Convolutional and Recurrent Neural Networks (CNNs and RNNs) to deliver up to 256 MACs per cycle that yield 256 GOPS performance at 500 MHz. The new NPU supports most commonly used networks, including DS-CNN, ResNet, Mobilenet TinyYolo and more. Depending on the neural network used, the Ethos-U55 provides up to 35x more inferences per second than the Cortex-M85 processor on its own.  Advanced Technology  The RA8P1 MCUs are manufactured on the 22ULL (22nm ultra-low leakage) process from TSMC, enabling ultra-high performance with very low power consumption. This process also enables the use of embedded Magnetoresistive RAM (MRAM) in the new MCUs. MRAM offers faster write speeds along with higher endurance and retention compared with Flash.  “There is explosive growth in demand for high-performance edge AIoT applications. We are thrilled to introduce what we believe are the best MCUs to address this trend,” said Daryl Khoo, Vice President of Embedded Processing Marketing Division at Renesas. “The RA8P1 devices showcase our technology and market expertise and highlight the strong partnerships we have built across the industry. Customers are eager to employ these new MCUs in multiple AI applications.”  “The pace of innovation in the age of AI is faster than ever, and new edge use cases demand ever-improving performance and machine learning on-device,” said Paul Williamson, Senior Vice President and General Manager, IoT Line of Business at Arm. “By building on the advanced AI capabilities of the Arm compute platform, Renesas’ RA8P1 MCUs meet the demands of next generation voice and vision applications, helping to scale intelligent, context-aware AI experiences.”  “It is gratifying to see Renesas harness the performance and reliability of TSMC 22ULL embedded MRAM technology to deliver outstanding results for its RA8P1 devices,” said Chien-Hsin Lee, Senior Director of Specialty Technology Business Development at TSMC. “As TSMC continues to advance our embedded non-volatile memory (eNVM) technologies, we look forward to strengthening our long-standing collaboration with Renesas to drive innovation in future groundbreaking devices.”  Robust, Optimized Peripheral Set for AI  Renesas has integrated dedicated peripherals, ample memory and advanced security to address Voice and Vision AI and Real-time Analytics applications. For vision AI, a 16-bit camera interface (CEU) is included that supports sensors up to 5 megapixels, enabling camera and demanding Vision AI applications. A separate MIPI CSI-2 interface offers a low pin-count interface with two lanes, each up to 720Mbps. In addition, multiple audio interfaces including I2S and PDM support microphone inputs for voice AI applications.  The RA8P1 offers both on-chip and external memory options for efficient, low latency neural network processing. The MCU includes 2MB SRAM for storing intermediate activations or graphics framebuffers. 1MB of on-chip MRAM is also available for application code and storage of model weights or graphics assets. High-speed external memory interfaces are available for larger models. SIP options with 4 or 8 MB of external flash in a single package are also available for more demanding AI applications.  New RUHMI Framework  Along with the RA8P1 MCUs, Renesas has introduced RUHMI (Renesas Unified Heterogenous Model Integration), a comprehensive framework for MCUs and MPUs. RUHMI offers efficient AI deployment of the latest neural network models in a framework agnostic manner. It enables model optimization, quantization, graph compilation and conversion, and generates efficient source code. RUHMI provides native support for machine-learning AI frameworks such as TensorFlow Lite, Pytorch & ONNX. It also provides the necessary tools, APIs, code-generator, and runtime needed to deploy a pre-trained neural network, including ready-to-use application examples and models optimized for RA8P1. RUHMI is integrated with Renesas’s own e2Studio IDE to allow seamless AI development. This integration will facilitate a common development platform for MCUs and MPUs.  Advanced Security Features  The RA8P1 MCUs provide leading-edge security for critical applications. The new Renesas Security IP (RSIP-E50D) includes numerous cryptographic accelerators, including CHACHA20, Ed25519, NIST ECC curves up to 521 bits, enhanced RSA up to 4K, SHA2 and SHA3. In concert with Arm TrustZone®, this provides a comprehensive and fully integrated secure element-like functionality. The new MCUs also provides strong hardware Root-of-Trust and Secure Boot with First Stage Bootloader (FSBL) in immutable storage. XSPI interfaces with decryption-on-the-fly (DOTF) allow encrypted code images to be stored in external flash and decrypted on the fly as it is securely transferred to the MCU for execution.  Ready to Use Solutions  Renesas provides a wide range of easy-to-use tools and solutions for the RA8P1 MCUs, including the Flexible Software Package (FSP), evaluation kits and development tools. FreeRTOS and Azure RTOS are supported, as is Zephyr. Several Renesas software example projects and application notes are available to enable faster time to market. In addition, numerous partner solutions are available to support development with the RA8P1 MCUs, including a driver monitoring solution from Nota.AI and a traffic/pedestrian monitoring solution from Irida Labs. Other solutions can be found at the Renesas RA Partner Ecosystem Solutions Page.  Key Features of the RA8P1 MCUs  Processors: 1GHz Arm Cortex-M85, 500MHz Ethos-U55, 250 MHz Arm Cortex-M33 (Optional)  Memory: 1MB/512KB On-chip MRAM, 4MB/8MB External Flash SIP Options, 2MB SRAM fully ECC protected, 32KB I/D caches per core  Graphics Peripherals: Graphics LCD controller supporting resolutions up to WXGA (1280x800), parallel RGB and MIPI-DSI display interfaces, powerful 2D Drawing engine, parallel 16bit CEU and MIPI CSI-2 camera interfaces, 32bit external memory bus (SDRAM and CSC) interface  Other Peripherals: Gigabit Ethernet and TSN Switch, XSPI (Octal SPI) with XIP and DOTF, SPI, I2C/I3C, SDHI, USBFS/HS, CAN-FD, PDM and SSI audio interfaces, 16bit ADC with S/H circuits, DAC, comparators, temperature sensor, timers  Security: Advanced RSIP-E50D cryptographic engine, TrustZone, Immutable storage, secure boot, tamper resistance, DPA/SPA attack protection, secure debug, secure factory programming, Device Lifecycle management  Packages: 224BGA, 289BGA
Key word:
Release time:2025-07-04 14:56 reading:274 Continue reading>>
ROHM Introduces a New MOSFET for AI Servers with Industry-Leading* SOA Performance and Low ON-Resistance
  ROHM has released of a 100V power MOSFET - RY7P250BM - optimized for hot-swap circuits in 48V power systems used in AI servers and industrial power supplies requiring battery protection to the market.  As AI technology rapidly advances, data centers are facing unprecedented processing demands and server power consumption continues to increase annually. In particular, the growing use of generative AI and high-performance GPUs has created a need to simultaneously improve power efficiency while supporting higher currents. To address these challenges, the industry is shifting from 12V systems to more efficient 48V power architectures. Furthermore, in hot-swap circuits used to safely replace modules while servers remain powered on, MOSFETs are required that offer both wide SOA (Safe Operating Area) and low ON-resistance to protect against inrush current and overloads.  The RY7P250BM delivers these critical characteristics in a compact 8080-size package, helping to reduce power loss and cooling requirements in data centers while improving overall server reliability and energy efficiency. As the demand for 8080-size MOSFETs grows, this new product provides a drop-in replacement for existing designs. Notably, the RY7P250BM achieves wide SOA (VDS=48V, Pw=1ms/10ms) ideal for hot-swap operation. Power loss and heat generation are also minimized with an industry-leading low ON-resistance of 1.86mΩ (VGS=10V, ID=50A, Tj=25°C), approximately 18% lower than the typical 2.28mΩ of existing wide SOA 100V MOSFETs in the same size.  Wide SOA tolerance is essential in hot-swap circuits, especially those in AI servers that experience large inrush currents. The RY7P250BM meets this demand, achieving 16A at 10ms and 50A at 1ms, enabling support for high-load conditions conventional MOSFETs struggle to handle.  ROHM’s new product has also been certified as a recommended component by leading global cloud platform provider, where it is expected to gain widespread adoption in next-generation AI servers. Especially in server applications where reliability and energy efficiency are mission-critical, the combination of wide SOA and low RDS(on) has been highly evaluated for cloud infrastructure.  Going forward, ROHM will continue to expand its lineup of 48V-compatible power solutions for servers and industrial equipment, contributing to the development of sustainable ICT infrastructure and greater energy savings through high-efficiency, high-reliability products.  Application Examples  • 48V AI server systems and power supply hot-swap circuits in data centers  • 48V industrial equipment power systems (i.e. forklifts, power tools, robots, fan motors)  • Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  • UPS and emergency power systems (battery backup units)  Online Sales InformationSales Launch Date: May 2025  Pricing: $5.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  Applicable Part No: RY7P250BM  EcoMOS™ BrandEcoMOS™ is ROHM's brand of silicon MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  TerminologyHot-Swap Circuit  A circuit that enables components to be inserted or removed while the system remains powered on.  It typically consists of MOSFETs, protection elements, and connectors, and is responsible for suppressing inrush current and protecting against overcurrent conditions, ensuring stable operation of the system and connected components.  Power MOSFET  A MOSFET designed for power conversion and switching applications. N-channel MOSFETs are the dominant type, turning on when a positive voltage is applied to the gate relative to the source. They offer lower ON-resistance and higher efficiency than P-channel variants. Due to their low conduction loss and high-speed switching performance, power MOSFETs are commonly used in power supplies, motor drives, and inverter circuits.  SOA (Safe Operating Area)  The defined range of voltage and current in which a device can operate reliably without risk of failure. Operating outside this boundary may result in thermal runaway or permanent damage. SOA is especially critical in applications exposed to inrush currents or overcurrent conditions.  Low ON-resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) reduces power loss during operation.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered on. Proper control of this current reduces stress on power circuit components, helping to prevent device damage and stabilize the system.
Key word:
Release time:2025-07-03 14:52 reading:222 Continue reading>>
GD32C231 Series MCU — Redefining Cost-Performance, Unleashing New Potential
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, today officially launched the value-packed GD32C231 series of entry-level microcontrollers, further expanding its Arm® Cortex®-M23 core product lineup. As the leader in China's largest Arm® MCU market, GigaDevice positions the GD32C231 series as a "high-performance entry-level" solution designed to offer more competitive options for applications including small home appliances, BMS (Battery Management Systems), small-screen display devices, handheld consumer products, industrial auxiliary controls, and automotive aftermarket systems.  With over 2 billion cumulative MCU shipments and a mature supply chain, GigaDevice's newly launched GD32C231 series overcomes the performance limitations of traditional entry-level chips through innovative design. The series not only integrates a rich set of peripherals but also adopts an industrial-grade wide-voltage process and offers a comprehensive ecosystem. While maintaining exceptional cost-effectiveness, this affordable MCU supports more complex application scenarios, redefining value standards in the entry-level MCU market and ushering in a new era of "affordable yet high-spec" solutions.  GD32C231 Series MCUs: The Ultimate Choice for Cost-Effectiveness  The GD32C231 series MCUs deliver a significant upgrade in computing performance and peripheral features while maintaining excellent price competitiveness, achieving an ultra-high cost-performance balance. Built on Arm's advanced Cortex®-M23 core architecture, the series offers up to 10% higher performance than Cortex®-M0+, with clock speeds reaching 48MHz. It supports efficient processing capabilities such as integer division, greatly enhancing software execution efficiency.  In terms of memory configuration, the series features 32KB to 64KB of highly reliable embedded Flash and 12KB of low-power SRAM, with full memory areas equipped with ECC error correction. To meet the demands of diverse applications, multiple package options are available, including TSSOP20/LGA20, QFN28, LQFP32/QFN32, and LQFP48/QFN48. Thanks to its highly integrated chip design, the series effectively reduces the number of external components, providing users with a bill-of-materials (BOM) cost-optimized solution.GD32C231 Product Portfolio  The Perfect Balance of Wide Voltage Support, Low Power, and Fast Wake-up Time  The GD32C231 series delivers exceptional power flexibility and energy efficiency, supporting a wide operating voltage range from 1.8V to 5.5V and a broad temperature range from -40°C to 105°C. This makes it highly adaptable for deployment in harsh and demanding environments. Featuring multiple power management modes, the device consumes as little as 5μA in deep sleep mode and offers ultra-fast 2.6μs wake-up time - achieving an optimal balance between low power consumption and real-time performance. These capabilities make the GD32C231 ideal for battery-powered and portable applications.  Reliable Operation for Safety-Critical Applications  Engineered for reliability, the GD32C231 provides robust ESD protection - meeting 8kV contact discharge and 15kV air discharge standards. Full ECC error correction is applied across Flash and SRAM memory, helping to prevent data corruption. An integrated hardware CRC module further enhances data transmission integrity. These features ensure the MCU performs reliably in safety-critical environments such as industrial automation and automotive electronics.  Highly Integrated Peripherals for Flexible Design  The GD32C231 series integrates a comprehensive set of peripherals, significantly enhancing system integration and design flexibility:  A 12-bit ADC with 13 external channels and 2 internal comparators for precise analog signal measurement.  Up to 4 general-purpose 16-bit timers and 1 advanced 16-bit timer for versatile time-based operations.  2 high-speed SPI interfaces (including quad QSPI at 24Mbps), 2 I²C interfaces (supporting Fast Mode+ at 1Mbit/s), and 3 UARTs (up to 6Mbps) for robust serial communication.  An integrated 3-channel DMA controller and 1 I²S interface for efficient peripheral data handling.  With support for up to 45 GPIOs in a 48-pin package, the GD32C231 offers excellent expandability for complex designs. These rich peripheral resources empower the MCU to meet the demands of a wide range of applications - from consumer electronics to industrial control systems - with ease and reliability.GD32C231 block diagram  Full-Stack Ecosystem Support for Efficient Development  The GD32C231 series is backed by a comprehensive development ecosystem designed to accelerate product design and time-to-market. Standard software libraries and resources are readily available on GigaDevice's official website.  To support developers throughout the entire development cycle, GigaDevice provides extensive documentation, including datasheets, user manuals, hardware design guidelines, application notes, and porting references - enabling rapid onboarding for both hardware and software development. A complete SDK firmware package is also offered, featuring rich sample code and development board resources that cover everything from low-level drivers to advanced applications.  The GD32 MCU family natively supports FreeRTOS, offering developers a lightweight, open-source, and high-efficiency real-time operating system. To streamline development even further, GigaDevice offers the GD32 Embedded Builder IDE - its proprietary development environment that integrates graphical configuration and intelligent code generation, reducing design complexity. The GD32 All-In-One Programmer supports essential Flash operations such as programming, erasing, reading, and option byte configuration. Meanwhile, the GD-Link debugger provides dual-mode SWD/JTAG support with plug-and-play functionality for a seamless debugging experience. GigaDevice also collaborates closely with third-party programming tool providers to offer customers a wide range of programming and debugging options.  Additionally, the GD32C231 series is fully compatible with major international toolchains including Arm® Keil, IAR Embedded Workbench, and SEGGER Embedded Studio, ensuring flexibility across various development platforms. For typical use cases, GigaDevice provides robust application solutions and reference designs - helping developers shorten design cycles, simplify product validation, and accelerate the path to mass production.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management. For more details, please visit: www.GigaDevice.com  *GigaDevice, GD32, and their logos are trademarks, or registered trademarks of GigaDevice Semiconductor Inc. Other names and brands are the property of their respective owners.
Key word:
Release time:2025-06-30 14:52 reading:302 Continue reading>>
ROHM Develops Compact Surface-Mount Near-Infrared LEDs Featuring Industry-Leading* Radiant Intensity
  ROHM has expanded its portfolio of surface-mount near-infrared (NIR) LEDs with new compact top-view types. They are optimized for applications such as VR/AR devices, industrial optical sensors, and human detection sensors.  The demand for advanced sensing technologies utilizing near-infrared (NIR) has grown in recent years, particularly in VR/AR equipment and biosensing devices. These technologies are used in applications such as eye tracking, iris recognition, and blood flow/oxygen saturation measurements that require high accuracy. At the same time, miniaturization, energy efficiency, and design flexibility are becoming increasingly important. In industrial equipment, near-infrared LEDs are playing a greater role with the rise of precise printer control and automation systems. In response, ROHM is expanding customer options by developing a lineup of compact packages and wavelengths that offer greater design flexibility, while contributing to higher precision and power savings by achieving high radiant intensity.  The new lineup consists of six models in three package configurations, including two ultra-compact (1.0mm × 0.6mm), ultra-thin (t=0.2mm) products as part of the PICOLED™ series: SML-P14RW and SML-P14R3W. In addition, there are four variants in the industry-standard (1.6mm × 0.8mm) size, featuring a narrow beam circular lens package (CSL0902RT, CSL0902R3T) and flat lens design that emits light over a wide range (CSL1002RT, CSL1002R3T). Each package is available in two wavelengths, 850nm (860nm for the SML-P14RW) and 940nm, allowing customers various options for their specific application needs. The 850nm wavelength is ideal for phototransistors and camera sensors, making it suitable for high-sensitivity applications such as eye tracking and object detection in VR/AR. At the same time, the 940nm wavelength is less affected by sunlight and does not appear red when emitting light, making it suitable for motion sensors. It is also widely used in biosensing applications such as pulse oximeters to measure blood flow and oxygen saturation (SpO2).  The light source incorporates an NIR element with an optimized emission layer structure utilizing proprietary technology developed through in-house manufacturing expertise. This has made it possible to achieve industry-leading* radiant intensity in a compact package, which was previously considered difficult. For example, compared to a standard 1006 size product, the SML-P14RW delivers approx. 1.4 times the radiant intensity at the same current. In other words, the SML-P14RW consumes 30% less power to achieve the same radiation intensity. This technology improves sensing accuracy and power savings for the entire system.  Going forward, ROHM will continue to provide innovative light source solutions that support next-generation sensing technologies, creating new value in the VR/AR and industrial equipment markets, while contributing to the realization of a sustainable society.  Compact NIR LED Lineup  *1:Ta=25°C *2:IF=30mA *3:IF=20mA  ROHM also offers NIR-sensitive phototransistors.  Application Examples  • VR/AR licenses (eye tracking, gesture recognition)  • Pulse oximeters (blood flow/oxygen saturation measurement)  • Industrial optical sensors (object passage detection, position detection), self-checkout systems (bill/card detection), mobile printers (paper detection)  • Home appliance remote controls (IR data communication), robot vacuum cleaners (floor detection)  Terminology  VR/AR (Virtual Reality/Augmented Reality)  Virtual reality immerses users in a completely digital environment through small high-resolution monitors or screens within an enclosed space. Augmented reality enhances the real world by overlaying digital content onto a headset or smart glasses, enabling users to interact with 3D images. Collectively, these technologies are sometimes referred to as XR (Cross Reality or Extended Reality).  Near-Infrared (NIR)  Refers to light in the wavelength range of 780nm to 1000nm. Primarily used in sensors, communication and measurement applications, it is suitable for high accuracy distance measurement and recognition.  PICOLED™ Series  ROHM's ultra-small, ultra-thin chip LEDs designed for compact mobile devices and wearables, developed using a proprietary element manufacturing process.  Radiant Intensity  An index representing the strength of energy emitted by a light-emitting device in a specific direction (unit: W/sr). This is an important factor that affects the LED’s output intensity and detection performance on the receiving side.  Note: DigiKey™, Mouser™ and Farnell™ are trademarks or registered trademarks of their respective companies.  *PICOLED™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-05-26 14:54 reading:380 Continue reading>>
GigaDevice launches the GD32G5 series high-performance MCUs with Cortex®-M33 core, unleashing innovation potential in industrial applications
  GigaDevice (Stock Code: 603986), a leading semiconductor supplier, today officially announced the launch of the GD32G5 series high-performance microcontrollers, based on the Arm® Cortex®-M33 core.  The GD32G5 series MCUs, featuring exceptional processing performance, a wide range of digital and analog interface resources, and enhanced security capabilities, can be widely applied across diverse scenarios such as digital power systems, charging stations, energy storage inverters, frequency converters, servo motors, and optical communication. This new product lineup offers 14 models across 7 package types, including LQFP, QFN, and WLCSP.   Powerful Performance Empowering the Industrial Market  The GD32G5 series MCUs are powered by the high-performance Arm® Cortex®-M33 core, with a clock frequency of up to 216 MHz. These MCUs feature an advanced DSP hardware accelerator and a single-precision floating-point unit (FPU). They also integrate a hardware trigonometric function accelerator (TMU), supporting 10 types of function calculations, along with various other hardware acceleration units, including filter algorithms (FAC) and Fast Fourier Transform (FFT), which significantly enhance processing efficiency. At maximum frequency, the GD32G5 series MCUs deliver performance of up to 316 DMIPS, achieving an impressive CoreMark® score of 694.  The GD32G5 series MCUs are equipped with 256KB to 512KB of embedded Flash memory, supporting the dual-bank Flash feature, and 128KB of SRAM, which includes 32KB Tightly Coupled Memory RAM (TCMRAM) for zero-wait execution of critical instructions and data. Additionally, they feature high-speed cache memory, with up to 2KB I-Cache and 512B D-Cache, further boosting core processing performance.  Extensive Peripherals Enable Development Innovation  The GD32G5 series MCUs integrate a comprehensive range of peripheral resources. They support four 12-bit ADCs with a sampling rate of up to 5.3 MSPS and up to 42 channels, as well as four 12-bit DACs, two of which offer sampling rates as high as 15 MSPS. Additionally, the series includes eight high-speed comparators (COMPs) and a suite of high-precision analog peripherals designed to meet the demands of motor and power control applications. The GD32G5 series also features a 16-channel high-precision timer (HRTimer) with accuracy reaching 145 ps, along with three advanced 8-channel timers, two 32-bit general-purpose timers, five 16-bit general-purpose timers, two 16-bit basic timers, and one low-power timer.  In terms of communication interfaces, the GD32G5 series offers five U(S)ARTs, four I2Cs, three SPIs, and one QSPI supporting up to 200 MHz DDR/SDR interfaces. The MCUs are equipped with three CAN-FD modules, ideal for high-speed communication applications. Additionally, they integrate one HPDF (high-performance digital filter) supporting 8 channels and 4 filters, with external Σ-Δ modulator support. The series also includes four configurable logic modules (CLAs) and the Trigsel module, which allows flexible configuration of trigger sources. Designed to operate in a wide temperature range from -40°C to 105°C, the GD32G5 series is well-suited for demanding applications such as optical modules, industrial power supplies, and high-speed motor control, where stringent temperature requirements must be met.
Key word:
Release time:2025-05-21 16:47 reading:461 Continue reading>>
ROHM at PCIM Europe 2025: Powerful Highlights for E-Mobility and Industrial Applications
  From May 6th to 8th ROHM will exhibit at the PCIM Expo & Conference, the leading international event for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, taking place in Nuremberg. On its booth 304 in hall 9, ROHM will showcase reference projects with renowned partners and present the evolution of its package designs and evaluation boards.  "PCIM 2025 in Nuremberg is the meeting place for innovation and progress in power electronics. This is where the brightest minds in the industry come together to shape the future of e-mobility and industrial applications. We will be presenting great customer applications to showcase the possibilities offered by our products in the best possible way. Whether in the PV industry or e-mobility sectors – we are involved and would like to talk to our customers on site about the key projects of the future," says Wolfram Harnack, President at ROHM Semiconductor Europe.  Highlights of ROHM’s presence at PCIM 2025 include:  For automotive applications, ROHM will exhibit an inverter unit utilizing the TRCDRIVE pack™ that consists of a 2-in-1 SiC Molded Module. Valeo and ROHM have been collaborating since 2022, initially focusing on technical exchange to enhance the performance and efficiency of motor inverters, a key component in the propulsion systems of electric vehicles (EVs) and plug-in hybrids (PHEVs).  Power solutions for on-board chargers (OBCs), essential for e-mobility applications, will also be on the booth. ROHM will showcase the new EcoSiC™ molded power modules suitable for OBCs, along with OBC applications adopting ROHM’s power semiconductor devices.  ROHM’s Power Eco Family products: ROHM has grouped the four product lines of power semiconductors under the brand concept “Power Eco Family” and is contributing to the development of a sustainable ecosystem through improved application performance. We will show featured solutions and case studies at the booth.  In this context, one application example is the new GaN Lineup: ROHM’s EcoGaN™ series of 650V GaN HEMTs in the TOLL package has been adopted for AI server power supplies by Murata Power Solutions, a subsidiary of the Murata Manufacturing Group and a leading supplier of electronic components, batteries and power supplies in Japan. Integrating ROHM’s GaN HEMTs, which combine low loss operation with high-speed switching performance, in Murata Power Solutions’ 5.5kW AI server power supply unit achieves greater efficiency and miniaturization.  For more information, please refer to AMEYA360’s related news release.  The details of the Power Eco Family are as follows.  ● EcoSiC™ is a brand of devices leveraging silicon carbide which is attracting attention in the power device field for performance that surpasses silicon.  ● EcoGaN™ comprises compact, energy-efficient devices that utilize the low ON resistance, high-speed switching characteristics of GaN to achieve lower application power consumption, smaller peripheral components, and simpler designs requiring fewer parts.  ● EcoIGBT™ is ROHM’s brand of IGBTs consisting of both devices and modules designed to meet the needs of high-voltage applications in the power device field.  ● EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  During the fair, ROHM’s power experts will participate in several panel discussions and conference presentations. Additionally, they will hold poster sessions at the PCIM Europe 2025 conference.  More information regarding ROHM’s key highlights at PCIM 2025 is available here: www.rohm.com/pcim  *EcoSiC™, EcoGaN™, EcoIGBT™, EcoMOS™ and TRCDRIVE pack™ are trademarks or registered trademarks of ROHM Co., Ltd.
Key word:
Release time:2025-04-23 17:01 reading:349 Continue reading>>
ROHM Develops Class-Leading* Low ON-Resistance, High-Power MOSFETs for High-Performance Enterprise and AI Servers
  ROHM has developed N-channel power MOSFETs featuring industry-leading* low ON-resistance and wide SOA capability. They are designed for power supplies inside high-performance enterprise and AI servers.  The advancement of high-level data processing technologies and the acceleration of digital transformation have increased the demand for data center servers. At the same time, the number of servers equipped with advanced computing capabilities for AI processing is on the rise and is expected to continue to grow. These servers operate 24 hours a day, 7 days a week – ensuring continuous operation. As a result, conduction losses caused by the ON-resistance of multiple MOSFETs in the power block have a significant impact on system performance and energy efficiency. This becomes particularly evident in AC-DC conversion circuits, where conduction losses make up a substantial portion of total power loss – driving the need for low ON-resistance MOSFETs.  Additionally, servers equipped with a standard hot-swap function, which allow for the replacement and maintenance of internal boards and storage devices while powered ON, experience a high inrush current during component exchanges. Therefore, to protect server components and MOSFETs from damage, a wide Safe Operating Area (SOA) tolerance is essential.  To address these challenges, ROHM has developed its new DFN5060-8S package that supports the packaging of a larger die compared to conventional designs, resulting in a lineup of power MOSFETs that achieve industry-leading* low ON-resistance along with wide SOA capability. These new products significantly contribute to improving efficiency and enhancing reliability in server power circuits.  The new lineup includes three products. The RS7E200BG (30V) is optimized for both secondary-side AC-DC conversion circuits and hot-swap controller (HSC) circuits in 12V power supplies used in high-performance enterprise servers. The RS7N200BH (80V) and RS7N160BH (80V) are ideal for secondary AC-DC conversion circuits in 48V AI server power supplies.  All three models feature the newly developed DFN5060-8S package (5.0mm × 6.0mm). The package increases the internal die size area by approximately 65% compared to the conventional HSOP8 package (5.0mm × 6.0mm). As a result, the RS7E200BG (30V) and RS7N200BH (80V) achieve ON-resistances of 0.53mΩ and 1.7mΩ (at VGS = 10V), respectively – both of which rank among the best in the industry in the 5.0mm × 6.0mm class, significantly contributing to higher efficiency in server power circuits.  Moreover, ROHM has optimized the internal clip design to enhance heat dissipation, further improving SOA tolerance, which contributes to ensuring application reliability. Notably, the RS7E200BG (30V) achieves an SOA tolerance of over 70A at a pulse width of 1ms and VDS = 12V, which is twice that of the conventional HSOP8 package MOSFETs under the same conditions, ensuring industry-leading SOA performance in a 5.0mm × 6.0mm footprint.  Going forward, ROHM plans to gradually begin mass production of power MOSFETs compatible with hot-swap controller circuits for AI servers in 2025, continuing to expand its lineup that contributes to greater efficiency and reliability across a wide range of applications.  Product Lineup  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Application Examples  ・AC-DC conversion and HSC circuits for 12V high-performance enterprise server power supplies  ・AC-DC conversion circuits for 48V AI server power supplies  ・48V industrial equipment power supplies (i.e. fan motors)  Terminology  Low ON-Resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) results in lower power loss during operation.  SOA (Safe Operating Area) Tolerance  The range of voltage and current within which a device can operate safely without damage. Exceeding this range can lead to thermal runaway or device failure, making SOA tolerance a critical factor, especially in applications prone to inrush current or overcurrent.  Power MOSFET  A type of MOSFET used for power conversion and switching applications. N-channel MOSFETs are the mainstream choice, as they become conductive when a positive voltage is applied to the gate relative to the source, offering lower ON-resistance and higher efficiency than P-channel variants. Due to their low loss and high-speed switching capabilities, power MOSFETs are widely used in power circuits, motor drive circuits, and inverters.  Hot-Swap Controller (HSC)  A specialized integrated circuit (IC) that enables hot-swap functionality, allowing components to be inserted or removed while the power supply system remains active. It plays a crucial role in managing inrush current that occurs during component insertion, protecting both the system and connected components from damage.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered ON. Proper control of this current reduces stress on power circuit components, helping to prevent device failure and stabilize the system.
Key word:
Release time:2025-04-10 13:10 reading:468 Continue reading>>
MWC Barcelona 2025: Fibocom Launches Qualcomm X85/X82 5G Modem-<span style='color:red'>RF</span>-Powered 5G Modules, Enhancing FWA AI Capabilities
  Barcelona, Spain – March.4th 2025 - Fibocom (Stock code:300638), a global leading provider of AIoT solutions and wireless communication modules, announced the launch of its new 5G modules and solutions based on Qualcomm Technologies, Inc.s latest Qualcomm® X85/X82 5G Modem-RF. These new solutions are set to help industry customers seamlessly transition to next-generation Fixed Wireless Access (FWA) technologies and rapidly accelerate the commercialization of new platforms.  The latest Qualcomm X85/X82 5G Modem-RF delivers significant performance upgrades over the previous X75/X72 generation, including:  l Supports 3GPP 5G Advanced standards, enabling key 5G Advanced features.  l Enhanced NR Sub-6GHz downlink carrier aggregation (CA), upgraded from 5CA to 6CA, with carrier bands exceeding 400 MHz.  l Support for Intra-band ULCA (uplink carrier aggregation) TDD, boosting uplink data rates and optimizing network efficiency.  l Advanced software capabilities, supporting OpenWRT version 24.x, with compatibility for RDK-B and prplOS.  l Major AI advancements, including Modem AI functionality and support for external AI NPUs (Neural Processing Units).  Powered by a quad-core processor, new software suite, and several industry-leading innovations, Fibocom’s 5G modules deliver remarkable capabilities in network coverage, latency, energy efficiency, and mobility. Harnessing advanced AI capabilities, these modules drive 5G FWA solutions to an unprecedented level of intelligence.  These 5G modules support six-carrier aggregation in the NR Sub-6GHz downlink, offering bandwidth exceeding 300 MHz for faster transmission speeds and broader signal coverage. In addition, Intra-Band uplink carrier aggregation ensures faster data rates, optimizing overall network performance and addressing bandwidth-intensive applications like video conferencing, online gaming, and virtual collaboration.  In addition to hardware upgrades, the Qualcomm X85 Modem-RF introduces software innovations. The modules will support OpenWRT 24.x, a popular open-source router operating system known for robust features and scalability. Support for RDK-B and prplOS provides users with the flexibility to select the platform that best suits their needs.  The Qualcomm® 5G AI Suite and Qualcomm® Networking AI Suite combine to deliver QoS management and intelligently prioritized network traffic. These powerful AI Suite capabilities automatically identify high-priority tasks—such as streaming HD video or online gaming—and allocate necessary bandwidth, significantly enhancing the user experience.  “We are thrilled to collaborate with Fibocom on the launch of their new 5G modules and solutions, powered by our latest Qualcomm X85/X82 5G Modem-RF. Together, we are proud to set new benchmarks with solutions offering exceptional network coverage, low latency, energy efficiency, and enhanced mobility, ultimately paving the way for a more connected and efficient future,” said Gautam Sheoran, VP & GM, Wireless Broadband & Communications, Qualcomm Technologies, Inc.
Key word:
Release time:2025-03-20 13:55 reading:434 Continue reading>>
Leading Performance for High Voltage Applications: NOVOSENSE Launches the NSI67X0 Series of Smart Isolated Drivers
  NOVOSENSE has officially launched the NSI67X0 series of smart isolated drivers with Isolated Analog Sensing function. Suitable for driving power devices such as SiC, IGBTs and MOSFETs, and available in both automotive (AEC-Q100 compliant) and industrial variants, this series can be widely used in new energy vehicles, air conditioners, power supplies, photovoltaics and other applications.  This series of isolated gate drivers equates an isolated analog to PWM sensor, which can be used for temperature or voltage detection. The design further enhances driver versatility, simplifies system design, effectively reduces system size and lowers overall cost.  High-voltage Drive and Ultra-high Common-mode Immunity  Designed to drive IGBTs or SiC up to 2121V DC operating voltage, NSI67X0 offers advanced protection functions, excellent dynamic performance, and outstanding robustness. This series uses SiO2 capacitor isolation technology to isolate the input side from the output side, providing ultra-high common-mode immunity (CMTI>150kV/μs) while ensuring extremely small offset between devices, which is at the leading level in the industry.  Powerful Output Capability and Miniaturized Package  The NSI67X0 series has powerful output capability, supporting ±10A drive current and a maximum output drive voltage of 36V, far exceeding most similar products. Its SOW16 package design further enhances safety by achieving a creepage distance of more than 8mm while maintaining miniaturization.  Comprehensive Protection Functions and Automotive Certification  With comprehensive protection functions, including fast overcurrent protection, short-circuit protection, fault soft turn off, 4.5A Miller clamp, and undervoltage protection, this series is a reliable choice for driving power devices such as IGBTs. The entire product family meets the AEC-Q100 standard for automotive applications and can be widely used in new energy vehicles, industrial control and energy management.  Features of NSI67X0 Series  ◆ Smart isolation drivers up to 2121Vpk for driving SiC and IGBTs  ◆ High CMTI: 150 kV/μs  ◆ Input side supply voltage: 3V ~ 5.5V  ◆ Driver side supply voltage: up to 32V  ◆ Rail-to-rail output  ◆ Peak source and sink current: ±10A  ◆ Typical propagation delay: 90ns  ◆ Operating ambient temperature: -40°C ~ +125°C  ◆ Compliant with AEC-Q100 for automotive applications  ◆ RoHS compliant package type: SOW16, creepage distance > 8mm  Protection Functions  ◆ Fast over-current and short-circuit protection, with optional DESAT threshold voltage of 9V and 6.5V and OC threshold voltage of 0.7V  ◆ Integrated soft turn off function in case of fault, with optional soft turn off current of 400mA and 900mA  ◆ Integrated Miller clamp function, with clamp current up to 4.5A  ◆ Independent undervoltage protection UVLO on both HV and LV sides  ◆ Fault alarm (FLT/RDY pin indication)  Isolated Analog Sampling Function  ◆ Isolated analog sampling function  ◆ AIN input voltage range: 0.2V ~ 4.7V  ◆ APWM output duty cycle: 96% ~ 6%  ◆ Duty cycle accuracy: 1.6%  ◆ APWM output frequency: 10kHz  ◆ Optional AIN integrated constant current source output  Safety Related Certification  ◆ UL Certification: 1 minute 5700Vrms  ◆ VDE Certification: DIN VDE V 0884-11:2017-01  ◆ CSA Certification: Approved under CSA Component Acceptance Notice 5A  ◆ CQC Certification: Compliant with GB4943.1-2011  Introduction to Principle of High-precision Temperature Sampling of NSI67X0 Series  The AIN interface of the NSI6730 has a built-in 200uA current source. When an external NTC is connected, a voltage drop will be generated and demodulated into a 10kHz PWM signal for isolated output. The PWM signal is captured by the processor MCU, and the corresponding voltage value and temperature are obtained by calculating the duty cycle.  When the AIN voltage is in the range of 0.2V ~ 4.7V, the AIN input voltage and APWM output duty cycle are linearly related. When the AIN voltage is converted to a PWM signal, the PWM duty cycle conforms to the following formula:  That is, the AIN voltage of 0.2V ~ 4.7V corresponds to a PWM duty cycle of 96% ~ 6%.  Model Selection Chart of NSI67X0 Series  This series offers a variety of models to meet the needs of different applications. Specifically, in the NSI67X0 series, when X is 3, the AIN interface integrates a constant current source; when X is 7, the AIN interface does not integrate a constant current source.
Key word:
Release time:2025-02-24 16:18 reading:827 Continue reading>>
Simcom:E7025 R3 High-Performance, Cost-Effective NB-IoT Connectivity
  Narrowband IoT (NB-IoT), also known as Low-Power Wide-Area Network (LPWAN), is transforming how IoT devices connect by enabling low-power, wide-area communication with extended battery life and reliable network performance. SIMCom's E7025 R3 exemplifies this innovation, offering a compact, versatile, and high-performing solution tailored for diverse IoT applications.  Compact Design for Modern IoT Solutions  Measuring just 15.7mm × 17.6mm × 2.1mm, the E7025 R3 is perfectly tailored for space-constrained devices such as smart meters, remote control systems, asset tracking, and remote monitoring applications. Its compact size supports sleek, efficient product designs while reducing manufacturing costs, making it an ideal choice for IoT communication needs. This small yet powerful module is a cornerstone for creating innovative, cost-effective IoT solutions across industries.  Enhanced Performance and Broader Applications  As the third generation of the E7025 series, the E7025 R3 takes optimization to the next level, offering improvements in both cost efficiency and power consumption. Now with an optional low-power Bluetooth feature, it caters to a wider range of application scenarios. Compliant with 3GPP R13 and R14 standards, this NB-IoT module provides robust communication capabilities, including significantly enhanced signal gain and extensive coverage compared to GSM. This ensures reliable connectivity even in challenging environments like basements or other signal-restricted locations. Designed for static or low-mobility use cases that require low-latency, real-time data transmission, the E7025 R3 excels in applications such as gas meters, smoke detectors, and gas alarms, demonstrating its immense potential in these specialized markets.  Power Efficiency for Extended Operations  Equipped with Power Save Mode (PSM) and Extended Discontinuous Reception (eDRX), the E7025 R3 achieves up to 10 years of battery life, minimizing the need for frequent maintenance. This makes it an exceptional choice for remote and low-maintenance applications, including environmental monitoring, smart agriculture, and remote asset tracking.  The E7025 R3 excels in connectivity, supporting frequency bands B1/B3/B5/B8/B20/B28 for deeper network penetration and enhanced indoor coverage. This ensures reliable operation in environments like underground parking, shielded utility meters, or urban smart city deployments. Its compatibility with protocols such as IPv4, IPv6, MQTT, CoAP, LwM2M, and FOTA allows seamless integration into diverse IoT applications.  Reliable and Easy Integration  The E7025 R3 uses an LCC+LGA package that enhances reliability and simplifies assembly. Combined with SIMCom’s reference designs, evaluation boards, and technical support, the module accelerates time-to-market for IoT innovations.  Global Coverage with CE Certification  Designed for global markets, the E7025 R3 has CE certification with its robust performance, cost-efficiency, and reliability are particularly valued. The E7025 R3’s ability to balance affordability with advanced capabilities has made it a standout choice to scale their IoT deployments.  With its advanced capabilities, compact size, and exceptional performance, the SIMCom E7025 R3 is a versatile solution poised to lead the way in IoT innovation. Whether for smart meters, remote control systems, asset tracking, and remote monitoring applications. E7025 R3 empowers to create more connected world.  Unlock the future of IoT with SIMCom’s E7025 R3—where innovation meets reliability.
Key word:
Release time:2024-12-25 11:39 reading:740 Continue reading>>

Turn to

/ 8

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code