ROHM Develops an Ultra-Compact MOSFET Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
Key word:
Release time:2025-07-08 17:04 reading:513 Continue reading>>
New High Accuracy Current Sense Amps Compatible with Both Negative and High Voltages
  ROHM has developed a new lineup of high accuracy current sense amps – the BD1423xFVJ-C and the BD1422xG-C. They are qualified under the AEC-Q100 automotive reliability standard. The BD1423xFVJ-C series, offered in the TSSOP-B8J package, supports input voltages up to +80V, making it ideal for high-voltage environments such as 48V DC-DC converters, redundant power supplies, auxiliary batteries, and electric compressors. The series includes three models with different gain settings: BD14230FVJ-C, BD14231FVJ-C and BD14232FVJ-C.  For lower voltage use cases, the BD1422xG-C, available in the compact SSOP6 package, supports input voltages up to +40V. This makes them suitable for automotive applications requiring space-saving designs, such as current monitoring and protection (overcurrent) in 5V/12V power supply networks used in body and drivetrain domains. Like its high-voltage counterpart, this series also consists of three different gain options: BD14220G-C, BD14221G-C and BD14222G-C.  In recent years, alongside conventional 5V/12V power supplies, the automotive market has seen a growing adoption of 48V systems fueled by the rising popularity of electric vehicles. Furthermore, as vehicle functionality becomes more advanced, the need for precise monitoring and control across a wide range of applications continues to increase, placing a greater importance on high-accuracy current sensing.  A current sense amp indirectly measures the current flowing through a circuit by amplifying the miniscule voltage drop across a shunt resistor. The amplified signal is then sent to an ADC or comparator for system control and monitoring. ROHM’s automotive-grade current sense amps meet market demands by leveraging proven analog expertise. This enables high-accuracy current sensing with compatibility for both negative and high voltage environments, contributing to improved safety and reliability in automotive applications, particularly electric vehicles.  These new products achieve greater space efficiency by integrating most of current sensing circuitry, typically comprised of an operational amplifier and discrete components, int o a single package. As a result, current detection is possible by simply connecting a shunt resistor. The devices also feature a two-stage amplifier configuration, consisting of a chopper amplifier at the input and an auto-zero amplifier at the output. Internal resistor matching for gain setting ensures stable, accurate current sensing (±1%) while minimizing the effects of temperature variations.  Furthermore, current detection accuracy is maintained even when an external RC filter circuit added for noise suppression, significantly reducing design complexity and development time. Additional features include -14V negative voltage tolerance that supports back electromotive force, reverse connection, and negative voltage input.  Going forward, ROHM will continue to deliver optimal solutions that contribute to higher precision and enhanced reliability in automotive equipment.  Application Examples  • BD1423xFVJ-C (for 48V systems): Redundant power supplies, auxiliary batteries, DC-DC converters, and electric compressors, and the like  • BD1422xG-C (for 5V/12V systems): Body DCUs (Domain Control Units) / ECUs (Electronic Control Units), etc.  Terminology  AEC-Q100 Automotive Reliability Standard  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Q100 is a standard that specifically applies to integrated circuits (ICs).  Shunt Resistor  A resistor connected in series in the current path to detect the current in the circuit by measuring the potential difference across it.  Chopper Amp  An amp circuit designed to minimize signal offset and noise, primarily used for accurately amplifying low-frequency and weak DC signals.  Auto-Zero Amp  An amp that automatically compensates for offset voltage (unwanted noise and errors) by continuously sampling and correcting it during operation. This ensures high signal accuracy, making it ideal for applications that demand ultra-precise measurement and signal processing.
Key word:
Release time:2025-06-13 16:56 reading:592 Continue reading>>
ROHM Develops Compact Surface-Mount Near-Infrared LEDs Featuring Industry-Leading* Radiant Intensity
  ROHM has expanded its portfolio of surface-mount near-infrared (NIR) LEDs with new compact top-view types. They are optimized for applications such as VR/AR devices, industrial optical sensors, and human detection sensors.  The demand for advanced sensing technologies utilizing near-infrared (NIR) has grown in recent years, particularly in VR/AR equipment and biosensing devices. These technologies are used in applications such as eye tracking, iris recognition, and blood flow/oxygen saturation measurements that require high accuracy. At the same time, miniaturization, energy efficiency, and design flexibility are becoming increasingly important. In industrial equipment, near-infrared LEDs are playing a greater role with the rise of precise printer control and automation systems. In response, ROHM is expanding customer options by developing a lineup of compact packages and wavelengths that offer greater design flexibility, while contributing to higher precision and power savings by achieving high radiant intensity.  The new lineup consists of six models in three package configurations, including two ultra-compact (1.0mm × 0.6mm), ultra-thin (t=0.2mm) products as part of the PICOLED™ series: SML-P14RW and SML-P14R3W. In addition, there are four variants in the industry-standard (1.6mm × 0.8mm) size, featuring a narrow beam circular lens package (CSL0902RT, CSL0902R3T) and flat lens design that emits light over a wide range (CSL1002RT, CSL1002R3T). Each package is available in two wavelengths, 850nm (860nm for the SML-P14RW) and 940nm, allowing customers various options for their specific application needs. The 850nm wavelength is ideal for phototransistors and camera sensors, making it suitable for high-sensitivity applications such as eye tracking and object detection in VR/AR. At the same time, the 940nm wavelength is less affected by sunlight and does not appear red when emitting light, making it suitable for motion sensors. It is also widely used in biosensing applications such as pulse oximeters to measure blood flow and oxygen saturation (SpO2).  The light source incorporates an NIR element with an optimized emission layer structure utilizing proprietary technology developed through in-house manufacturing expertise. This has made it possible to achieve industry-leading* radiant intensity in a compact package, which was previously considered difficult. For example, compared to a standard 1006 size product, the SML-P14RW delivers approx. 1.4 times the radiant intensity at the same current. In other words, the SML-P14RW consumes 30% less power to achieve the same radiation intensity. This technology improves sensing accuracy and power savings for the entire system.  Going forward, ROHM will continue to provide innovative light source solutions that support next-generation sensing technologies, creating new value in the VR/AR and industrial equipment markets, while contributing to the realization of a sustainable society.  Compact NIR LED Lineup  *1:Ta=25°C *2:IF=30mA *3:IF=20mA  ROHM also offers NIR-sensitive phototransistors.  Application Examples  • VR/AR licenses (eye tracking, gesture recognition)  • Pulse oximeters (blood flow/oxygen saturation measurement)  • Industrial optical sensors (object passage detection, position detection), self-checkout systems (bill/card detection), mobile printers (paper detection)  • Home appliance remote controls (IR data communication), robot vacuum cleaners (floor detection)  Terminology  VR/AR (Virtual Reality/Augmented Reality)  Virtual reality immerses users in a completely digital environment through small high-resolution monitors or screens within an enclosed space. Augmented reality enhances the real world by overlaying digital content onto a headset or smart glasses, enabling users to interact with 3D images. Collectively, these technologies are sometimes referred to as XR (Cross Reality or Extended Reality).  Near-Infrared (NIR)  Refers to light in the wavelength range of 780nm to 1000nm. Primarily used in sensors, communication and measurement applications, it is suitable for high accuracy distance measurement and recognition.  PICOLED™ Series  ROHM's ultra-small, ultra-thin chip LEDs designed for compact mobile devices and wearables, developed using a proprietary element manufacturing process.  Radiant Intensity  An index representing the strength of energy emitted by a light-emitting device in a specific direction (unit: W/sr). This is an important factor that affects the LED’s output intensity and detection performance on the receiving side.  Note: DigiKey™, Mouser™ and Farnell™ are trademarks or registered trademarks of their respective companies.  *PICOLED™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-05-26 14:54 reading:571 Continue reading>>
Renesas Partners with Indian Government to Drive Innovation Through Startups and Industry-Academia Collaboration, Strengthening India’s Semiconductor Ecosystem
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced its partnership with the Ministry of Electronics & Information Technology (MeitY), Government of India, to support local startups and academic institutions in the field of VLSI and embedded semiconductor systems. Renesas also celebrated the expansion of its offices in Bengaluru and Noida to accommodateits growing R&D teams, with the inauguration ceremonies held today. This strategic move underscores Renesas’ commitment to innovation and excellence in India and aims to drive continued growth in the region.  Renesas and the Centre for Development of Advanced Computing (C-DAC), an autonomous scientific society of MeitY, today signed and exchanged two Memoranda of Understanding (MOUs) under the MeitY Chips to Startup (C2S) programme (Note). These MOUs focus on 1) Supporting local startups by enabling them to drive technological advancement andpromote local manufacturing in alignment with the Make in India initiative; and 2) Enhancing industry-academia collaboration by fostering an innovative, product-focused mindset among students.  Shri Ashwini Vaishnaw, Minister for Railways, Information & Broadcasting, and Electronics & Information Technology, Government of India; along with Malini Narayanamoorthi, India Country Manager and VP, MID Engineering, Analog & Connectivity Group at Renesas; and Rea Callendar, Head of Platform Adoption and Ecosystem Enablement at Altium, which joined forces with Renesas in August 2024, attended the celebration at the Noida office. Hidetoshi Shibata, CEO of Renesas, also joined virtually, underscoring the global significance of this milestone.  India is a key market for Renesas, offering significant growth potential and access to a highly skilled talent pool. Renesas is committed to deepening its partnerships with local companies, startups, and universities, with the target to generate over 10 percent of itsglobal revenue from the Indian market by 2030. Recent collaborations include the OSAT factory project with CG Power and Stars Microelectronics in Gujarat and the MOU with IIT Hyderabad. Renesas is also expanding its operations in India, with plans to increase its headcount to 1,000 by the end of 2025. This growth initiative reinforces Renesas' long-term commitment to India and supports its ambition to become an employer of choice in this dynamic and fast-evolving market.  "The inauguration of our expanded offices marks a significant milestone for Renesas in India. It reflects our unwavering commitment to innovation, excellence, and the nurturing of local talent. By building products in India, for India and the world, we continue to drive growth and deliver meaningful impact across the Indian market,” said Malini Narayanamoorthi, India Country Manager and VP, MID Engineering, Analog & Connectivity Group at Renesas. "We are proud to sign two MOUs under the MeitY C2S programme, focused on advancing research, fostering innovation, and nurturing product-focused engineers. These strategic collaborations align with the Make in India initiative, aiming to strengthen local design and manufacturing capabilities and empower homegrown talent to drive the future of industry."  MOUs under MeitY C2S programme  Renesas and C-DAC signed two MOUs to collaborate in the field of VLSI and embedded semiconductor systems, with the aim of supporting local startups and academic institutions to accelerate innovation and foster self-reliance in India’s semiconductor and product ecosystem. The C2S programme encompasses collaboration with over 250 academic institutions and R&D organizations across the country, including IITs, NITs, IIITs, government and private colleges, along with approximately 15 startups, creating a strong ecosystem for indigenous innovation.  MOU for Startups: Renesas will help strengthen the product engineering capabilities of local startups by providing Renesas development boards and Altium Designer, the leading PCB design software.  MOU for Academic Institutions: Renesas will support experiential learning by offering development boards, PCB education and training, Altium Designer software, and access to the Altium 365 cloud platform, aiming to empower the next generation of electronics engineers and nurture a community of innovators.  Opening of new offices in Bengaluru and Noida  In May, Renesas consolidated and relocated its existing offices in Bengaluru and Noida into new, state-of-the-art office spaces, marking a significant milestone in the company’s growth and expansion in India.  The new Bengaluru office is Renesas’ largest site in India, encompassing world-class design teams, test labs, and comprehensive facilities to support employees. It brings together approximately 500 team members, including R&D engineers, business teams, and employees from the recently acquired Altium and Part Analytics, creating a unified and collaborative workspace. The facility is designed to leverage India’s rich talent ecosystem to drive the development of innovative products.  The new Noida office brings the engineering and business teams together to accelerate the delivery of world-class high-performance compute solutions, driving automotive market growth through innovation, collaboration, and consistent execution. This strategic expansion reinforces Renesas’ commitment to investing in top-tier local talent and strengthening its capabilities in R-Car system-on-chip (SoC) solutions. Designed to integrate cutting-edge tools and workflows, the new Noida site will further enhance synergy across the global engineering team and support Renesas’ long-term strategy in this critical domain.  (Note) Chips to Startup (C2S) programme: An initiative launched by the Indian government in December 2021 to boost semiconductor and display manufacturing in the country. C2S not only aims at developing specialized manpower in VLSI/Embedded System Design domain but also addresses each entity of the electronics value chain via specialized manpower training, creation of reusable IP repository, design of application-oriented Systems/ASICs/FPGAs, and deployment by academia/ R&D organization by way of leveraging the expertise available at Startups/MSMEs. For more details, please visit the C2S programme website.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, X, YouTube and Instagram  (Remarks). All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners.
Key word:
Release time:2025-05-14 14:21 reading:706 Continue reading>>
ROHM Develops New High Power Density SiC Power Modules Compact high heat dissipation design sets a new standard for OBCs
  ROHM has developed the new 4-in-1 and 6-in-1 SiC molded modules in the HSDIP20 package optimized for PFC and LLC converters in onboard chargers (OBC) for xEVs (electric vehicles). The lineup includes six models rated at 750V (BSTxxx1P4K01) and seven products rated at 1200V (BSTxxx2P4K01). All basic circuits required for power conversion in various high-power applications are integrated into a compact module package, reducing the design workload for manufacturers and enabling the miniaturization of power conversion circuits in OBCs and other applications.  In recent years, the rapid electrification of cars is driving efforts to achieve a decarbonized society. Electric vehicles are seeing higher battery voltages to extend the cruising range and improve charging speed, creating a demand for higher output from OBCs and DC-DC converters. At the same time, there is an increasing need in the market for greater miniaturization and lighter weight for these applications, requiring technological breakthroughs to improve power density - a key factor - while enhancing heat dissipation characteristics that could otherwise hinder progress. ROHM’s HSDIP20 package addresses these technical challenges that were previously becoming difficult to overcome with discrete configurations, contributing to both higher output and the downsizing of electric powertrains.  The HSDIP20 features an insulating substrate with excellent heat dissipation properties that suppresses the chip temperature rise even during high power operation. When comparing a typical OBC PFC circuit utilizing six discrete SiC MOSFETs with top-side heat dissipation to ROHM’s 6-in-1 module under the same conditions, the HSDIP20 package was verified to be approx. 38°C cooler (at 25W operation). This high heat dissipation performance supports high currents even in a compact package, achieving industry-leading power density more than three times higher than top-side cooled discretes and over 1.4 times that of similar DIP type modules. As a result, in the PFC circuit mentioned above, the HSDIP20 can reduce mounting area by approx. 52% compared to top-side cooled discrete configurations, greatly contributing to the miniaturization of power conversion circuits in applications such as OBCs.  Going forward, ROHM will continue to advance the development of SiC modules that balance miniaturization with high efficiency while also focusing on the development of automotive SiC IPMs that provide higher reliability in a smaller form factor.  Product Lineup  *1: Tc=25°C VGS=18V *2: Combines chips with different ON resistances  *3: Q1, Q4 pins *4: Q2, Q3, Q5, Q6 pins  Application Examples  Power conversion circuits like PFC and LLC converters are commonly used in the primary side circuits of industrial equipment, allowing the HSDIP20 to also contribute to the miniaturization of applications in both the industrial and consumer electronics fields.  ◇ Automotive systems  Onboard chargers, electric compressors and more.  ◇ Industrial equipment  EV charging stations, V2X systems, AC servos, server power supplies, PV inverters, power conditioners, etc.  Sales Information  Pricing: $100/unit (samples, excluding tax)  Availability: OEM quantities (April 2025)  Supporting Information  ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered such as simulations and thermal designs that enable quick evaluation and adoption of HSDIP20 products. Two evaluation kits are available as well, one for double-pulse testing and the other for 3-phase full bridge applications, enabling evaluation under close to actual circuit conditions.  For more information, please contact AMEYA360 or visit the contact page on ROHM’s website.  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSIC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Power Factor Correction (PFC)  A circuit that enhances the power factor by shaping the waveform of input power in the power supply circuit. By using a PFC circuit, the input power is made closer to a sine wave (power factor = 1), improving power conversion efficiency. While PFC circuits typically rely on diode rectification, OBCs often employ active bridge rectification using MOSFETs or bridgeless PFC. This approach is favored because MOSFETs offer lower switching losses, and especially in high power PFCs, using SiC MOSFETs reduces heat generation and power losses.  LLC Converter  A type of resonant DC-DC converter known for its high efficiency with low noise power conversion. The name LLC comes from its basic configuration, which combines two inductors (L) and a capacitor (C) in the circuit. By forming a resonant circuit, switching losses are significantly reduced, making it ideal for applications requiring high efficiency, such as OBCs, power supplies for industrial equipment, and server power supplies.
Key word:
Release time:2025-04-24 17:23 reading:501 Continue reading>>
ROHM Develops Class-Leading* Low ON-Resistance, High-Power MOSFETs for High-Performance Enterprise and AI Servers
  ROHM has developed N-channel power MOSFETs featuring industry-leading* low ON-resistance and wide SOA capability. They are designed for power supplies inside high-performance enterprise and AI servers.  The advancement of high-level data processing technologies and the acceleration of digital transformation have increased the demand for data center servers. At the same time, the number of servers equipped with advanced computing capabilities for AI processing is on the rise and is expected to continue to grow. These servers operate 24 hours a day, 7 days a week – ensuring continuous operation. As a result, conduction losses caused by the ON-resistance of multiple MOSFETs in the power block have a significant impact on system performance and energy efficiency. This becomes particularly evident in AC-DC conversion circuits, where conduction losses make up a substantial portion of total power loss – driving the need for low ON-resistance MOSFETs.  Additionally, servers equipped with a standard hot-swap function, which allow for the replacement and maintenance of internal boards and storage devices while powered ON, experience a high inrush current during component exchanges. Therefore, to protect server components and MOSFETs from damage, a wide Safe Operating Area (SOA) tolerance is essential.  To address these challenges, ROHM has developed its new DFN5060-8S package that supports the packaging of a larger die compared to conventional designs, resulting in a lineup of power MOSFETs that achieve industry-leading* low ON-resistance along with wide SOA capability. These new products significantly contribute to improving efficiency and enhancing reliability in server power circuits.  The new lineup includes three products. The RS7E200BG (30V) is optimized for both secondary-side AC-DC conversion circuits and hot-swap controller (HSC) circuits in 12V power supplies used in high-performance enterprise servers. The RS7N200BH (80V) and RS7N160BH (80V) are ideal for secondary AC-DC conversion circuits in 48V AI server power supplies.  All three models feature the newly developed DFN5060-8S package (5.0mm × 6.0mm). The package increases the internal die size area by approximately 65% compared to the conventional HSOP8 package (5.0mm × 6.0mm). As a result, the RS7E200BG (30V) and RS7N200BH (80V) achieve ON-resistances of 0.53mΩ and 1.7mΩ (at VGS = 10V), respectively – both of which rank among the best in the industry in the 5.0mm × 6.0mm class, significantly contributing to higher efficiency in server power circuits.  Moreover, ROHM has optimized the internal clip design to enhance heat dissipation, further improving SOA tolerance, which contributes to ensuring application reliability. Notably, the RS7E200BG (30V) achieves an SOA tolerance of over 70A at a pulse width of 1ms and VDS = 12V, which is twice that of the conventional HSOP8 package MOSFETs under the same conditions, ensuring industry-leading SOA performance in a 5.0mm × 6.0mm footprint.  Going forward, ROHM plans to gradually begin mass production of power MOSFETs compatible with hot-swap controller circuits for AI servers in 2025, continuing to expand its lineup that contributes to greater efficiency and reliability across a wide range of applications.  Product Lineup  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Application Examples  ・AC-DC conversion and HSC circuits for 12V high-performance enterprise server power supplies  ・AC-DC conversion circuits for 48V AI server power supplies  ・48V industrial equipment power supplies (i.e. fan motors)  Terminology  Low ON-Resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) results in lower power loss during operation.  SOA (Safe Operating Area) Tolerance  The range of voltage and current within which a device can operate safely without damage. Exceeding this range can lead to thermal runaway or device failure, making SOA tolerance a critical factor, especially in applications prone to inrush current or overcurrent.  Power MOSFET  A type of MOSFET used for power conversion and switching applications. N-channel MOSFETs are the mainstream choice, as they become conductive when a positive voltage is applied to the gate relative to the source, offering lower ON-resistance and higher efficiency than P-channel variants. Due to their low loss and high-speed switching capabilities, power MOSFETs are widely used in power circuits, motor drive circuits, and inverters.  Hot-Swap Controller (HSC)  A specialized integrated circuit (IC) that enables hot-swap functionality, allowing components to be inserted or removed while the power supply system remains active. It plays a crucial role in managing inrush current that occurs during component insertion, protecting both the system and connected components from damage.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered ON. Proper control of this current reduces stress on power circuit components, helping to prevent device failure and stabilize the system.
Key word:
Release time:2025-04-10 13:10 reading:653 Continue reading>>
ROHM Develops a New Compact Thermal Printhead for A4-Sized Mobile Printers
  ROHM has developed a new thermal printhead - KA2008-B07N70A - compatible with a 2-cell Li-ion battery (7.2V). Designed to deliver high print quality with low power consumption and optimized for A4 size printers (210mm width). Height has been reduced by approximately 16% from the conventional 14mm to a best-in-class* 11.67mm – contributing to a more compact printer design. Moreover, optimizing the heating element structure while improving the driver IC and wiring layout enables the support for 7.2V operation – reducing the applied energy required for printing by approximately 66% compared to conventional 12V drive (at 50 mm/s print speed). Adjustments to the individual wiring of the resistive elements ensure uniform heat generation, stabilizing print quality and enabling sharp and high-resolution 203dpi printing – even at speeds up to 100 mm/s.  In recent years, the thermal printer market has been expanding in response to increasing demand to print qualified invoices and customs labels fueled by the growth of overseas e-commerce, as well as prescriptions and drug information sheets in hospitals and pharmacies. The demand for mobile printers has surged, particularly in the logistics and business sectors, where portability and ease of maintenance are highly valued. Among these trends, the adoption of A4-sized thermal printers has been growing in Asian markets, particularly in China – driving the need for 8-inch thermal printheads.  A4-sized mobile printers face challenges such as high power consumption due to their wider print width, requiring larger battery capacities compared to smaller printers such as receipt printers. Moreover, the need for multiple driver ICs to control the heating elements in A4-sized printers often results in variations in heat generation due to the differences in wiring lengths between elements, which affect print quality, such as color development and uniformity.  The KA2008-B07N70A addresses these challenges through an optimized design that enhances mechanical strength and durability by mitigating the effects of expansion and contraction caused by temperature changes. This meets the stringent durability requirements of A4-sized printers (the primary target market) while supporting both thermal and transfer printing methods – offering versatile printing for a wide range of applications.  While thermal printheads are typically used in combination with connectors and a heat sink, the KA2008-B07N70A can also be supplied as a standalone board, providing greater design flexibility for printer manufacturers. For inquiries regarding the product as part of a set, please contact AMEYA360 or visit the contact page on ROHM’s website.  Going forward, ROHM plans to develop a 300dpi resolution thermal printhead for mobile A4-sized printers by spring 2025. The company also intends to expand its considerable lineup with products that deliver high-speed printing with superior efficiency.  Key Specifications  For more information on printheads for mobile printers, please refer to the following URL on ROHM’s website: https://www.rohm.com/products/printheads/mobile-printers  Sales Information        Pricing: $14.50/unit (excluding tax)  Availability: Now (OEM quantities)  Application Examples        • A4-sized mobile printers  • Industrial control label printers  • Tattoo stencil printers, etc.  Terminology        dpi (dots per inch)  A unit of print resolution and density, indicating the number of dots that can be placed within a one-inch length (2.54 cm).  Thermal Printing Method  A printing technique in which heat is directly applied to thermal paper, causing a reaction that produces color. Primarily used for receipts and labels, this method eliminates the need for ink or toner, ensuring easy maintenance and operation.  Thermal Transfer Printing Method  A printing method in which heat melts ink coated on a ribbon, transferring it onto paper. Ideal for high-precision printing, it is commonly used for documents and labels requiring long-term preservation.
Key word:
Release time:2025-03-31 15:36 reading:425 Continue reading>>
ROHM Develops a 1kW Class High Power Infrared Laser Diode
  ROHM has developed a high output laser diode - RLD8BQAB3 - for use in ADAS (Advanced Driver Assistance Systems) equipped with LiDAR for distance measurement and spatial recognition. ROHM will initially start supplying samples targeting consumer and industrial applications such as drones, robot vacuum cleaners, AGVs (Automated Guided Vehicles), and service robots.  LiDAR is seeing growing adoption in recent years across a variety of applications that require automation such as automotive ADAS, AGVs, drones, and robot vacuums, facilitating precise distance measurement and spatial recognition. To detect information at greater distances with more accuracy, there is a need for laser diodes that serve as light sources to achieve high kW-level output while allowing multiple light sources to emit light at close intervals.  ROHM has established proprietary patented technology that achieves the narrow emission width of lasers, enhancing the long-distance, high accuracy LiDAR, beginning with the commercialization of the 25W output RLD90QZW5 in 2019 and high-power 120W RLD90QZW8 in 2023. Building on these successes, we have developed a new 125W 8ch (1kW class) array-type product that meets the demand for a high output, high performance laser diode.  The RLD8BQAB3 is an ultra-compact surface mount high-output 125W × 8ch infrared laser diode for LiDAR applications that utilize 3D ToF systems to carry out distance measurement and spatial recognition. The optimized design features 8 emission areas (each 300µm wide) per element, installed on a submount affixed to a high heat dissipation substrate.  The package’s emitting surface incorporates a clear glass cap - an industry first for a surface mount laser diode - eliminating the risk of light scattering caused by scratches during dicing that tends to occur with resin-encapsulated products, ensuring high beam quality. Each emission area is wired with a common cathode, enabling the selection of the irradiation method based on application needs - ranging from individual emission that increases the number of light-emitting points to industry-leading* simultaneous emission at ultra-high outputs of 1kW class.  The new product retains the key features of ROHM’s conventional laser diodes, including uniform emission intensity across the emission width along with a low wavelength temperature dependence of 0.1nm/°C (vs 0.26 to 0.28nm/°C for standard products). On top, the array configuration narrows the regions of reduced emission intensity between channels, while the bandpass filter minimizes the effects of ambient light noise from the sun and other sources, contributing to long-distance detection and high-definition LiDAR.  Samples are available since August 2024 (please contact a sales representative or visit the contact page on ROHM’s website).  Application Examples        Automotive: ADAS  Consumer: Drones, robot vacuums, golf rangefinders, and more  Industrial: AGVs, service robots, 3D monitoring systems (sensors for human/object detection), etc.  Terminology        LiDAR  Short for Light Detection and Ranging, an application that uses the ToF (Time of Flight) system (comprised of a light source and ToF or image sensor) to sense ambient conditions.  3D ToF System  An abbreviation for Time of Flight, a spatial measurement system which, as its name implies, measures the flight time of a light source. Refers to a system that uses ToF to perform 3D spatial recognition and distance measurement.  Submount  A small, flat mounting plate made from a material with high thermal conductivity.  Bandpass Filter  A filter that allows only signals in a specific light wavelength band to pass through. In optical devices, a narrow bandpass filter range allows for efficient extraction of light close to the peak waveform. This minimizes the effects of ambient noise such as sunlight, enabling lower power consumption at the same distance or longer range at the same optical output.  IATF 16949  IATF is the short for International Automotive Task Force, a quality management standard for the automotive industry. Based on the international standard ISO 9001 with additional specific requirements, compliance with IATF 16949 enables automakers and suppliers to meet international quality standards.  AEC-Q102  AEC stands for Automotive Electronics Council, an organization (comprised of major automotive manufacturers and US electronic component makers) responsible for establishing reliability standards for automotive electronics. Q102 is a standard specifically intended for optical devices.
Key word:
Release time:2025-03-17 13:49 reading:546 Continue reading>>
ROHM’s PMICs for SoCs have been Adopted in Reference Designs for Telechips’ Next-Generation Cockpits
  ROHM has announced the adoption of its PMICs in power reference designs focused on the next-generation cockpit SoCs ‘Dolphin3’ (REF67003) and ‘Dolphin5’ (REF67005) by Telechips, a major fabless semiconductor manufacturer for automotive applications headquartered in Pangyo, South Korea. Intended for use inside the cockpits of European automakers, these designs are scheduled for mass production in 2025.  ROHM and Telechips have been engaged in technical exchanges since 2021, fostering a close collaborative relationship from the early stages of SoC chip design. As a first step in achieving this goal, ROHM’s power supply solutions have been integrated into Telechips’ power supply reference designs. These solutions support diverse model development by combining sub-PMICs and DrMOS with the main PMIC for SoCs.  For infotainment applications, the Dolphin3 application processor (AP) power reference design includes the BD96801Qxx-C main PMIC for SoCs. Similarly, the Dolphin5 AP power reference design developed for next-generation digital cockpits combines the BD96805Qxx-C and BD96811Fxx-C main PMICs for SoC with the BD96806Qxx-C sub-PMIC for SoC, improving overall system efficiency and reliability.  Modern cockpits are equipped with multiple displays, such as instrument clusters and infotainment systems, with each automotive application becoming increasingly multifunctional. As the processing power required for automotive SoCs increases, power ICs like PMICs must be able to support high currents while maintaining high efficiency. At the same time, manufacturers require flexible solutions that can accommodate different vehicle types and model variations with minimal circuit modifications. ROHM SoC PMICs address these challenges with high efficiency operation and internal memory (One Time Programmable ROM) that allows for custom output voltage settings and sequence control, enabling compatibility with large currents when paired with a sub-PMIC or DrMOS.  Moonsoo Kim,  Senior Vice President and Head of System Semiconductor R&D Center, Telechips Inc.“Telechips offers reference designs and core technologies centered around automotive SoCs for next-generation ADAS and cockpit applications. We are pleased to have developed a power reference design that supports the advanced features and larger displays found in next-generation cockpits by utilizing power solutions from ROHM, a global semiconductor manufacturer. Leveraging ROHM’s power supply solutions allows these reference designs to achieve advanced functionality while maintaining low power consumption. ROHM power solutions are highly scalable, so we look forward to future model expansions and continued collaboration.”  Sumihiro Takashima,  Corporate Officer and Director of the LSI Business Unit, ROHM Co., Ltd.“We are pleased that our power reference designs have been adopted by Telechips, a company with a strong track record in automotive SoCs. As ADAS continues to evolve and cockpits become more multifunctional, power supply ICs must handle larger currents while minimizing current consumption. ROHM SoC PMICs meet the high current demands of next-generation cockpits by adding a DrMOS or sub-PMIC in the stage after the main PMIC. This setup achieves high efficiency operation that contributes to lower power consumption. Going forward, ROHM will continue our partnership with Telechips to deepen our understanding of next-generation cockpits and ADAS, driving further evolution in the automotive sector through rapid product development.”  ・ Telechips SoC [Dolphin Series]  The Dolphin series consists of automotive SoCs tailored to In-Vehicle Infotainment (IVI), Advanced Driver Assistance Systems (ADAS), and Autonomous Driving (AD) applications. Dolphin3 supports up to four displays and eight in-vehicle cameras, while Dolphin5 enables up to five displays and eight cameras, making highly suited as SoCs for increasingly multifunctional next-generation cockpits. Telechips is focused on expanding the Dolphin series of APs (Application Processors) for car infotainment, with models like Dolphin+, Dolphin3, and Dolphin5, by leveraging its globally recognized technical expertise cultivated over many years.  ・ ROHM 's Reference Design Page  Details of ROHM’s reference designs and information on equipped products are available on ROHM’s website, along with reference boards. Please contact a sales representative or visit ROHM’s website for more information.  https://www.rohm.com/contactus  ■ Power Supply Reference Design [REF67003] (equipped with Dolphin3)  Reference Board No. REF67003-EVK-001  https://www.rohm.com/reference-designs/ref67003  ■ Power Supply Reference Design [REF67005] (equipped with Dolphin5)  Reference Board No. REF67005-EVK-001  https://www.rohm.com/reference-designs/ref67005  About Telechips Inc.Telechips is a fabless company specialized in designing system semiconductors that serve as the “brains” of automotive electronic components. The South Korean firm offers reliable, high-performance automotive SoCs. In response to the industry’s transition toward SDVs (Software Defined Vehicles), Telechips is broadening its core portfolio beyond car infotainment application processors (APs) to include MCUs, ADAS, network solutions, and AI accelerators.  As a global, comprehensive automotive semiconductor manufacturer, Telechips adheres to international standards such as ISO 26262, TISAX, and ASPICE, leveraging both hardware and software expertise for future mobility ecosystems, including not only automotive smart cockpits, but also E/E architectures. What’s more, Telechips provides optimal solutions for In-Vehicle Infotainment systems (IVI), digital clusters, and ADAS, all compliant with key automotive standards (AEC-Q100, ISO 26262). Telechips has established business relationships with major automakers both domestically and internationally, supported by a strong track record of shipments.  One flagship product is the Dolphin5 automotive SoC that integrates an Arm®-based CPU, GPU, and NPU to meet high-performance requirements. As a fabless company, Telechips outsources the manufacturing of its SoCs to Samsung Electronics’ foundry, delivering high-quality semiconductor products to domestic and overseas manufacturers. For more information, please visit Telechips’ website:  https://www.telechips.com/  *Arm® is a trademark or registered trademark of Arm Limited.  TerminologyPMIC (Power Management IC)  An IC that contains multiple power supply systems and functions for power management and sequence control on a single chip. It is becoming more commonplace in applications with multiple power supply systems in both the automotive and consumer sectors by significantly reducing space and development load vs conventional circuit configurations using individual components (i.e. DC-DC converter ICs, LDOs, discretes).  SoC (System-on-a-Chip)  A type of integrated circuit that incorporates a CPU (Central Processing Unit), memory, interface, and other elements on a single substrate. Widely used in automotive, consumer, and industrial applications due to its high processing capacity, power efficiency, and space savings.  AP (Application Processor)  Responsible for processing applications and software in devices such as smartphones, tablets, and automotive infotainment systems. It includes components such as a CPU, GPU, and memory controller to efficiently run the Operating System (OS), process multimedia, and render graphics.  DrMOS (Doctor MOS)  A module that integrates a MOSFET and gate driver IC. The simple configuration is expected to reduce design person-hours along with mounting area and to achieve efficient power conversion. At the same time, the built-in gate driver ensures high reliability by stabilizing MOSFET drive.
Key word:
Release time:2024-12-20 13:56 reading:923 Continue reading>>
Renesas Introduces Industry’s First Complete Memory Interface Chipset Solutions for Second-Generation DDR5 Server MRDIMMs
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first complete memory interface chipset solutions for the second-generation DDR5 Multi-Capacity Rank Dual In-Line Memory Modules (MRDIMMs).  The new DDR5 MRDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. They deliver operating speeds up to 12,800 Mega Transfers Per Second (MT/s), a 1.35x improvement in memory bandwidth over first-generation solutions. Renesas has been instrumental in the design, development and deployment of the new MRDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers.  Renesas has designed and executed three new critical components: the RRG50120 second-generation Multiplexed Registered Clock Driver (MRCD), the RRG51020 second-generation Multiplexed Data Buffer (MDB), and the RRG53220 second-generation Power Management Integrated Circuit (PMIC). Renesas also offers temperature sensor (TS), and serial presence detect (SPD) hub solutions in mass production, making it the only memory interface company that offers the complete chipset solutions for industry standard next-generation MRDIMMs as well as all other server and client DIMMs.  “The demand for higher performance systems driven by AI and HPC applications is relentless,” said Davin Lee, Senior Vice President and General Manager of Analog & Connectivity and Embedded Processing. “Renesas is at the forefront of this trend, working with industry leaders to develop next-generation technology and specifications. These companies depend on Renesas to deliver the technical know-how and the production capabilities they require to meet unprecedented demand. Our latest chipset solutions for second-generation DDR5 MRDIMMs showcase our leadership in this market.”  Renesas’ RRG50120 second-generation MRCD is used on the MRDIMMs to buffer the Command/Address (CA) bus, chip selects and the clocks between the host controller and DRAMs. It consumes 45% less power compared to the first-generation device, a critical specification for heat management in very high-speed systems. The RRG51020 Gen2 MDB is the other key device used in the MRDIMMs to buffer data from the host CPU to DRAMs. Both the new Renesas MRCD and MDB support speeds up to 12.8 Gigabytes per Second (GB/s). Additionally, Renesas’ RRG53220 next-generation PMIC offers best-in-class electrical-over-stress protection and superior power efficiency and is optimized for high-current and low-voltage operation.  Availability  Renesas is sampling the RRG50120 MRCD, the RRG51020 MDB, and the RRG53220 PMIC now, and expects the new products to be available for production in the first half of 2025. More information on these new products is available at www.renesas.com/DDR5.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, X, YouTube, and Instagram.  (Remarks) Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners.  The content in the press release, including, but not limited to, product prices and specifications, is based on the information as of the date indicated on the document, but may be subject to change without prior notice.
Key word:
Release time:2024-12-03 14:43 reading:944 Continue reading>>

Turn to

/ 16

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code