ROHM’s 2nd Generation MUS-IC™ Series Audio DAC <span style='color:red'>Chip</span> for Hi-Res Audio Playback with Exclusive HD Monaural Mode
  ROHM has developed the 32-bit D/A converter IC (DAC chip) and evaluation board designed for flagship models in the MUS-IC™ series optimized for high-resolution audio playback.  Engineered to maximally extract and accurately convert high-resolution sound data to analog, DAC chips are crucial for determining audio equipment quality. ROHM leverages over 50 years of expertise in audio IC development to establish superior sound quality design technology, offering products such as high-fidelity sound processors and high-quality audio power ICs.  ROHM’s latest product builds on the 1st generation MUS-IC™ BD34301EKV audio DAC chip, renowned for its sound quality and widely adopted in high-end models from various companies. The BD34302EKV inherits the core design concept behind ROHM’s DAC chip — natural flat sound — and, by adding the three elements of spatial reverberation, quietness, and dynamic range from the MUS-IC™ series to authentically reproduce the “texture” of musical instruments for an even more realistic audio experience.  By incorporating a new algorithm for Data Weighted Averaging (DWA), the BD34302EKV achieves a THD+N characteristic of -117dB (THD: -127dB), a key performance indicator that enhances sound quality by achieving a sound quality that conveys a realistic sense of texture. At the same time, the signal-to-noise ratio (SNR) of 130dB provides noise performance befitting a flagship DAC chip, while a sampling frequency of up to 1,536kHz allows customers to fully leverage the high-precision calculations of their digital signal processors (DSPs).  In monaural mode, which allocates one DAC chip per channel, ROHM’s proprietary HD (High Definition) monaural mode contributes to smoother, more natural sound. As part of the MUS-IC™ series, uncompromising craftsmanship has been applied down to the smallest details. Based on years of expertise in sound quality design, the optimal bonding wire material for each terminal of the BD34302EKV was selected to accurately convey the natural “texture” of musical instruments. These features help create the ideal sound sought by high-end audio manufacturers.  MUS-IC™ — ROHM’s Highest Grade Audio ICs        Created by combining the “sound quality design technology” with ROHM’s company mission of “Quality First”, “vertically integrated production system”, and “contribution to the musical culture”, MUS-IC™ (official name: ROHM Musical Device “MUS-IC™”) is an audio device brand that represents the ultimate IC solutions developed by ROHM’s team of experienced and dedicated engineers.  For more information, please visit ROHM’s Musical Device “MUS-IC™” web page.  https://micro.rohm.com/en/mus-ic/  *MUS-IC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology        High Resolution Audio Source  High-resolution audio sources, often called "hi-res audio," typically use a sampling frequency of 96kHz or higher and a bit depth of 24 bits or more. In comparison, standard CD-quality audio is played back at a 44.1kHz sampling frequency with 16-bit depth. This means hi-res audio provides significantly more data resolution and dynamic range than standard CD-quality audio, resulting in superior sound quality.  DWA (Data Weighted Averaging)  Technology that improves audio characteristics by balancing mismatches between elements when operating multiple switching components for analog conversion.  THD+N (Total Harmonic Distortion + Noise)  A key performance metric for audio equipment that measures the ratio of harmonics to the fundamental wave. Indicates how accurately the waveform is reproduced — the smaller the value the more faithful the reproduction.  HD (High Definition) Monaural Mode  ROHM’s proprietary digital signal processing technology that improves bit (amplitude) resolution. This allows for improvements in numerical performance while enhancing sound quality to deliver smooth audio that reveals the texture of musical instruments.
Key word:
Release time:2025-03-18 16:21 reading:271 Continue reading>>
ROHM’s New General-Purpose <span style='color:red'>Chip</span> Resistors Contribute to Greater Miniaturization
  ROHM has expanded its portfolio of general-purpose chip resistors with the MCRx family. It is designed to achieve greater miniaturization and enhanced performance across a variety of applications. The new lineup includes the high-power MCRS series and low-resistance, high-power MCRL series.  In today's era of advancing functionality and electrification, the increased miniaturization and improved performance of electronic components have become critical issues. This is especially evident in the automotive market, where the proliferation of electric vehicles (xEVs) is accelerating the use of electronic components. Similarly, the industrial equipment market is experiencing growing demand for compact, high performance electronic components as machinery becomes more functional and efficient. ROHM addresses both of these needs with the MCRx family of compact, high-performance resistors.  The MCRS series improves rated power and TCR (Temperature Coefficient of Resistance) characteristics by optimizing the internal structure and incorporating new materials, enabling use in a smaller size compared to conventional products. A broad lineup in sizes ranging from 0402-size (0.04inch × 0.02inch) / 1005-size (1.0mm × 0.5mm) to 2512-size (0.25inch × 0.12inch) / 6432-size (6.4mm × 3.2mm) is available, making it possible to select the ideal product based on mounting space requirements. This leads to a compact, efficient circuit design, significantly increasing design flexibility. Meanwhile, the MCRL series, a low-resistance variant of the MCRS series, is offered in sizes ranging from 0805-size (0.08inch × 0.05inch) / 2012-size (2.0mm × 1.2mm) to 2512-size (0.25inch × 0.12inch) / 6432-size (6.4mm × 3.2mm) ideal for current detection applications.  The MCRx family adopts a redesigned internal structure, improving production efficiency, quality, and product reliability across all sizes. Compliant with the AEC-Q200 automotive reliability standard, this series meets the increasing demand for electric vehicles (xEVs) while contributing to market expansion in communications infrastructure such as base stations and servers as well as factory automation equipment. In addition, the products are designated for long-term stable supply, supporting continuous use in long-life applications such as industrial equipment.  The MCRS series will be expanded to include compact 0201-size (0.024inch × 0.012inch) / 0603-size (0.6mm × 0.3mm) products capable of withstanding temperatures up to +155°C. At the same time, the MCRE series will soon offer completely lead-free 01005-size (0.016inch × 0.008inch) / 0402-size (0.4mm × 0.2mm) products. These additions will allow ROHM to respond to the demand for further miniaturization while complying with environmentally-driven voluntary regulations and export restrictions.  Going forward, ROHM is focused on developing and manufacturing products that cater to the diverse needs of customers worldwide. In particular, ROHM will continue to expand its lineup of resistors (its founding products) that improve miniaturization and reliability while ensuring long-term stable supply. By consistently delivering new value through technological innovation, ROHM seeks to solidify its market position and drive the evolution of electronic components.  Application Examples        Suitable for a wide range of applications (excluding medical, military, aerospace, and nuclear control equipment)  Automotive  ・Electric vehicles (xEVs): Battery Management Systems (BMS), powertrain control, Advanced Driver Assistance Systems (ADAS)  ・In-vehicle electronics: Engine Control Units (ECUs), infotainment systems, and more  Industrial Equipment  ・Robotics: Control systems for industrial robots  ・Factory Automation (FA): Automated product line control systems  ・Power conversion equipment: Inverters, converters, and more  Consumer Devices  ・Smart devices: Smartphones, tablets, wearables  ・Home appliances: TVs, refrigerators, washing machines  Communication Equipment  ・Network equipment: Routers, switching hubs, communication equipment for data centers, etc.  Online Sales Information        Sales Launch Date: October 2024  The products will be offered at other online distributors as they become available.  Products for Sale: MCR01S、MCR03S、MCR10S、MCR18S、MCR25S、MCR50S、MCR100S、MCR10L、MCR18L、MCR25L、MCR50L、MCR100L  Additional resistance values will be added as needed.  Resistance Value Search Page        Users can now search by series or resistance value and purchase samples on product pages.  https://www.rohm.com/products/resistors  Terminology        Temperature Coefficient of Resistance (TCR)  An index of how much the resistance value changes with temperature. The lower the TCR, the less the resistance value fluctuates with temperature changes, resulting in more stable performance.  AEC-Q200  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Compliance with this standard by automotive components ensures reliable performance even under harsh environmental conditions. Q200 is a standard specifically intended for passive components such as resistors, capacitors, and inductors.  xEV (Electric Vehicles)  A collective term for vehicles primarily powered by electric motors, such as Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Electric Vehicles (EVs).
Key word:
Release time:2025-03-12 10:22 reading:330 Continue reading>>
ROHM’s PMICs for SoCs have been Adopted in Reference Designs for Telechips’ Next-Generation Cockpits
  ROHM has announced the adoption of its PMICs in power reference designs focused on the next-generation cockpit SoCs ‘Dolphin3’ (REF67003) and ‘Dolphin5’ (REF67005) by Telechips, a major fabless semiconductor manufacturer for automotive applications headquartered in Pangyo, South Korea. Intended for use inside the cockpits of European automakers, these designs are scheduled for mass production in 2025.  ROHM and Telechips have been engaged in technical exchanges since 2021, fostering a close collaborative relationship from the early stages of SoC chip design. As a first step in achieving this goal, ROHM’s power supply solutions have been integrated into Telechips’ power supply reference designs. These solutions support diverse model development by combining sub-PMICs and DrMOS with the main PMIC for SoCs.  For infotainment applications, the Dolphin3 application processor (AP) power reference design includes the BD96801Qxx-C main PMIC for SoCs. Similarly, the Dolphin5 AP power reference design developed for next-generation digital cockpits combines the BD96805Qxx-C and BD96811Fxx-C main PMICs for SoC with the BD96806Qxx-C sub-PMIC for SoC, improving overall system efficiency and reliability.  Modern cockpits are equipped with multiple displays, such as instrument clusters and infotainment systems, with each automotive application becoming increasingly multifunctional. As the processing power required for automotive SoCs increases, power ICs like PMICs must be able to support high currents while maintaining high efficiency. At the same time, manufacturers require flexible solutions that can accommodate different vehicle types and model variations with minimal circuit modifications. ROHM SoC PMICs address these challenges with high efficiency operation and internal memory (One Time Programmable ROM) that allows for custom output voltage settings and sequence control, enabling compatibility with large currents when paired with a sub-PMIC or DrMOS.  Moonsoo Kim,  Senior Vice President and Head of System Semiconductor R&D Center, Telechips Inc.“Telechips offers reference designs and core technologies centered around automotive SoCs for next-generation ADAS and cockpit applications. We are pleased to have developed a power reference design that supports the advanced features and larger displays found in next-generation cockpits by utilizing power solutions from ROHM, a global semiconductor manufacturer. Leveraging ROHM’s power supply solutions allows these reference designs to achieve advanced functionality while maintaining low power consumption. ROHM power solutions are highly scalable, so we look forward to future model expansions and continued collaboration.”  Sumihiro Takashima,  Corporate Officer and Director of the LSI Business Unit, ROHM Co., Ltd.“We are pleased that our power reference designs have been adopted by Telechips, a company with a strong track record in automotive SoCs. As ADAS continues to evolve and cockpits become more multifunctional, power supply ICs must handle larger currents while minimizing current consumption. ROHM SoC PMICs meet the high current demands of next-generation cockpits by adding a DrMOS or sub-PMIC in the stage after the main PMIC. This setup achieves high efficiency operation that contributes to lower power consumption. Going forward, ROHM will continue our partnership with Telechips to deepen our understanding of next-generation cockpits and ADAS, driving further evolution in the automotive sector through rapid product development.”  ・ Telechips SoC [Dolphin Series]  The Dolphin series consists of automotive SoCs tailored to In-Vehicle Infotainment (IVI), Advanced Driver Assistance Systems (ADAS), and Autonomous Driving (AD) applications. Dolphin3 supports up to four displays and eight in-vehicle cameras, while Dolphin5 enables up to five displays and eight cameras, making highly suited as SoCs for increasingly multifunctional next-generation cockpits. Telechips is focused on expanding the Dolphin series of APs (Application Processors) for car infotainment, with models like Dolphin+, Dolphin3, and Dolphin5, by leveraging its globally recognized technical expertise cultivated over many years.  ・ ROHM 's Reference Design Page  Details of ROHM’s reference designs and information on equipped products are available on ROHM’s website, along with reference boards. Please contact a sales representative or visit ROHM’s website for more information.  https://www.rohm.com/contactus  ■ Power Supply Reference Design [REF67003] (equipped with Dolphin3)  Reference Board No. REF67003-EVK-001  https://www.rohm.com/reference-designs/ref67003  ■ Power Supply Reference Design [REF67005] (equipped with Dolphin5)  Reference Board No. REF67005-EVK-001  https://www.rohm.com/reference-designs/ref67005  About Telechips Inc.Telechips is a fabless company specialized in designing system semiconductors that serve as the “brains” of automotive electronic components. The South Korean firm offers reliable, high-performance automotive SoCs. In response to the industry’s transition toward SDVs (Software Defined Vehicles), Telechips is broadening its core portfolio beyond car infotainment application processors (APs) to include MCUs, ADAS, network solutions, and AI accelerators.  As a global, comprehensive automotive semiconductor manufacturer, Telechips adheres to international standards such as ISO 26262, TISAX, and ASPICE, leveraging both hardware and software expertise for future mobility ecosystems, including not only automotive smart cockpits, but also E/E architectures. What’s more, Telechips provides optimal solutions for In-Vehicle Infotainment systems (IVI), digital clusters, and ADAS, all compliant with key automotive standards (AEC-Q100, ISO 26262). Telechips has established business relationships with major automakers both domestically and internationally, supported by a strong track record of shipments.  One flagship product is the Dolphin5 automotive SoC that integrates an Arm®-based CPU, GPU, and NPU to meet high-performance requirements. As a fabless company, Telechips outsources the manufacturing of its SoCs to Samsung Electronics’ foundry, delivering high-quality semiconductor products to domestic and overseas manufacturers. For more information, please visit Telechips’ website:  https://www.telechips.com/  *Arm® is a trademark or registered trademark of Arm Limited.  TerminologyPMIC (Power Management IC)  An IC that contains multiple power supply systems and functions for power management and sequence control on a single chip. It is becoming more commonplace in applications with multiple power supply systems in both the automotive and consumer sectors by significantly reducing space and development load vs conventional circuit configurations using individual components (i.e. DC-DC converter ICs, LDOs, discretes).  SoC (System-on-a-Chip)  A type of integrated circuit that incorporates a CPU (Central Processing Unit), memory, interface, and other elements on a single substrate. Widely used in automotive, consumer, and industrial applications due to its high processing capacity, power efficiency, and space savings.  AP (Application Processor)  Responsible for processing applications and software in devices such as smartphones, tablets, and automotive infotainment systems. It includes components such as a CPU, GPU, and memory controller to efficiently run the Operating System (OS), process multimedia, and render graphics.  DrMOS (Doctor MOS)  A module that integrates a MOSFET and gate driver IC. The simple configuration is expected to reduce design person-hours along with mounting area and to achieve efficient power conversion. At the same time, the built-in gate driver ensures high reliability by stabilizing MOSFET drive.
Key word:
Release time:2024-12-20 13:56 reading:722 Continue reading>>
Renesas Introduces Industry’s First Complete Memory Interface <span style='color:red'>Chip</span>set Solutions for Second-Generation DDR5 Server MRDIMMs
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first complete memory interface chipset solutions for the second-generation DDR5 Multi-Capacity Rank Dual In-Line Memory Modules (MRDIMMs).  The new DDR5 MRDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. They deliver operating speeds up to 12,800 Mega Transfers Per Second (MT/s), a 1.35x improvement in memory bandwidth over first-generation solutions. Renesas has been instrumental in the design, development and deployment of the new MRDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers.  Renesas has designed and executed three new critical components: the RRG50120 second-generation Multiplexed Registered Clock Driver (MRCD), the RRG51020 second-generation Multiplexed Data Buffer (MDB), and the RRG53220 second-generation Power Management Integrated Circuit (PMIC). Renesas also offers temperature sensor (TS), and serial presence detect (SPD) hub solutions in mass production, making it the only memory interface company that offers the complete chipset solutions for industry standard next-generation MRDIMMs as well as all other server and client DIMMs.  “The demand for higher performance systems driven by AI and HPC applications is relentless,” said Davin Lee, Senior Vice President and General Manager of Analog & Connectivity and Embedded Processing. “Renesas is at the forefront of this trend, working with industry leaders to develop next-generation technology and specifications. These companies depend on Renesas to deliver the technical know-how and the production capabilities they require to meet unprecedented demand. Our latest chipset solutions for second-generation DDR5 MRDIMMs showcase our leadership in this market.”  Renesas’ RRG50120 second-generation MRCD is used on the MRDIMMs to buffer the Command/Address (CA) bus, chip selects and the clocks between the host controller and DRAMs. It consumes 45% less power compared to the first-generation device, a critical specification for heat management in very high-speed systems. The RRG51020 Gen2 MDB is the other key device used in the MRDIMMs to buffer data from the host CPU to DRAMs. Both the new Renesas MRCD and MDB support speeds up to 12.8 Gigabytes per Second (GB/s). Additionally, Renesas’ RRG53220 next-generation PMIC offers best-in-class electrical-over-stress protection and superior power efficiency and is optimized for high-current and low-voltage operation.  Availability  Renesas is sampling the RRG50120 MRCD, the RRG51020 MDB, and the RRG53220 PMIC now, and expects the new products to be available for production in the first half of 2025. More information on these new products is available at www.renesas.com/DDR5.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, X, YouTube, and Instagram.  (Remarks) Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners.  The content in the press release, including, but not limited to, product prices and specifications, is based on the information as of the date indicated on the document, but may be subject to change without prior notice.
Key word:
Release time:2024-12-03 14:43 reading:634 Continue reading>>
ROHM's 4th Generation SiC MOSFET Bare <span style='color:red'>Chip</span>s Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:650 Continue reading>>
A solution for automotive gear shift switch based on Hangshun chip automotive grade MCU HK32A040C8T3
  Throughout the global development of passenger cars, automatic transmission has been widely adopted. Its simple and easy to learn, convenient and intelligent characteristics bring drivers a more comfortable driving experience, and also better adapt to urban traffic.  The implementation of the automatic shift function actually uses a gear shift switch instead of manual operation. The gear shift switch will control the shift fork and gear shift based on different engine speeds, vehicle speeds, and the driver's intention to press the accelerator. To achieve these automated operations, a shift switch requires a brain.  The Hangshun chip M0 series automotive grade MCU HK32A040C8T3 is such a "brain", applied in gear shift switch schemes. Its main function is to receive signals from the gear shift switch and convert these signals into electrical signals that can control the car's engine, transmission, and other parts, thereby simplifying driving operations and providing great convenience for the driver.  In the process of developing its new generation of electric vehicles, in order to ensure that the vehicle's performance, reliability, and safety reach the optimal level, after in-depth technical evaluation and multiple rounds of screening, Selis New Energy Vehicles finally chose a gear shift switch scheme based on the Hangshun chip HK32A040C8T3.  The Selis engineering team has conducted a rigorous review of the functional characteristics, processing speed, power consumption performance, environmental adaptability, and cost-effectiveness of the Hangshun HK32A040C8T3 MCU in multiple dimensions. Hangshun's MCU has successfully conquered the engineering team with its outstanding performance, especially in high reliability and strong anti-interference ability. In addition, HK32A040C8T3 has high integration and flexible peripheral interfaces, providing engineers with greater design freedom and optimization space, making the entire electronic control system more compact and efficient.  HK32A040 using ARM ® Cortex ®- M0 core, with a maximum operating frequency of 96MHz, built-in up to 124 Kbyte Flash and 10 Kbyte SRAM. By configuring the Flash controller registers, the remapping of interrupt vectors within the main Flash area can be achieved. And it supports traditional Flash Level 0/1/2 read-write protection and Flash code encryption (patented by Hangshun).  Strong scalability  32-bit ARM CPU architecture, good ecological environment  Rich peripheral resources to meet platform expansion  Multiple packaging options available for LQFP64, LQFP48, QFN32, and QFN28  high reliability  Car specification quality, compliant with AEC-Q100 Grade 1  Complies with ISO 9001 and IATFT 16949 quality management systems  Supports -40 ℃~125 ℃  High cost performance ratio  Equal performance/resources, with higher cost-effectiveness  Quality service  Complete ecological supporting facilities  15 years of design life, with a supply chain guarantee of over 15 years  The gear shift switch scheme based on the Hangshun Vehicle Class MCU HK32A040C8T3 has been successfully applied in the Sailis new energy vehicle, which not only improves the electronic control efficiency of the entire vehicle, but also achieves lower energy consumption and better user experience.  The Hangshun chip series vehicle grade MCU HK32A040 can be widely used in vehicle domain controllers, such as doors and windows, tail lights, wipers, anti-theft alarms, car keys, air conditioning, electric seats, etc.  Hangshun Chip adheres to the strategy of SoC+32-bit high-end MCU in automotive standards. In recent years, it has invested a large amount of research and development resources in the field of automotive electronics, committed to providing the market with higher reliability and more cost-effective automotive chip solutions, helping customers achieve a win-win situation in cost control and user experience.
Key word:
Release time:2024-05-09 11:48 reading:1202 Continue reading>>
On the Fast Lane: NOVOSENSE's Ongoing Commitment to Automotive <span style='color:red'>Chip</span> Excellence
  Automobiles are undergoing increasing electrification and digitalization, from electric drive trains to immersive infotainment systems in the cockpit.  NOVOSENSE, a pioneering force in the automotive chips, recently unveiled several groundbreaking products aimed at enhancing performance, reliability, and efficiency in automotive applications.  NCA1462-Q1, an automotive-qualified CAN SIC based on innovative ringing suppression patent  NCA1462-Q1 is based on its proprietary innovative ringing suppression patent. Compared with CAN FD solution, NCA1462-Q1 is further compatible with the CiA 601-4 standard on the premise of meeting the ISO 11898-2:2016 standard, and can achieve a data rate of ≥8Mbps. With NOVOSENSE's patented ringing suppression function, NCA1462-Q1 maintains good signal quality even in the case of star network multi-node connection; in addition, its ultra-high EMC performance and more flexible VIO as low as 1.8V can effectively help engineers simplify system design and create high-quality automotive communication system.  NSHT30-Q1, a relative humidity (RH) and temperature sensor based on CMOS-MEMS  NSHT30-Q1 integrates a complete sensor system on a single chip, including a capacitive RH sensor, CMOS temperature sensor and signal processor, and an I2C digital communication interface. It is designed in DFN package with Wettable Flank, and the product size is 2.5mm×2.5mm×0.9mm. NSHT30-Q1's I2C interface features two selectable addresses with communication speed up to 1 MHz and supports a wide supply voltage range of 2.0V~5.5V.  NSOPA9xxx series, general-purpose operational amplifiers for automotive applications  NSOPA9xxx series is suitable for 40V high voltage and offers a variety of product models with bandwidth option of 1MHz/5MHz/10MHz and 1/2/4-channel. It meets the reliability requirements of AEC-Q100 Grade 1, and can operate from -40°C to 125°C. Different package versions are available to meet different customer needs: SOT23-5, SOP-8 for 1-channel; MSOP-8, SOP-8 for 2-channel; and TSSOP-14, SOP-14 for 4-channel.  NSD3604/8-Q1, a new automotive-qualified 4/8-channel multi-channel half-bridge driver  NSD3604/8-Q1 can drive multiple loads and is used in automotive domain control architecture. It covers 4/8-channel half-bridge drive which can drive 4 DC brushed motors, and achieve multi-channel high-current motor drive, and also be used as a multi-channel high-side switch drive. NSD3604/8-Q1 is suitable for multi-motor or multi-load applications, such as car window lifting, electric seats, door locks, electric tailgates, and proportional valves and other body control applications.
Key word:
Release time:2024-04-17 13:24 reading:689 Continue reading>>
<span style='color:red'>Chip</span>-on-Board (COB) vs. Package-on-Package (PoP)- Comparison and Applications
  The ever-evolving landscape of electronic devices demands innovation in packaging technologies. Among the array of approaches available, two prominent methods stand out: Chip-on-Board (COB) and Package-on-Package (PoP). These techniques play pivotal roles in the assembly, functionality, and miniaturization of electronic components, each with distinct advantages and applications.  Chip-on-Board (COB)  COB is a packaging technique that involves mounting bare semiconductor chips directly onto a substrate or a Printed Circuit Board (PCB). This method eliminates the use of individual packaging for each chip, opting instead for direct bonding or soldering onto the board’s surface. By doing so, COB reduces space requirements and enhances heat dissipation efficiency.  One of COB’s key strengths lies in its compactness. By eschewing traditional packaging, this approach significantly reduces the overall size of electronic devices, making it ideal for applications where space is a constraint. Moreover, the direct connection between the chip and the substrate minimizes signal interference, enhances electrical performance, and reduces circuit inductance and resistance.  COB technology finds widespread use across various industries. In automotive applications, COB is often utilized in LED lighting modules, offering higher brightness levels and superior thermal management due to the close arrangement of LED chips. Additionally, COB’s cost-effectiveness makes it appealing for applications where simplicity in circuitry is essential.  Package-on-Package (PoP)  In contrast to COB, Package-on-Package (PoP) involves vertically stacking multiple packaged chips within a single device. This configuration enables the integration of different functionalities or components, such as memory and processors, into a compact assembly. The stacking of chips facilitates enhanced performance without increasing the device’s footprint.  PoP’s primary advantage lies in its versatility. By vertically stacking chips, PoP allows for better integration of various components, leading to improved performance and reduced signal distortion due to shorter interconnection paths. This technology excels in accommodating diverse functionalities within limited space, making it a preferred choice for applications where performance and miniaturization are critical factors.  Mobile devices, particularly smartphones and tablets, heavily leverage PoP technology. These devices require high-performance capabilities within a confined space. PoP facilitates the integration of memory chips and processors, enabling seamless multitasking and high-speed data transfer without compromising on performance.  Chip-on-Board (COB) vs. Package-on-Package (PoP)- Comparison and ApplicationsWhen weighing the advantages of COB and PoP, the choice between the two largely depends on specific design requirements and application needs. COB’s strengths in compactness, cost-effectiveness, and thermal management make it suitable for applications where space optimization and simplicity in circuitry are crucial.  Conversely, PoP’s versatility in accommodating multiple functionalities within a confined space makes it ideal for devices requiring high performance without sacrificing miniaturization. Industries such as mobile technology heavily rely on PoP to enhance the capabilities of their devices while maintaining a compact form factor.  ConclusionBoth Chip-on-Board (COB) and Package-on-Package (PoP) are indispensable packaging technologies in the realm of modern electronics. Understanding their differences enables manufacturers and designers to make informed decisions based on specific requirements, contributing to the development of innovative and efficient electronic devices catering to diverse consumer needs.  By harnessing the capabilities of COB and PoP, the electronics industry continues to evolve, providing consumers with increasingly powerful yet compact devices across various applications, from consumer electronics to automotive and beyond.
Key word:
Release time:2024-03-21 16:32 reading:680 Continue reading>>
Vehicle-grade chips from Runic Technology
  We have recently released 11 Vehicle-grade chips that have passed AEC-Q100 Grade1&MSL 1 humidity level certification; The part number that have passed the vehicle specification certification this time include:  High-speed Comparator: LM2901XP-Q1; LM2903XK-Q1  General Operational Amplifier: RS8411XF-Q1; RS8414XQ-Q1  Analog Switch: RS2260XTSS16-Q1  Level Converter: RS0104XQ-Q1; RS0108XQ20-Q1  Logic Chip: RS1G125XC5-Q1;  Low Noise Operational Amplifier: RS622XTDE8-Q1  Parallel Voltage Reference Source: RS431AXSF3-Q1; RS432AXSF3-Q1  Vehicle-grade chips must have extremely low failure rates, high reliability, and normal operation at high and low temperatures, which requires high requirements for product design, development process, process design, process capability, and mass production control. All 11 Vehicle-grade chips released this time have passed the enhanced version of AEC-Q100 Grade 1 certification and humidity sensitivity level MSL 1 certification in authoritative third-party laboratories, with a theoretical design life of more than 25 years.  Currently, there are 38 Vehicle-grade chips from Runic Technology , and about 20 Vehicle-grade chips are still under certification; Runic's Vehicle-grade chips are widely applicable in various fields of automotive electronics, such as power domain, body domain, intelligent cockpit, etc. At the same time, they can be widely P2P compatible with equivalent signal chains, logic, analog switches, and other automotive grade chips from companies such as TI/ADI/Experia/Onsemi.
Key word:
Release time:2024-01-17 15:10 reading:2551 Continue reading>>
What types of chip packaging substrates are there?
  In the field of semiconductor packaging, many packaging types use packaging substrates, such as BGA (Ball Grid Array), PGA, QFP, CSP, SiP, PoP, etc. Different types of packaging use different packaging substrates. So what are the common packaging substrates? Keep reading!  What is the function of packaging substrate?  The packaging substrate has the following main functions in the package: electrical connection, mechanical support, heat dissipation, protection, etc.  What types of packaging substrates are there?  According to the material of the substrate, it is divided into rigid substrate and flexible substrate.  Rigid substrate refers to a substrate that has strong rigidity and cannot be bent. Flexible substrates refer to substrates that can be bent and folded. Rigid substrates have a fixed shape and form, while flexible substrates are thin and more flexible.  What type of material is the rigid substrate made of?  Common rigid substrate materials: FR4, BT, ABF, ceramic, etc.  FR4  FR4 is one of the most commonly used material types in printed circuit board (PCB) manufacturing. “FR4” stands for “Flame Retardant Type 4”. It is a composite material made of fiberglass cloth impregnated with epoxy resin, then hot pressed and cured. It has the characteristics of good flame retardancy, high mechanical strength, excellent electrical insulation performance and good thermal stability.  BT  BT material, which takes its name from its main chemical components: Bismaleimide and Triazine, is a more advanced and higher-performance epoxy resin substrate and has become the lamination of choice for many substrate manufacturers. BT material has a high glass transition temperature, usually higher than ordinary FR4 materials; low thermal expansion coefficient and dielectric constant; good insulation, etc. BT is the standard substrate material for BGA packages and can also be used for CSP packages.  ABF  ABF (Ajinomoto Build-up Film) is a highly rigid and highly durable material used in high-end chip packaging such as CPUs and GPUs. It was developed by Ajinomoto Company. It is a laminated film material and is usually used as an inner insulating material for packaging substrates.  Ceramics  Commonly used ceramic materials include aluminum oxide (Al2O3), aluminum nitride (AlN), beryllium oxide (BeO), silicon carbide (SiC), etc., which are relatively early laminated materials. Ceramic materials are first obtained in the form of powder through grinding to obtain particles of suitable particle size, and then are made through shaping, metallization, lamination, cutting, high-temperature sintering, grinding and polishing, nickel immersion, gold immersion, etc. They have a certain degree of brittleness and are suitable for high-frequency applications in chip products with high power and high reliability requirements.  What types of materials are used for flexible substrates?Common flexible substrate materials: PI (polyimide), PEEK (polyetheretherketone), PET (polyester), PDMS, etc.  What are the advantages and disadvantages of flexible substrates?  Advantages:  Flexibility and Conformity: Flexible substrates can conform to various shapes and surfaces, allowing them to be used in applications where rigid materials wouldn’t work. This flexibility enables innovative designs and applications in curved or irregular surfaces.  Lightweight and Thin: They are generally lighter and thinner than rigid substrates, which can be advantageous in applications where weight and thickness are critical factors, like portable devices or wearable technology.  Durability against Bending and Folding: Flexible substrates can withstand bending and folding, making them suitable for applications where frequent movement or deformation occurs without compromising their functionality.  Cost-Effectiveness: In some cases, flexible substrates can be more cost-effective than rigid alternatives, especially in large-scale manufacturing where materials and production processes might be less expensive.  Disadvantages:  Less Structural Support: Their flexibility can also be a disadvantage when structural support is necessary. This can limit their use in certain applications where a rigid base is needed for stability or mounting.  Limited Heat Resistance: Some flexible substrates might have lower heat resistance compared to rigid materials, which can be a drawback in applications where high temperatures are involved.  Reduced Electrical Performance: In certain electronic applications, flexible substrates may have limitations in terms of electrical performance, such as higher signal distortion or lower heat dissipation compared to rigid substrates.  Susceptibility to Damage: While flexible substrates are resilient to bending and folding, they might be more susceptible to damage from punctures, tears, or abrasions compared to rigid materials.  What are the advantages and disadvantages of rigid substrates?Advantages:  Stability and Durability: Rigid substrates are often more stable and durable compared to flexible ones. They maintain their shape and structural integrity well, making them suitable for various applications.  Support and Rigidity: They offer a stable surface for various processes like printing, painting, or mounting components. This stability can ensure precise and accurate outcomes in manufacturing.  Ease of Handling: Rigid substrates are often easier to handle during production processes, transportation, and installation due to their solid form.  Improved Performance: In some applications, such as electronic circuits, rigid substrates may offer better electrical performance due to reduced signal distortion and improved heat dissipation.  Disadvantages:  Limited Flexibility: The rigidity of these substrates can be a disadvantage when flexibility is required. They might not conform to curved surfaces or adapt well to uneven shapes, limiting their use in certain applications.  Susceptibility to Damage: Being rigid, they are more prone to cracking or breaking under stress or impact compared to flexible substrates. This makes them less suitable for applications where impact resistance is crucial.  Higher Cost: Rigid substrates can be more expensive than flexible alternatives due to the materials used and the manufacturing processes involved.  Transportation and Storage Concerns: Rigid substrates might require more careful handling during transportation and storage compared to flexible substrates, which can be rolled or folded.
Key word:
Release time:2024-01-04 13:53 reading:1510 Continue reading>>

Turn to

/ 22

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
model brand To snap up
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code