什么是理想二极管控制器?
理想二极管控制器可驱动外部 N 沟道 MOSFET 来仿真具有超低正向压降和可忽略不计反向电流的理想二极管。理想二极管控制器可根据栅极控制机制分为两类:线性调节控制和迟滞开/关控制。
线性调节控制会根据负载电流来控制栅极电压,有助于快速反向电流阻断;
在迟滞开/关控制中,当超过正向导通比较器阈值时,MOSFET完全导通。
图1中的典型应用原理图显示了用于驱动外部 N 沟道 MOSFET 的理想二极管控制器Pai8150C。MOSFET的源极与输入端相连,电荷泵电容器连接在阳极和 VCAP 之间,可提供足够的栅极驱动电压来导通 MOSFET,EN引脚控制芯片开关。

图1. 理想二极管控制器 - 典型应用原理图
理想二极管应用介绍
理想二极管控制器典型应用有三种:背靠背FET架构,电池反向保护以及电源路径管理及冗余(ORing)。
1 背靠背FET架构
理想二极管控制器可驱动和控制外部背对背 N 沟道 MOSFET,从而仿真具有电源路径开/关控制、浪涌电流限制的理想二极管整流器。电动汽车12V辅助电池由DC/DC变换器的12V输出电压供电。图2为荣湃半导体理想二极管控制器Pai8151B的应用案例。为实现DC/DC输出的12V与12V电池之间的受控连接与断开,需采用基于理想二极管控制器的背靠背MOSFET方案。当使能信号EN为低电平时:MOSFET Q1和Q2导通,DC/DC变换器输出的12V为12V辅助电池充电。当12V辅助电池充满电后: 使能号 EN 置为高电平,MOSFET Q1 和 Q2 关断,从而切断DC/DC变换器12V输出与12V辅助电池之间的电气通路。

图2. 负载切换与浪涌电流控制应用图
在电动汽车启动阶段,为了减缓高压电池连接设备输入电容的电流冲击,系统利用12V低压蓄电池实现对此输入电容的预充电。因此要求能量能从12V电池向高压测传输,理想二极管控制器需避免进入反向截止模式。如图3所示,此时需将控制器的Cathode引脚悬空设计以支持能量双向传输。

图3. 能量双向传输应用图
在电路启动初期,电容C1的初始电压较低,导致背靠背MOSFET导通瞬间可能引发过大浪涌电流。为抑制此现象,需采用软启动(soft start)机制:通过在理想二极管控制器的GATE引脚接入大容量电容C2与电阻R1构成的RC网络,利用Gate输出电流 Ig 对C2充电,使Gate电压 Vgate缓慢上升,从而逐步增大MOSFET导通程度,实现浪涌电流的平滑控制。

由于 MOSFET Q1 源极电压为 Vsource = Vgate-Vth,其中 Vth 为常数(MOSFET 阈值电压)。可得:

因此可以通过控制 C2 的充电速率来间接限制电容 C1 充电的浪涌电流。 例:车载 DCDC 变换器输出电容 C1=1mF,C2=10nF,R1=10kΩ,芯片 Gate 端输出电流 Ig 为 20uA。由公式可得:

2 电池反向保护
电池反向保护包含反极性保护(RPP/RHP)和反向电流阻断(RCB)两方面。反极性保护在电池意外反接或断开感性负载产生瞬态负压时,防止负载损坏。反向电流阻断则阻止电流从负载(特别是子系统中的大容量保持电容)倒流回电池,确保该电容能在电源中断或动态反向条件下持续为子系统(如汽车电子)供电,维持关键操作。理想二极管控制器配合外部N沟道MOSFET可高效实现这两种保护,尤其适用于需要同时防止输入反接和阻断反向电流的应用,例如为直流变换器或稳压器后跟处理器的应用。如图4为荣湃半导体理想二极管控制器Pai8150C电池反接应用方案。

图 4. 理想二极管控制器电池反接应用原理图
在应用中CAP电容的取值与MOSFET输入电容Ciss有关,CAP应大于10*Ciss(MOSFET),推荐 CAP电容不小于100nF。器件 MOSFET 的选型也有一定的要求,为保证正常工作时芯片处于 Regulatton 状态,需满足20mV
3 电池路径管理及冗余(ORing)
冗余电路使用多个电源单元为负载提供所需的电源。它们有助于提高系统的可靠性和可用性, 并在其中一个电源单元发生故障时确保系统安全。在汽车系统中,冗余电源对于自动驾驶等安全关键型应用尤为重要, 因为在这类应用中,断电可能会导致严重的后果。ORing 电路有助于系统根据最高输入电压从多个输入中选择最佳可用电源。理想二极管充当开关,在输入电压高于输出电压时导通,并在输入电压低于输出电压时关断。这样,ORing 电路可确保具有最高电压的输入源连接到输出端,并防止出现反向电流。如果两个输入电源几乎相等,则可以由两个电源同时为负载供电,而两个电源之间没有环流。因此,反向电流阻断是实现 ORing 电路所需的主要特性。图5为荣湃理想二极管控制器Pai8150C双路ORing解决方案。

图 5. 典型 ORing 应用
理想二极管在车载O
BC+DC/DC的应用
新能源汽车中,降压型DC/DC变换器负责将动力电池输出的高压直流电(400V-800V) 转换为恒定的低压直流电(12V/14V/36V/48V) ,以满足整车低压系统的供电需求。其核心功能包含两方面:一是为车身电器(如灯光、车窗、仪表、娱乐系统等)及控制系统(BMS、驾驶模块等)提供稳定电源;二是为低压蓄电池充电。由于低压负载的功率需求大而工作电压低,DC/DC变换器需持续输出大电流,因此具有低电压、高电流的典型技术特征。其核心架构为移相全桥ZVS拓扑与同步整流模块的组合,详见图6所示电路。

图 6. DC/DC 变换器电路图
在车辆低压供电系统中,直流/直流变换器(DC/DC)为12V蓄电池充电的核心逻辑如下:当整车控制器(VCU)未发出高压上电指令时,系统处于高压下电状态,此时由12V蓄电池直接为所有低压负载供电;一旦VCU发出高压上电指令,DC/DC变换器随即启动,将动力电池输出的高压直流电转换为稳定的低压直流电。此后,DC/DC变换器同时承担两项关键任务:一是实时为整车低压负载供电,二是为12V蓄电池充电。其输出功率会根据低压负载的实时用电需求进行动态分配,优先保障负载供电,剩余的能量则用于给蓄电池充电,从而维持整个低压系统的能量平衡。
总结
理想二极管控制器本质是模拟理想二极管特性的集成电路,核心作用是实现高效的单向导电,替代传统机械二极管或普通二极管,广泛应用于电源冗余系统、汽车电子、不间断电源(UPS)、太阳能光伏系统。得益于极低导通压降、快速开关响应和无反向恢复电流等优势,理想二极管控制器是电源端口应用的真正“多边形战士”。
在线留言询价
| 型号 | 品牌 | 询价 |
|---|---|---|
| MC33074DR2G | onsemi | |
| RB751G-40T2R | ROHM Semiconductor | |
| CDZVT2R20B | ROHM Semiconductor | |
| BD71847AMWV-E2 | ROHM Semiconductor | |
| TL431ACLPR | Texas Instruments |
| 型号 | 品牌 | 抢购 |
|---|---|---|
| TPS63050YFFR | Texas Instruments | |
| BU33JA2MNVX-CTL | ROHM Semiconductor | |
| BP3621 | ROHM Semiconductor | |
| ESR03EZPJ151 | ROHM Semiconductor | |
| STM32F429IGT6 | STMicroelectronics | |
| IPZ40N04S5L4R8ATMA1 | Infineon Technologies |
AMEYA360公众号二维码
识别二维码,即可关注
请输入下方图片中的验证码: