纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

Release time:2025-10-13
author:AMEYA360
source:纳芯微
reading:460

  在伺服驱动器的相电流采样中,速度波动是影响控制精度的关键问题,其根源往往与 Shunt 电阻的热电偶效应相关。本文以纳芯微 NSI1306 隔离 ΣΔADC 的应用为例,首先剖析 Shunt 电阻误差如何引发速度波动,再深入解析金属热电偶效应的形成机理;随后对比几字型与贴片封装等不同 Shunt 电阻的表现差异,以及探讨采样电路对热电偶效应的放大或抑制作用;最后提出减小该效应的实用设计建议,为提升相电流采样精度提供参考。

  01 Shunt 电阻误差的影响

  速度波动是伺服驱动器性能的重要指标,它反映的是转矩波动,而转矩波动会导致控制精度下降。

  伺服驱动器通过角度编码器读取速度和角度,并通过相电流检测读取电流,采样信息的准确性决定了控制的效果。以下分析侧重电流采样。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图1. NSI1306 电路示意

  相线电流采样可以真实反映电机的电流,而低边采样存在窗口期,需要重构相电流,容易引入误差。NSI1306 作为隔离 ΣΔADC,输出码流,适用于相线电流采样;同时 MCU 可根据控制需求灵活配置抽取率,在精度与响应速度之间取得平衡。

  相电流采样的误差主要来自 Shunt 电阻和 NSI1306,下文将重点讨论 Shunt 电阻带来的误差。

  通过电阻的规格书,电阻的精度和温漂属于增益误差;此外,还存在由热电偶效应引起的偏置(offset)误差。增益误差主要影响的是转矩控制精度,电流的 offset 误差会引入一个电周期一次的速度波动。

  在零电流时会校准一次相电流的 offset,运行过程中会计算每一相电流的 offset(一个周期的值相加)并且补偿掉,如果是采样数据不准,引入了 offset,那么经过软件的补偿,反而会导致真正的相电流 offset,破坏电流波形的对称性,引入谐波分量,改变磁场分布,从而导致电机转矩输出不均匀,进而产生转矩波动,导致速度波动。相电流偏移的软件补偿是一个电周期补偿一次,所以速度波动也是一个电周期一次。

  02 金属的热电偶效应

  在实际场景中,伺服驱动工作一段时间后速度波动变大,FFT 分析显示为一个电周期一次的速度波动,这是相电流的 offset 偏移造成的。

  对 PCB 加热,速度波动加剧,以此推测该 offset 和温度强相关。经测试,更换 2512 贴片封装 Shunt 电阻后恢复正常,排查出是几字型 Shunt 电阻的问题。

  加热对比测试,几字型 Shunt 电阻和贴片封装 Shunt 电阻的偏差都很小,并且电阻温漂改变的是增益,并不是 offset 。

  加上焊锡后,如图2,再加热测试,几字型 Shunt 电阻的偏差变得很大。交换电桥的正负极,偏差呈现相反方向的变化,贴片封装 Shunt 电阻偏差还是很小。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图2. 几字型 Shunt 加上焊锡

  根据实验结果,温度升高后,并不是电阻自身的阻值发生了较大的变化,而是存在比较大的热电偶效应。

  热电偶效应如图3所示,不同的金属的自由电子的密度不同,在 AB 两金属的接触处,会发生自由电子的扩散现象。电子将从密度大的金属(A)移向密度小的金属(B),使 A 带正电, B 带负电,直至 AB 之前形成足够大的电场阻止电子扩散,达到动态平衡。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图3. 热电偶效应

  从公式可以看出,热电偶效应产生的电压源大小和温度有关,和金属的材质有关。

  在电路中,Shunt 电阻的热电偶等效示意如图4,对于几字型 Shunt 电阻和贴片封装 Shunt 电阻, V3、V4的位置是一样的,V1、V2位置略有不同,但很近。因此可以认为温度都是相等的。对热电偶效应有影响的只有金属材质,两者对比如表 1 所示。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

  图4. Shunt电阻的热电偶等效示意

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

表1. 几字型 Shunt 电阻和贴片封装 Shunt 电阻

  03 电路对热电偶效应的影响

  如图4,热电偶效应是两端对称的, NSI306 是差分采样,理论上可以抵消热电偶产生的信号源,但实测可以看到明显的热电偶效应。

  分析采样电路,如图5所示,可以看到 RSENSE (检测电阻)的两端共模阻抗并不相同,接 INP 这一端的共模阻抗是大于 INN 端共模阻抗的,当上管导通的时候 INP 端的热电偶通过电感连接到 BUS+,上管关断的时候悬空;当上管导通的时候 INN 端的热电偶直接连接到 BUS+,下管导通的时候直接接到 BUS-。NSI1306 的 INN 端看到的热电偶电压明显小于 INP 端看到的热电偶电压。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图5. 分析采样电路

  结论与建议

  Shunt 电阻作为电流采样中的关键器件,其封装结构和焊接方式直接影响系统的偏移误差表现。

  本文通过实测与理论分析,指出热电偶效应是高温下造成速度波动的重要干扰源,尤其在几字型封装中更为显著。差分采样虽然理论上可抵消热电偶电压,但在实际电路中由于共模阻抗不一致,仍会引入系统性偏移。因此,在高精度电流采样场景中,推荐优先选用热结构对称性更好、焊接界面更少的贴片封装Shunt电阻,以降低温漂与热电势干扰,提升系统稳定性与控制精度。

  NSI1306 作为一款基于纳芯微电容隔离技术的高性能 Σ-Δ 调制器,其差分输入特性与该场景高度适配,能精准对接贴片封装 Shunt 电阻的电流检测需求,通过二阶Σ-Δ调制与同步输出,结合数字滤波可实现高分辨率与信噪比,还具备故障安全功能,进一步保障高精度采样系统的稳定运行。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
连续5年获奖,纳芯微荣膺第二十届“中国芯”“整车芯应用卓越产品”和“优秀技术创新产品”
  近日,以“芯生万物 智算无界”为主题,2025年“中国芯”集成电路产业促进大会暨第二十届“中国芯”优秀产品征集结果发布仪式在珠海横琴圆满举办。活动期间,纳芯微凭借在汽车电子领域的系统级应用能力与技术创新实力,荣膺“中国芯”两大奖项—— “整车芯应用卓越产品” 与 “优秀技术创新产品”,成为业内极少数在同一年同时获此双项荣誉的企业。获奖产品分别为 全集成嵌入式电机控制芯片 NSUC1610-Q1QNR 与 汽车级集成式耐腐蚀绝压传感器 NSPAS5 系列。  “整车芯应用卓越产品”主要表彰对国内汽车工业发展具有突出贡献的车规级芯片。该奖项强调产品的关键参数竞争力、可靠性稳定性、技术路线清晰度及在整车关键域控中的广泛落地情况。获奖产品 NSUC1610 是国内首款高集成度车用小电机驱动芯片,填补国内新能源汽车热管理电机控制处理器“MCU+”芯片空白,已覆盖国内多家主流 OEM。“优秀技术创新产品”旨在表彰具备显著技术突破与创新价值的集成电路产品。NSPAS5 系列具备业界领先的响应速度(<1ms),支持模拟比例 / 绝对输出,量程覆盖 10kPa~400kPa 可定制,并具备高耐腐蚀能力,面向汽车动力系统、热管理等核心应用场景。  自2021年以来,纳芯微连续5年荣获“中国芯”奖项,产品覆盖车规级MEMS绝压压力传感器晶圆NSP163X系列(2021)、高可靠性隔离式双通道栅极驱动器NSI6602系列(2022)、高压半桥栅极驱动器NSD1624(2023)、40V车规级32细分步进电机驱动器NSD8381(2024),标志其在汽车、泛能源领域,围绕应用创新的丰硕成果及市场认可,实现集成电路关键核心技术突破,加速科技创新和产业创新融合。截止2025年上半年,纳芯微汽车电子累计出货量超过9.8亿颗。  关于“中国芯”优秀产品评选  “中国芯”优秀产品评选活动由中国电子信息产业发展研究院主办,自2006年启动以来已成功举办二十届。该活动坚持以应用为导向,持续推动评选机制创新,致力于成为中国集成电路产品与技术发展的“风向标”。  活动始终秉持“以用立业、以用兴业”的发展思路,通过建立公正、专业的中国芯产品推荐机制,为国内集成电路企业搭建起一个展示优秀产品和技术的公益性平台,助力我国集成电路产业实现高质量发展。
2025-11-25 09:37 reading:284
4mm×4mm小尺寸,0.1mΩ超低阻抗,纳芯微发布集成式电流传感器NSM2040系列
  纳芯微正式发布全新的NSM2040系列微小封装、超低阻抗集成式电流传感器。该系列无需外部隔离元件,以轻量化设计、强通流能力和完全集成的 AC/DC 电流检测方案,为汽车和工业系统提供可靠、精准且更易集成的电流检测能力。  在汽车电气化与工业设备高性能化不断提升的背景下,传统分立式电流检测方案在空间、成本与性能方面面临限制。NSM2040 系列凭借 4mm×4mm 微小封装、0.1mΩ 原边阻抗及高达 100A 的持续通流能力,并提供 100Vrms 功能绝缘,显著降低占板面积,缓解发热问题,为大电流检测场景带来更加紧凑、高效的解决方案。  该系列满足AEC-Q100 Grade 0标准,可在-40℃至150℃宽温范围稳定运行,适用于12V/48V电机驱动、域控制器、刹车系统、EPS、低压配电单元、DC-DC低压侧等汽车应用,以及工业电源、低压储能、机器人、两轮车等多元场景。  高精度,抗干扰  NSM2040系列采用差分霍尔检测技术,可有效抑制共模磁场干扰,确保在电源等紧凑产品内部复杂电磁环境中依然保持稳定输出。依托片上温度补偿算法与下线校准工艺,产品无需用户二次编程,即可在全温范围内实现:< ±2.5% 灵敏度误差,<±5mV 零点误差。在抗干扰性能与温度适应性上满足汽车与工业对精度的严苛要求。  高带宽,快速响应  NSM2040 系列具备320 kHz (–3 dB )带宽和1.5 μs的响应时间,能满足高速控制与快速过流保护需求。在电流变化快速的应用中,有助于提升系统响应速度与稳定性,同时简化 BOM 设计。  选型灵活,覆盖更广应用  NSM2040系列提供3.3V或5V 供电版本 ,10~200A电流量程,AC / DC 电流检测,可配置的过流保护输出(75%–200% × IPR)。客户可根据不同系统需求,灵活在安全性与性能之间进行优化。
2025-11-24 10:35 reading:297
双擎驱动:纳芯微SerDes、超声雷达芯片赋能高级辅助驾驶新生态
  当一辆具有自主泊车功能的汽车在狭窄的地下车库中自动完成转向、换挡、制动等一系列动作时,其背后是一场精准快速的感知与决策盛宴——十余颗超声雷达以厘米级精度扫描车位边界,多路高清摄像头实时回传环境影像,这些数据通过高速接口涌入域控制器,最终转化为精准的转向指令。  在这场"感知-决策-执行"的流程闭环中,数据如何高速流动、环境如何精准感知,成为决定高级辅助驾驶系统(ADAS)性能的核心命题。纳芯微两款芯片正扮演着关键角色:SerDes接口芯片构建起高清视频数据传输的"高速公路",AK2超声雷达芯片则成为近距离感知的"精密标尺",共同为ADAS系统打造出安全可靠的技术底座。  数据洪流的"高速公路":车载SerDes技术突破  智能汽车多传感器融合架构下,在一辆L2+等级汽车的高级辅助驾驶系统中,通常搭载8-12颗摄像头、5-7颗毫米波雷达及12颗超声雷达。以摄像头的影像捕捉为例,每秒钟产生的数据量可达GB级别,如何高速、准确、低延时地传输相应的影像数据给到域控制器和中控大屏,并且避免多路信号在传输中相互干扰,成为ADAS系统设计的重要挑战。纳芯微推出的NLS9116单通道加串器和NLS9246四通道解串器SerDes芯片组,正是为破解这一难题而生。  NLS9116和NLS9246是基于HSMT公有协议的芯片组,支持6.4Gbps高速串行链路的输入和输出,相当于为每路摄像头数据开辟了一条"高速快车道"。与国际厂商的私有协议方案相比,HSMT协议支持加串器和解串器的解耦,允许汽车制造商可选择基于HSMT协议的、来自不同厂商的加串器和解串器,从而大大提升了供应链的灵活性和韧性。  模拟性能方面,纳芯微SerDes芯片组的接收机容限相比国际厂商的对标料号提升了100%,意味着即使在汽车电磁环境最复杂的发动机舱附近,信号传输仍能保持稳定。在实车系统测试中,该方案成功实现15米长距离线缆稳定传输,不仅降低了对高价屏蔽线缆的依赖,更进一步压缩了系统布线成本。  NLS9246还集成了TDR时域反射技术,可实时监测线缆健康状态。例如当车辆出现偶发的摄像头信号丢失问题时,工程师可通过TDR功能迅速定位到数十米长线缆中的故障位置,故障排查时间从数小时缩短至十几分钟。这种"预测性维护"能力,使整车厂的售后成本降低显著。  在硬件设计上,加串器NLS9116采用TQFN32封装,解串器NLS9246采用TQFN64封装,与市场主流产品引脚兼容,这意味着车企无需重新设计PCB即可完成方案替换。  近场感知的"精准触觉":AK2超声雷达技术跃迁  如果说SerDes是高级辅助驾驶的"神经网络",那么超声雷达就是车辆的"指尖触觉"。在自动泊车场景中,当车辆以较低的速度接近路沿时,厘米级的测距精度决定了是平稳泊入还是发生剐蹭。纳芯微NSUC1800超声雷达探头芯片,通过技术创新重新定义了近场感知标准。  与传统AK1方案相比,这款芯片最大的突破在于灵活的频率编码能力。想象一下传统超声雷达如同在嘈杂的会议室中,所有人同时用相同频率说话——信号相互干扰导致无法分辨。而NSUC1800支持线性Chirp、非线性Chirp、FSK+Chirp等多种"语言",不同探头可以用独特的"频率方言"交流。  NSUC1800搭载的18位高精度ADC与低噪声接收链路的组合,如同为雷达装上了"高灵敏度麦克风"。在-40℃至105℃的车规温度范围内,LNA噪声电压控制在4nV/√Hz以下,配合优化的NFD近场检测算法,将近场盲区压缩至10cm以内——这相当于能精准识别儿童玩具车等低矮障碍物。而6-7米的远距探测能力,则让系统在进入车位前就能完成车位线识别,泊车成功率大大提升。  在协议兼容性方面,NSUC1800全面兼容DSI3总线标准,可与不同品牌的Master芯片互联互通,验证周期较私有协议大大缩短。  此外,NSUC1800的全链路国产化布局实现了从晶圆生产、测试,到软件工具包的全自主可控,进一步提升了客户供应链的弹性。  生态重构:国产芯片的系统级突破  纳芯微基于ADAS系统推出的SerDes芯片组和超声芯片,展现了国产汽车电子从"单点替代"向"系统领先"的战略突破,主要体现在三个维度:  技术普惠层面:通过国产化供应链与规模化效应,将使原本只用于豪华车型的ADAS功能加速下探。入门车型也能实现与豪华车型相当的自动泊车体验,高级辅助驾驶的普及周期被大幅缩短。  标准制定层面:作为HSMT协议的核心参与者,纳芯微正联手业内合作伙伴,共同推动建立开放互联的产业生态。此前,基于该协议的互联互通测试已经成功实现不同厂商SerDes芯片的通信,车企未来可自由组合最优供应链,摆脱单一供应商依赖。  未来布局层面:纳芯微已启动12.8Gbps SerDes产品研发,采用PAM4调制技术后,将支持更高清的车载显示屏与超高带宽需求;同时,集成AI目标分类功能的下一代超声雷达芯片也在开发中,预计2026年量产。这些产品将为更高等级的自动驾驶提供更强大的传输与感知支撑。  依托在传感器、信号链和电源管理领域的深厚技术积累和全链路产品布局,纳芯微为ADAS系统提供了安全可控、成本优化、快速迭代的国产方案。SerDes与超声雷达芯片的协同应用以及更多相关产品的推出,将帮助越来越多的车企在打造可靠系统的同时,实现供应链自主与成本控制的双重目标,加速ADAS系统的规模化落地。
2025-11-21 13:43 reading:358
感知准才控得稳,纳芯微推出MT911x/MT912x系列线性位置传感器
  纳芯微正式推出新一代线性位置传感器 MT911x与MT912x系列。新品面向无人机、3D打印机、手持稳定器、工业自动化设备等对位置检测精度与响应速度要求严苛的应用场景,兼具高精度、高带宽、低功耗与小型封装优势,为多种位置感知需求提供更可靠、更灵活的解决方案。  在消费与工业位置检测领域,不同设备虽应用各异,但核心性能挑战一致:手持云台、无线打印机等电池设备对低功耗尤为敏感;游戏手柄扳机、磁轴键盘等紧凑设计产品,要求高精度、快速响应及小型化传感器;而在工业自动化场景中,宽温适应与高带宽能力是系统稳定运行和实时控制的关键。  针对不断升级的市场需求,纳芯微MT911x和MT912x系列针对性地给出了适配方案:±1.5%的高线性度确保测量精准;静态电流低于2mA,有效降低整体功耗;高响应速度能够快速捕捉位移变化。同时,MT911x支持双极型选择,MT912x支持单极型选择,可灵活适配不同位移结构满足更广泛的设计需求。  1、精准与响应兼得,捕捉细微位移  MT911x 和MT912x系列集成了先进磁感应技术,具备±20mV失调电压与±1.5%线性度误差,可实现高精度线性位置与角度检测,细微位移与复杂角度变化均能准确识别。30kHz带宽确保高速运动场景下的实时响应,无延迟、无失真,为动态应用提供更顺滑的控制体验。  2、低功耗,助力无线续航更进一步  在保持高带宽输出的同时,新系列产品将静态电流控制在 2mA 以内,显著降低功耗。对于依赖电池供电的设备,这意味着更长的续航表现。低压工艺设计进一步平衡了功耗与精度,实现低功耗下的稳定高精度测量。  3、小体积封装,适配紧凑空间设计  为满足设备结构小型化趋势,MT911x 和MT912x系列提供 DFN1616、SOT23、TO-92S 等多种小尺寸封装,便于在高度集成或空间受限的设计中灵活布局,适用于紧凑型消费类产品和结构复杂的工业设备。
2025-11-18 11:08 reading:311
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code