纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

Release time:2025-10-13
author:AMEYA360
source:纳芯微
reading:641

  在伺服驱动器的相电流采样中,速度波动是影响控制精度的关键问题,其根源往往与 Shunt 电阻的热电偶效应相关。本文以纳芯微 NSI1306 隔离 ΣΔADC 的应用为例,首先剖析 Shunt 电阻误差如何引发速度波动,再深入解析金属热电偶效应的形成机理;随后对比几字型与贴片封装等不同 Shunt 电阻的表现差异,以及探讨采样电路对热电偶效应的放大或抑制作用;最后提出减小该效应的实用设计建议,为提升相电流采样精度提供参考。

  01 Shunt 电阻误差的影响

  速度波动是伺服驱动器性能的重要指标,它反映的是转矩波动,而转矩波动会导致控制精度下降。

  伺服驱动器通过角度编码器读取速度和角度,并通过相电流检测读取电流,采样信息的准确性决定了控制的效果。以下分析侧重电流采样。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图1. NSI1306 电路示意

  相线电流采样可以真实反映电机的电流,而低边采样存在窗口期,需要重构相电流,容易引入误差。NSI1306 作为隔离 ΣΔADC,输出码流,适用于相线电流采样;同时 MCU 可根据控制需求灵活配置抽取率,在精度与响应速度之间取得平衡。

  相电流采样的误差主要来自 Shunt 电阻和 NSI1306,下文将重点讨论 Shunt 电阻带来的误差。

  通过电阻的规格书,电阻的精度和温漂属于增益误差;此外,还存在由热电偶效应引起的偏置(offset)误差。增益误差主要影响的是转矩控制精度,电流的 offset 误差会引入一个电周期一次的速度波动。

  在零电流时会校准一次相电流的 offset,运行过程中会计算每一相电流的 offset(一个周期的值相加)并且补偿掉,如果是采样数据不准,引入了 offset,那么经过软件的补偿,反而会导致真正的相电流 offset,破坏电流波形的对称性,引入谐波分量,改变磁场分布,从而导致电机转矩输出不均匀,进而产生转矩波动,导致速度波动。相电流偏移的软件补偿是一个电周期补偿一次,所以速度波动也是一个电周期一次。

  02 金属的热电偶效应

  在实际场景中,伺服驱动工作一段时间后速度波动变大,FFT 分析显示为一个电周期一次的速度波动,这是相电流的 offset 偏移造成的。

  对 PCB 加热,速度波动加剧,以此推测该 offset 和温度强相关。经测试,更换 2512 贴片封装 Shunt 电阻后恢复正常,排查出是几字型 Shunt 电阻的问题。

  加热对比测试,几字型 Shunt 电阻和贴片封装 Shunt 电阻的偏差都很小,并且电阻温漂改变的是增益,并不是 offset 。

  加上焊锡后,如图2,再加热测试,几字型 Shunt 电阻的偏差变得很大。交换电桥的正负极,偏差呈现相反方向的变化,贴片封装 Shunt 电阻偏差还是很小。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图2. 几字型 Shunt 加上焊锡

  根据实验结果,温度升高后,并不是电阻自身的阻值发生了较大的变化,而是存在比较大的热电偶效应。

  热电偶效应如图3所示,不同的金属的自由电子的密度不同,在 AB 两金属的接触处,会发生自由电子的扩散现象。电子将从密度大的金属(A)移向密度小的金属(B),使 A 带正电, B 带负电,直至 AB 之前形成足够大的电场阻止电子扩散,达到动态平衡。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图3. 热电偶效应

  从公式可以看出,热电偶效应产生的电压源大小和温度有关,和金属的材质有关。

  在电路中,Shunt 电阻的热电偶等效示意如图4,对于几字型 Shunt 电阻和贴片封装 Shunt 电阻, V3、V4的位置是一样的,V1、V2位置略有不同,但很近。因此可以认为温度都是相等的。对热电偶效应有影响的只有金属材质,两者对比如表 1 所示。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

  图4. Shunt电阻的热电偶等效示意

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

表1. 几字型 Shunt 电阻和贴片封装 Shunt 电阻

  03 电路对热电偶效应的影响

  如图4,热电偶效应是两端对称的, NSI306 是差分采样,理论上可以抵消热电偶产生的信号源,但实测可以看到明显的热电偶效应。

  分析采样电路,如图5所示,可以看到 RSENSE (检测电阻)的两端共模阻抗并不相同,接 INP 这一端的共模阻抗是大于 INN 端共模阻抗的,当上管导通的时候 INP 端的热电偶通过电感连接到 BUS+,上管关断的时候悬空;当上管导通的时候 INN 端的热电偶直接连接到 BUS+,下管导通的时候直接接到 BUS-。NSI1306 的 INN 端看到的热电偶电压明显小于 INP 端看到的热电偶电压。

纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差

图5. 分析采样电路

  结论与建议

  Shunt 电阻作为电流采样中的关键器件,其封装结构和焊接方式直接影响系统的偏移误差表现。

  本文通过实测与理论分析,指出热电偶效应是高温下造成速度波动的重要干扰源,尤其在几字型封装中更为显著。差分采样虽然理论上可抵消热电偶电压,但在实际电路中由于共模阻抗不一致,仍会引入系统性偏移。因此,在高精度电流采样场景中,推荐优先选用热结构对称性更好、焊接界面更少的贴片封装Shunt电阻,以降低温漂与热电势干扰,提升系统稳定性与控制精度。

  NSI1306 作为一款基于纳芯微电容隔离技术的高性能 Σ-Δ 调制器,其差分输入特性与该场景高度适配,能精准对接贴片封装 Shunt 电阻的电流检测需求,通过二阶Σ-Δ调制与同步输出,结合数字滤波可实现高分辨率与信噪比,还具备故障安全功能,进一步保障高精度采样系统的稳定运行。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
纳芯微携手联合动力打造新一代汽车电驱平台芯片方案
  近日,纳芯微宣布与领先的智能电动汽车部件及解决方案提供商——联合动力(Inovance Automotive)深度合作的两颗高集成度芯片——隔离采样及逻辑ASC集成芯片已在联合动力新一代电驱平台正式量产,定制的解决方案以更高的芯片集成度和更优化的性能,支持新能源汽车电驱系统的集成化演进并助力满足更高等级的功能安全设计。  传统分立式电驱系统部件分散、线束冗余,普遍存在体积大、损耗高、响应慢及可靠性受限等问题,已难以适配新能源汽车电驱系统的持续升级需求。基于市场对长续航与强动力的核心诉求,电驱系统正加速向多合一、高集成方向演进。在此趋势下,芯片不仅需要实现更高程度的功能集成,更需在有限空间内兼顾精度、可靠性和功能安全冗余,同时为系统设计保留足够的灵活度。  基于对电机控制器产品系统架构和功能安全技术十余年的深刻理解,联合动力前瞻性地定义了隔离采样及逻辑ASC集成芯片功能与性能需求。在此次定制合作中,纳芯微创新性地将高压 LDO、隔离采样放大器、隔离比较器集成在单颗隔离采样芯片中,大大减少了外围器件数量,支持电驱系统实现高精度隔离电压采样、快速过欠压保护及小型化设计。此外,该方案中由纳芯微定制的逻辑 ASC 芯片集成有多个逻辑器件,并支持频率检测功能,可满足接口相关逻辑的集中处理,从而简化了接口设计,在提高系统集成度,实现小型化的同时,降低了BOM成本,助力实现电驱/主驱系统功能安全相关架构的优化。  从“分立”到“集成”,将成熟的分立电路“芯片化”,能够带来极简架构的价值跃迁:  质量跃升:架构的简化和元器件数量的大幅减少,直接降低了硬件的潜在失效率,使产品质量水平迈上新台阶。  尺寸优化:高度集成化显著降低了PCB占用面积,为电控产品的小型化和功率密度提升创造了更大空间。  加速开发:标准化的芯片方案取代了复杂的分立电路设计和调试,极大地提升了开发效率,缩短了产品上市周期。  联合动力研发中心总监郑超表示:“电驱正迈入高集成时代,每一颗芯片的技术升级,都能为我们带来体系化创新价值。本次与纳芯微的合作,深度融合了双方在电驱系统与汽车芯片领域的优势,更标志着联合动力的能力实现了关键进阶:我们不仅能够开发性能领先的电控产品,更具备了在源头参与并共同定义产品架构与核心芯片的技术实力。我们期待与纳芯微携手,共同定义下一代电驱技术平台,为车厂提供更具竞争力的系统解决方案。”  纳芯微产品线总监叶健表示:“纳芯微与联合动力具备扎实的合作基础。本次合作的深化,既是客户对纳芯微产品与技术实力的认可,也是我们围绕应用创新战略的生动实践。纳芯微将充分依托在隔离和接口芯片领域的技术专长和长期耕耘,提供高精度、高性能、高可靠的芯片方案,助力联合动力打造全新电驱平台。”  纳芯微“隔离+”体系已形成覆盖数字隔离器、隔离采样、隔离驱动、隔离电源及隔离接口的完整产品布局,截至2025年10月,“隔离+”芯片累计出货量达 20 亿颗。此外,纳芯微还可提供覆盖 CAN,LIN,SerDes,逻辑IC,电平转换等完整的汽车接口芯片,为客户提供一站式的汽车级隔离和接口解决方案。纳芯微在新能源汽车三电系统领域,已与近数百家零部件供应商建立合作关系,为主驱逆变器、车载充电机(OBC)、电池管理系统(BMS)等应用提供包括传感器、信号链、电源管理、MCU在内的芯片解决方案。
2026-01-16 15:31 reading:273
纳芯微推出MT932x线性位置传感器,700μA超低功耗与5kHz高带宽
  今日,纳芯微宣布推出低压线性位置传感器MT932x系列。作为公司在线性位置传感器低压平台的重要补充,该系列在实现700μA超低功耗的同时,提供最高5kHz的采样带宽,在保持高精度位置检测的前提下,为智能交互与运动控制类设备提供兼顾能效与性能的解决方案。  低功耗与高带宽并存,提升系统能效  在正常工作状态下,MT932x系列工作电流低至700μA,显著低于行业主流方案,尤其适用于无线游戏手柄、VR 手柄等电池供电的消费类终端设备,可有效延长待机与使用时间,降低充电频次,并提升整体便携性与续航表现。在超低功耗设计的基础上,MT932x系列仍可提供5kHz采样带宽,能够对微小位移变化进行实时、连续捕捉,确保动态控制过程中的响应速度与稳定性。这一特性使其在云台控制、摇杆输入、实时运动跟踪等应用中,可实现更加自然、流畅且一致的交互体验。  高精度与一致性设计,保障长期稳定运行  MT932x系列具备±1.5% 的线性度,以及 ±20mV 的失调电压性能,有助于提升位置反馈计算精度,增强系统整体控制稳定性。同时,其良好的一致性表现可降低终端产品的校准复杂度,确保输出结果可预测、低漂移、低误差,适用于对位置精度和长期稳定性要求较高的应用场景,如 3D 打印设备、液位检测系统等。  小型封装与多灵敏度配置,增强设计灵活性  MT932x系列提供DFN1616、SOT23等小型封装选项,便于在空间受限的终端产品中实现高性能集成,符合消费电子产品小型化的发展趋势。同时,系列产品支持多种灵敏度配置,客户可根据不同机械结构、磁场间距及工作条件灵活选型,降低设计约束,加快产品开发进程。
2025-12-26 14:30 reading:392
纳芯微推出NSI1611系列隔离电压采样芯片
  纳芯微今日宣布正式推出全新一代隔离电压采样芯片NSI1611系列。作为纳芯微经典产品NSI1311系列的全面升级,NSI1611系列基于其领先的电容隔离技术,在性能与适配性上实现双重突破。  其核心创新在于支持0~4V宽压输入的同时,能够保持1Gohm的高阻输入,可显著提升电压采样的精度与抗干扰能力;同时部分料号亦兼容传统0~2V输入,为客户提供更灵活的器件选择。  NSI1611系列包含差分输出的NSI1611D和单端输出的NSI1611S。其中,差分输出均为固定增益,单端输出则提供固定增益和可调比例增益两类选项,进一步满足不同系统架构与设计需求。  在新能源汽车与工业自动化领域,对高压系统采样提出了“高精度、高灵活度”的严苛要求,隔离电压采样芯片的性能迭代与场景适配能力已成为行业竞争关键。全新NSI1611系列通过创新的宽压+高阻输入与灵活输出配置两大特点,能够同时支持新项目设计与存量平台升级,为新能源汽车主驱逆变器、车载充电机(OBC)等汽车应用,以及伺服、变频器、电机驱动等工业应用带来更优的器件选择。  创新宽压+高阻输入  精度抗扰双重提升  以新能源汽车主驱系统为例,随着其母线电压进一步提升至800V,以及SiC/GaN器件的应用,控制系统对电压采样的精度及抗干扰能力有了更高的要求。  市面上多数隔离电压采样芯片的输入范围为0~2V,而NSI1611创新性地在保持1Gohm高阻输入的同时,将其拓展至0~4V,突破前代及行业同类产品的输入范围限制,带来精度和抗干扰的双重升级,在适配更高母线电压的同时,降低了设计复杂度和开发周期。  抗干扰能力增强:NSI1611采用宽压输入时,参考地的噪声对输入信号的干扰比例直接减半。结合NSI1611内部的电路优化,其芯片EOS能力大幅提升,且EMI可通过CISPR 25 Class 5等级测试,CMTI高达150kV/μs。在新能源汽车主驱、工业变频器等高开关频率的复杂电磁环境中,宽压输入能够保证采样信号更纯净,大大提升了系统运行的稳定性,降低终端应用的失效风险。  采样精度再升级:0~4V的宽压输入范围可扩大分压比,结合优化的信号调理设计,在保持高阻输入的同时显著降低输入误差,让测量数据更接近真实电压值,为系统的精准控制提供可靠数据;在采样误差测试中,相比前代产品NSI1311系列,NSI1611系列凭借更宽的输入范围在系统的低压区域取得了较大的精度优势,在满量程800V母线电压系统中,当输入电压100V时,NSI1611的采样误差相比NSI1311降低超30%,误差低于1.2%。  NSI1611和NSI1311的采样误差随输入电压变化曲线  单端/差分输出灵活选择  简化设计更高效  凭借深刻的系统级理解,NSI1611系列基于前代产品的应用痛点,全新加入单端输出版本,并且提供“固定增益/比例增益”双版本选择,适配多元化的系统配置需求,可帮助客户简化选型和设计:  简化设计、降低BOM成本:NSI1611的单端输出信号可直接接入MCU的ADC接口,彻底省去了传统差分输出方案所必需的后级运放及调理电路,不仅直接降低了BOM成本,还简化了PCB布局与器件选型复杂度,为紧凑型和高功率密度应用提供了更优的解决方案。  增益自适应适配多元需求:比例增益版本(NSI1611S33/NSI1611S50)可通过REFIN引脚进行配置,使输出增益匹配后端ADC的满量程输入范围,最大化利用ADC的动态范围,提升了整体信号链的有效位数与采样精度,进一步满足多元化的高精度测量需求。  同时,NSI1611系列亦保留差分输出版本NSI1611D02,与纳芯微NSI1311完全引脚兼容,客户无需修改PCB即可实现无缝升级或跨品牌替换,显著降低迁移成本。  多项参数优化  性能全面升级  随着系统功率密度的提升,对器件耐压能力、采样精度、EMI性能等提出了更高的要求。NSI1611针对相关关键参数进行了优化,在全面升级器件可靠性和性能的同时,亦优化了器件成本,为客户提供“性能-成本-可靠性”兼得的选择。  车规级可靠性保障:NSI1611系列的车规版本满足AEC-Q100 Grade 1要求,工作温度覆盖-40℃~125℃,隔离耐压高达5700Vrms,最大浪涌隔离耐压Viosm达10kV,适配汽车高温高压严苛环境,可在极端场景下确保隔离的可靠性。  精度参数全面进阶:NSI1611系列的输入偏置电压Vos(Offset Voltage)指标优化至±0.8mV,相较于前代NSI1311同规格产品的±1.5mV,精度表现实现巨大提升;此外,增益温漂(Gain Drift)从前代的45ppm/℃优化至40ppm/℃,全温区精度稳定性进一步提升;非线性误差、温漂(Offset Drift)维持在行业优异水平,有效加快了系统开发的标定流程;同时,NSI1611系列的采样带宽达到330kHz,适配SiC和GaN等新一代高频开关器件控制,满足高动态响应需求。  功耗优化更节能:相比前代产品,NSI1611系列功耗表现进一步优化,助力终端产品降低能耗。对比前代,NSI1611的Idd1由11.4mA降低至7.2mA,Idd2由6.3mA降低至4.7mA(均为典型值Typ.),NSI1611系列的整体综合功耗下降约33%,可助力客户打造更节能的汽车电子系统,提高新能源汽车的续航里程。  EMI表现更优异:NSI1611基于时钟信号隔离通道复用技术,大幅优化了EMI表现。在200MHz到1000MHz频段的EMI测试中,NSI1611的辐射发射(RE)指标在水平方向和垂直方向均保持10dB以上裕度(3dB~6dB裕度即可满足工程需求),可轻松通过CISPR 25 Class 5认证。面对汽车主驱、OBC等复杂电磁环境,可以减小对系统其他部件的电磁干扰,有效减少系统电磁兼容整改工作量,加快产品上市进度。  封装和选型  NSI1611系列选型表  丰富的“隔离+”产品  满足多元化应用需求  凭借在隔离技术方面的积累和领先优势,纳芯微提供涵盖数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等一系列 “隔离+”产品。纳芯微正以全生态“隔离+”产品矩阵,为高压系统筑造安全可靠的防线:  “+”代表增强安全:纳芯微“隔离+”产品提供超越基本隔离标准的安全等级,为客户系统构筑更坚固的高低压安全边界。  “+”代表全产品生态:纳芯微以成熟的电容隔离技术IP为核心,拓展出包括数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等完整产品组合,为客户提供隔离器件的一站式解决方案。  “+”代表深度赋能应用:纳芯微“隔离+”产品可满足电动汽车高压平台、大功率光储充系统,以及高集成、高效率AI服务器电源等场景的核心需求,实现系统级安全、可靠与高效。
2025-12-17 16:06 reading:467
纳芯微“隔离+”再获权威认可|两款车规芯片斩获中国汽车芯片创新成果奖
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code