MOS管封装类型及选型

发布时间:2024-02-26 13:39
作者:AMEYA360
来源:网络
阅读量:2407

  选择到一款正确的MOS管,可以很好地控制生产制造成本,最为重要的是,为产品匹配了一款最恰当的元器件,这在产品未来的使用过程中,将会充分发挥其“螺丝钉”的作用,确保设备得到最高效、最稳定、最持久的应用效果。

MOS管封装类型及选型

  那么面对市面上琳琅满目的MOS管,该如何选择呢?下面,我们就分7个步骤来阐述MOS管的选型要求。

  首先是确定N、P沟道的选择

  MOS管有两种结构形式,即N沟道型和P沟道型,结构不一样,使用的电压极性也会不一样,因此,在确定选择哪种产品前,首先需要确定采用N沟道还是P沟道MOS管。

  在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。

  当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。

  要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。

  第二步是确定电压

  额定电压越大,器件的成本就越高。从成本角度考虑,还需要确定所需的额定电压,即器件所能承受的最大电压。根据实践经验,额定电压应当大于干线电压或总线电压,一般会留出1.2~1.5倍的电压余量,这样才能提供足够的保护,使MOS管不会失效。

  就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。由于MOS管所能承受的最大电压会随温度变化而变化,设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。

  此外,设计工程师还需要考虑其他安全因素:如由开关电子设备(常见有电机或变压器)诱发的电压瞬变。另外,不同应用的额定电压也有所不同;通常便携式设备选用20V的MOS管,FPGA电源为20~30V的MOS管,85~220V AC应用时MOS管VDS为450~600V。

  第三步为确定电流

  确定完电压后,接下来要确定的就是MOS管的电流。需根据电路结构来决定,MOS管的额定电流应是负载在所有情况下都能够承受的最大电流;与电压的情况相似,MOS管的额定电流必须能满足系统产生尖峰电流时的需求。

  电流的确定需从两个方面着手:连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。

  选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,也就是导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的导通电阻RDS(ON)所确定,并随温度而显著变化。

  器件的功率损耗PTRON=Iload2×RDS(ON)计算(Iload:最大直流输出电流),由于导通电阻会随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。

  对系统设计人员来说,这就需要折中权衡。

  对便携式设计来说,采用较低的电压即可(较为普遍);而对于工业设计来说,可采用较高的电压。需要注意的是,RDS(ON)电阻会随着电流轻微上升。

  技术对器件的特性有着重大影响,因为有些技术在提高最大VDS(漏源额定电压)时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。

  在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发的SupeRFET技术,针对RDS(ON)的降低而增加了额外的制造步骤。

  这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。

  这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。

  第四步是确定热要求

  在确定电流之后,就要计算系统的散热要求。设计人员必须考虑两种不同的情况:最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据,比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

  器件的结温等于最大环境温度加上热阻与功率耗散的乘积,即结温=最大环境温度+(热阻×功率耗散)。根据这个方程可解出系统的最大功率耗散=I2×RDS(ON)。

  由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。

  雪崩击穿(指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加)形成的电流将耗散功率,使器件温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。

  计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。对最终用户而言,这意味着要在系统中采用更大的封装件。

  第五步是确定开关性能

  选择MOS管的最后一步是确定其开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。因为在每次开关时都要对这些电容充电,会在器件中产生开关损耗;MOS管的开关速度也因此被降低,器件效率随之下降;其中,栅极电荷(Qgd)对开关性能的影响最大。

  为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff),进而推导出MOS管开关总功率:Psw=(Eon+Eoff)×开关频率。

  第六步为封装因素考量

  不同的封装尺寸MOS管具有不同的热阻和耗散功率,需要考虑系统的散热条件和环境温度(如是否有风冷、散热器的形状和大小限制、环境是否封闭等因素),基本原则就是在保证功率MOS管的温升和系统效率的前提下,选取参数和封装更通用的功率MOS管。

  常见的MOS管封装有:

  ①插入式封装:TO-3P、TO-247、TO-220、TO-220F、TO-251、TO-92;

  ②表面贴装式:TO-263、TO-252、SOP-8、SOT-23、DFN。

  不同的封装形式,MOS管对应的极限电流、电压和散热效果都会不一样,简单介绍如下。

  TO-3P/247:是中高压、大电流MOS管常用的封装形式,产品具有耐压高、抗击穿能力强等特点,适于中压大电流(电流10A以上、耐压值在100V以下)在120A以上、耐压值200V以上的场所中使用。

  TO-220/220F:这两种封装样式的MOS管外观差不多,可以互换使用,不过TO-220背部有散热片,其散热效果比TO-220F要好些,价格相对也要贵些。这两个封装产品适于中压大电流120A以下、高压大电流20A以下的场合应用。

  TO-251:该封装产品主要是为了降低成本和缩小产品体积,主要应用于中压大电流60A以下、高压7N以下环境中。

  TO-92:该封装只有低压MOS管(电流10A以下、耐压值60V以下)和高压1N60/65在采用,主要是为了降低成本。

  TO-263:是TO-220的一个变种,主要是为了提高生产效率和散热而设计,支持极高的电流和电压,在150A以下、30V以上的中压大电流MOS管中较为多见。

  TO-252:是目前主流封装之一,适用于高压在7N以下、中压在70A以下环境中。

  SOP-8:该封装同样是为降低成本而设计,一般在50A以下的中压、60V左右的低压MOS管中较为多见。

  SOT-23:适于几A电流、60V及以下电压环境中采用,其又分有大体积和小体积两种,主要区别在于电流值不同。

  DFN:体积上,较SOT-23大,但小于TO-252,一般在低压和30A以下中压MOS管中有采用,得益于产品体积小,主要应用于DC小功率电流环境中。

  第七步要选择好品牌

  MOS管的生产企业很多,大致说来,主要有欧美系、日系、韩系、台系、国产几大系列。

  欧美系代表企业:IR、ST、仙童、安森美、TI、PI、英飞凌等;

  日系代表企业:东芝、瑞萨、新电元等;

  韩系代表企业:KEC、AUK、美格纳、森名浩、威士顿、信安、KIA等;

  台系代表企业:APEC、CET;

  国产代表企业:吉林华微、士兰微、华润华晶、东光微、深爱半导体等。

  在这些品牌中,以欧美系企业的产品种类最全、技术及性能最优,从性能效果考虑,是为MOS管的首选;以瑞萨、东芝为代表的日系企业也是MOS管的高端品牌,同样具有很强的竞争优势;这些品牌也是市面上被仿冒最多的。另外,由于品牌价值、技术优势等原因,欧美系和日系品牌企业的产品价格也往往较高。

  韩国和中国台湾的MOS管企业也是行业的重要产品供应商,不过在技术上,要稍弱于欧美及日系企业,但在价格方面,较欧美及日系企业更具优势;性价比相对高很多。

  而在中国大陆,同样活跃着一批本土企业,他们借助更低的成本优势和更快的客户服务响应速度,在中低端及细分领域具有很强的竞争力,部分实现了国产替代;目前也在不断冲击高端产品线,以满足本土客户的需求。另外,本土企业还通过资本运作,成功收购了安世半导体等国际知名的功率器件公司,将更好地满足本土对功率器件的需求。

  小结

  小到选N型还是P型、封装类型,大到MOSFET的耐压、导通电阻等,不同的应用需求千变万化,工程师在选择MOS管时,一定要依据电路设计需求及MOS管工作场所来选取合适的MOS管,从而获得最佳的产品设计体验。当然,在考虑性能的同时,成本也是选择的因素之一,只有高性价比的产品,才能让工程师设计的产品在品质与收益中达到平衡。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
如何区分MOS管的三个极
  MOS管在现代电子电路中应用广泛准确区分MOS管的三个极——源极(Source)、漏极(Drain)、栅极(Gate),是电路设计和实际应用中的基础环节。下面就一块来了解MOS管的三个极该如何区分吧!  一、MOS管的结构及极的定义  MOS管主要有N沟(N-MOS)和P沟(P-MOS)两类,其内部结构类似,但极的定义一致。三极分别为:  源极(Source, S)  是载流子的输入端,三极管中相当于发射极,电子或空穴由此流入或流出。  漏极(Drain, D)  是载流子的输出端,对应普通三极管的集电极,电流由源极流向漏极(N沟为电子,P沟为空穴)。  栅极(Gate, G)  控制通断的输入端,相当于三极管的基极。栅极本身无直流电流流过,仅通过施加电压来形成电场,从而调节源漏间的导通。  二、外观与引脚辨识方法  1. 常见封装  TO-92小功率管(直插式)  平面朝前,自左至右:栅极(G)- 漏极(D)- 源极(S)  TO-220等功率较大封装(直插式/贴片式)  正面(正字面)朝前,自左至右:栅极(G)- 漏极(D)- 源极(S),背后贴片通常为漏极(D)  SOT-23等三脚贴片封装  正对引脚,对应的Datasheet上通常有详细标识,常见引脚顺序为:1-G、2-S、3-D  不同厂商和封装存在差异,实际以原厂数据手册(Datasheet)为准。  2. 电路符号识别  栅极(G,Gate):  与其他两极正交,并不与“主体”相接触,通常画在符号的一侧边上。  漏极(D,Drain):  位于来源方向的箭头端,经历“通道”流向负载的那一段。  源极(S,Source):  有向通道内的三角箭头,N沟MOS箭头朝内,P沟MOS箭头朝外。  三、实际区分与检测技巧  1. 通过万用表测量(栅极-漏极、栅极-源极间应为绝缘)  栅极-源极、栅极-漏极:均为绝缘状态(开路)。  源极-漏极测量:根据MOS类型,通过测量正反阻值,且N-MOS、P-MOS特征不同。如N沟MOS“导通方向”为源→漏。  2. 阅读Datasheet  查阅具体器件的数据手册,能准确找到引脚定义图,是最保险的方法。  四、典型应用场合的极的连接  开关电路:  栅极接升压(N-MOS)或降压(P-MOS)控制信号,源极接地或电源,漏极连接负载。  放大电路:  栅极接输入信号,通过漏极输出,源极接稳压/偏置。  区分MOS管的三个极——源极、漏极、栅极,是电路设计和装配的基础环节。具体可通过外观引脚顺序、符号结构、万用表测量和数据手册查阅等多种方式进行判别。
2025-09-17 16:03 阅读量:302
一文了解MOS管
行业新闻

一文了解MOS管

  从计算机芯片到电源管理,从音频放大到高速通信,MOS管的广泛应用推动了现代电子工业的繁荣。已经成为现代电子器件最重要的基础之一。  MOS管的基本原理  MOS管,全称Metal-Oxide-Semiconductor Field Effect Transistor(金属氧化物半导体场效应管),属于场效应晶体管的一种。它的工作原理基于电场调控导通通道的原理,通过栅极施加电压,控制源极与漏极之间的电流。  简单来说,MOS管由源极(Source)、漏极(Drain)和栅极(Gate)三部分组成。核心结构包括一层薄薄的氧化层(通常是二氧化硅,SiO₂)和在其上的金属或多晶硅栅极。当在栅极施加电压时,会在半导体基体内部形成导电通道,从而实现源极到漏极的导通或截止。  作用机理  栅极电压形成的电场:栅极电压相对于源极产生电场,调节半导体材料中的载流子浓度。  导通通道的控制:当栅极电压超过一定阈值电压(Vth)时,导电通道在半导体基体内形成,实现源极到漏极的导通。  电流控制:通电状态由栅极电压决定,而不是由源极电压控制,这也是MOSFET的高输入阻抗的原因。  MOS管的结构组成  典型的MOS管结构主要包括以下几个部分:  源极(S):供电子或空穴进入导电通道的端口。  漏极(D):导通的电子或空穴离开的端口。  栅极(G):控制导通状态的电极。  衬底(Substrate):晶体管的基础半导体连接,通常是硅材料。  氧化层(Oxide Layer):在栅极和半导体基体之间形成的绝缘层,通常为二氧化硅。  漂移区和源/漏区:用以形成PN结,确保稳定的导通和截止特性。  在制造过程中,通常采用硅基础上,通过氧化层沉积、光刻、扩散或掺杂等工艺,形成所需结构。  MOS管的类型分类  MOSFET可按照不同标准进行分类,主要包括以下几种:  1. 按工作方式分类  N沟MOSFET(NMOS):通过N型半导体形成导电通道,电子载流子为主要载流子,导通速度快,应用广泛。  P沟MOSFET(PMOS):通过P型半导体形成导电通道,空穴为主要载流子,相比NMOS速度较慢,但具有不同的电路特性。  2. 按极性分类  增强型:在没有栅极电压时,器件处于截止状态,施加正向栅极电压后导通。  耗尽型:在没有栅极电压时已导通,通过加偏压可使器件截止。  3. 按沟道结构分类  平面MOSFET:传统的结构,沟道为平面型。  斗篷MOSFET(FinFET):采用三维结构,沟道呈“鳍”状,增大沟道面积,改善性能。  4. 按导通方式分类  场效应晶体管(MOSFET):最常用。  绝缘栅晶体管(IGBT):结合了MOSFET和 BJT(双极型晶体管)优点,适合高电压、大功率场合。  MOS管的工作特性  1. 阈值电压(Vth)  是指栅极电压达到的临界值,使导通通道形成的最低电压。不同类型、结构的MOSFET其阈值电压不同,影响电路设计。  2. 导通区域  线性区(三极区):栅极电压高于阈值,漏极-源极电压较低,导通,但漏极电流随漏极-源极电压线性变化。  饱和区(数字区):漏极-源极电压高于某一值,电流趋于稳定,是数字电路中的主要工作区域。  3. 转移特性  描述在一定漏极-源极电压下,栅极电压变化引起的漏极电流变化关系。对于强化型N沟MOSFET,其转移特性可以用阈值电压作为参数描述。  4. 漏极-源极电阻  在导通状态下,MOSFET的导通电阻较低,使其成为理想的开关器件。  5. 开关速度  由寄生电容等参数决定,是高速电子电路的基础。  MOS管的应用领域  MOS管广泛应用于各种电子电路中,主要涵盖:  1. 数字电路  微处理器:作为基本开关单元构建逻辑门。  存储器:如DRAM、SRAM中的存储单元。  数字信号处理器(DSP):实现高速开关和运算。  2. 模拟电路  放大器:运用MOSFET的线性区进行信号放大。  电源管理:开关电源、DC-DC转换器。  传感器接口:MOSFET在模拟信号调节中的作用。  3. 电力电子  电机驱动:高效率的开关控制。  逆变器:转换直流为交流能源。  4. 其他特殊应用  光电子、传感器接口:由于其高输入阻抗和快响应。  智能芯片:在智能手机、平板、车载电子中的广泛应用。  MOS管作为现代电子产业的基石器件,以其优异的电性能和广泛的应用成为电子系统中的“核心血管”。从早期的数字电路到现在的智能设备,MOSFET的技术不断革新和优化,推动着电子技术的持续发展。
2025-07-07 14:28 阅读量:719
一文了解常见的几种MOS管驱动电路
  MOS管最显著的特性是开关特性好,因此被广泛应用在需要电子开关的电路中。MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。  下面给大家介绍下平时在工作中经常会用到的一些MOS管驱动电路。  01直接驱动  电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式。但使用这种驱动方式,需要注意以下几点。  (1)了解电源IC手册的最大驱动峰值电流,因为不同芯片制造工艺不同,驱动能力可能不同。  (2)了解MOS管的寄生电容,寄生电容越小越好。因为寄生电容越大,MOS管导通时要的能量就越大,如果电源IC没有比较大的驱动峰值电流,MOS管导通的速度会受到很大影响。  IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择。如果驱动能力不足,上升沿可能出现高频振荡,也不能无限减小Rg。  02推挽驱动  当选择MOS管寄生电容比较大,电源IC内部驱动能力不足时,可以采用推挽驱动。常使用图腾柱电路增加电源IC驱动能力,一般应用在电源IC的驱动能力较弱的电路上。另外,图腾柱电路也有加快关断的作用。  推挽驱动电路通过提升电流提供能力,迅速完成对于栅极输入电容电荷的充电过程。这种拓扑增加了导通所需要的时间,但是减少了关断时间,开关管能快速开通且避免上升沿的高频振荡。  03快速关断  MOS管一般都是慢开快关。在关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压快速泄放,保证开关管能快速关断。  为使栅源极间电容电压的快速泄放,常在驱动电阻上并联一个电阻和一个快恢复二极管,如上图所示,其中D1常用的是快恢复二极管。这使得MOS管的关断时间大大缩短,同时减小关断时的损耗。Rg2在此处的作用是限流,防止把电源IC给烧掉。  比较常见的是用三极管来泄放栅源极间电容电压。如果Q1的发射极没有电阻,当PNP三极管导通时,栅源极间电容短接,达到最短时间内把电荷放完,最大限度减小关断时的交叉损耗。栅源极间电容上的电荷泄放时电流不经过电源IC,提高了电路可靠性。  04隔离驱动  为了满足高端MOS管的驱动或是满足安全隔离,经常会采用变压器驱动。下图中使用的R1目的是抑制PCB板上寄生的电感与C1形成LC振荡,C1的目的是通过交流,隔开直流,同时也能防止磁芯饱和。  除开以上介绍的几种常见的驱动电路外,还有其他形式的驱动电路,大家可以结合具体情况选择最合适的驱动。
2025-05-13 10:52 阅读量:657
MOS管选型指南:如何选择合适的MOS管?
       MOS管(Metal Oxide Semiconductor Field Effect Transistor)是一种常用的半导体器件,具有低开关损耗、高开关速度、低驱动电压等优点,被广泛应用于电源管理、驱动电路、放大器等领域。但是,市面上MOS管品种繁多,如何选择合适的MOS管成为了工程师们面临的难题。本文将为您介绍MOS管选型的几个关键要素,帮助您选择合适的MOS管。  1.电压和电流  MOS管的电压和电流是选型时需要考虑的重要因素。电压是指MOS管能承受的较大电压,一般分为栅极-源极电压(Vgs)和漏极-源极电压(Vds),选型时需要根据实际应用场景选择合适的电压等级。电流是指MOS管能承受的较大电流,也是选型时需要考虑的重要因素,需要根据实际应用场景选择合适的电流等级。  2.导通电阻  导通电阻是指MOS管在导通状态下的电阻大小,也是选型时需要考虑的重要因素。导通电阻越小,MOS管的导通能力越强,同时也会带来更小的开关损耗。因此,在选型时需要根据实际应用场景选择合适的导通电阻。  3.开关速度  开关速度是指MOS管从关断到导通或从导通到关断的时间,也是选型时需要考虑的重要因素。开关速度越快,MOS管的响应能力越强,同时也会带来更小的开关损耗。因此,在选型时需要根据实际应用场景选择合适的开关速度。  4.温度特性  温度特性是指MOS管在不同温度下的性能表现,也是选型时需要考虑的重要因素。MOS管的温度特性越好,其性能表现越稳定。因此,在选型时需要根据实际应用场景选择具有良好温度特性的MOS管。  综上所述,MOS管选型需要考虑的因素有很多,需要根据实际应用场景选择合适的MOS管。同时,在选型时需要注意MOS管的品牌、质量和可靠性等因素,选择具有优良品质和可靠性的MOS管,才能确保系统的稳定性和可靠性。
2025-03-31 15:07 阅读量:701
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码