PCB中的“平衡铜”是什么

发布时间:2023-01-31 11:09
作者:Ameya360
来源:网络
阅读量:2872

  平衡铜是PCB设计的一个重要环节,对PCB上闲置的空间用铜箔进行填充,一般将其设置为地平面。今天Ameya就来为大家介绍一下~

PCB中的“平衡铜”是什么

  平衡铜的意义在于:

  对信号来说,提供更好的返回路径,提高抗干扰能力;对电源来说,降低阻抗,提高电源效率;对PCB本身来说,可以减少板弯板翘的问题,提高产品质量。

  平衡铜有两种方式:

  填充铜箔平面或者网格状铜箔。

  两种方式各有利弊:

  铜箔平面散热能力强,网格状铜箔电磁屏蔽作用大一些,但需要注意信号频率和铜箔上地孔的间距问题。

  地孔一定要以小于λ/20的间距,在铜面上打孔,与多层板的地平面“良好接地”。只有把覆铜处理好,才能起到作用。一旦处理不当,覆铜就会产生天线效应,噪声就会向外发射。

  高频区域避免用网格状铜箔,空旷区域用铜箔平面,结合使用,才能很好地保证均匀和平衡性,买元器件现货上唯样商城。

  平衡铜需要注意以下几点:

  ①数字地和模拟地分开来平衡覆铜,不同的单点地连接,需要通过0欧姆或磁珠连接

  ②孤岛(死区)平衡铜箔的处理

  ③晶振高频器件的覆铜,环绕晶振覆铜,注意隔离带,同时对外壳进行另外接地处理

  ④平衡覆铜远离正常的线路焊盘,走线、铜皮、钻孔≥0.5mm

  常用的产品叠层设计,铜箔的使用是1oz(盎司),这是个重量单位,也可以认为是厚度单位。1oz(盎司)铜在PCB的1平方英尺区域上滚动,厚度为1.2 mil左右。

  产品设计中,需要注意的是:

  铜箔面积应与对面的“铜箔填充”相平衡,还要尝试将信号走线尽可能均匀地分布在整个电路板上。做好这一点,从前期的布局部分,就得需要注意。对于多层电路板,将对称的相对层与“铜箔填充”相匹配。如果铜箔填充不足,层间预浸料填充不足,就会存在分层风险。

  覆铜可以平衡铜箔,不仅在信号或电源层中是必需的,而且在 PCB 的核心层和预浸层中也是必需的,确保这些层中铜的比例均匀,保持 PCB 整体铜箔平衡。

  还有一点,叠层设计中,残铜率预估一般平面预估80%,走线预估30%,平衡铜可以很好地拟合残铜率,尽量保证叠层设计的准确性。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
在多层PCB设计中,如何规划层叠结构?单层、双层和多层板应如何选择
  在现代电子设备中,多层PCB(Printed Circuit Board)广泛应用于各种高性能和复杂电路设计中。合理规划多层PCB的层叠结构对于信号传输、功耗分布和电磁兼容性至关重要。本文将探讨在多层PCB设计中如何规划层叠结构,并讨论单层、双层和多层板的选择原则。  1. 多层PCB的层叠结构规划  1.1 信号层与电源层  在多层PCB设计中,通常会包括信号层和电源层。信号层用于传输数据和控制信号,而电源层则用于提供电源给系统中的各个模块。合理规划信号层与电源层的叠置位置可以有效减少信号回流路径长度,降低电磁干扰。  1.2 地层设置  在多层PCB设计中,地层的设置尤为重要。通过在每两个信号层之间设置一个地层,可以有效减少信号层之间的串扰,提高信号完整性和抗干扰能力。  1.3 避免层间耦合  合理规划不同信号层之间的相互影响是必要的,避免层间耦合对信号质量造成影响。可以通过在不同信号层之间设置地层或者地隔离层来减少层间耦合效应。  2. 单层、双层和多层板的选择  2.1 单层板  单层板通常用于简单电路设计,成本低廉且易于制造。适合一些简单的应用场景,如低频信号传输、简单控制电路等。  2.2 双层板  双层板在设计中较单层板更具灵活性,可以更好地处理信号回流和电源分配问题。适合中等复杂度的设计,如数字与模拟信号混合、功率分配等场景。  2.3 多层板  多层板适用于复杂电路设计,能够容纳更多的组件和更复杂的信号层次。通过合理规划层叠结构,可以提高系统性能、降低功耗和减小电磁干扰。适合高速数字信号传输、RF信号处理、高功率器件布局等需求较高的场景。  3. 如何选择适当的PCB类型?  3.1 设计复杂度  根据设计的复杂度和功能要求来选择合适的PCB类型。单层板适用于简单电路,双层板适用于中等复杂度设计,而多层板则适用于复杂高性能电路设计。  3.2 成本考虑  考虑生产成本和设计预算来选择合适的PCB类型。单层板制造成本低廉,适合于大批量生产;而多层板制造成本较高,适合于需要高性能和可靠性的产品。  3.3 性能需求  根据性能需求来选择PCB类型。如果设计需要高速信号传输或者复杂的电源分配,多层板可能是更好的选择;而如果只需要简单的控制功能或低频信号传输,则单层或双层板可能已足够满足需求。  4. 根据应用场景选择合适的PCB  4.1 通信设备  对于需要处理高速数字信号或RF信号的通信设备,多层板是首选。多层板能提供更好的信号完整性和抗干扰能力,适合于无线通信、卫星通信等领域。  4.2 工控设备  在工业控制设备中,受环境影响较大,电磁兼容性要求高。因此选择多层板可以有效降低电磁干扰,提高系统稳定性和可靠性。  4.3 消费类电子产品  对于消费类电子产品如智能手机、平板电脑等,设计成本和体积都是考虑的因素。双层板往往是一个不错的选择,既能满足性能需求,又能控制成本。  在多层PCB设计中,合理规划层叠结构对于确保信号完整性、降低干扰以及提高系统性能至关重要。选择适当的PCB类型(单层、双层或多层板)取决于设计的复杂度、成本预算和性能需求。根据应用场景和设计要求综合考虑,可以更好地实现设计目标并确保电路板的稳定性和可靠性。
2025-12-31 16:59 阅读量:368
PCB设计和制造过程中,使用盲孔、埋孔等特殊过孔结构时,需要考虑哪些成本和制造因素
  在印刷电路板(PCB)设计和制造过程中,有时会使用一些特殊的过孔结构,如盲孔(Blind Via)、埋孔(Buried Via)等。这些过孔结构能够帮助优化布局、提高信号传输效率,但同时也会增加制造成本和技术要求。在考虑使用盲孔、埋孔等特殊过孔结构时,需要综合考虑以下成本和制造因素。  1. 材料成本  盲孔和埋孔所需材料:对于盲孔和埋孔,通常需要使用高精度钻孔设备和特殊处理化学溶液,这些材料相较于常规孔径工艺会增加制造成本。  2. 制造工艺复杂性  特殊加工技术:盲孔和埋孔制造需要先进的加工设备和工艺技术,增加了制造复杂性,可能需要更多的操作步骤和专业技术人员,导致生产周期延长。  3. 工艺控制  误差控制:由于盲孔和埋孔制造中需要精确控制孔径、深度和位置等参数,因此对生产设备的稳定性和操作技术要求较高,以避免孔壁质量问题。  4. 设计要求  布线布局:设计中需要考虑盲孔和埋孔的位置、数量和大小,与其他元件布局的协调性,以及与内部层的连接方式,增加了设计难度。  5. 测试与维护  测试困难:盲孔和埋孔结构的存在会增加电路板的测试难度,需要采用更复杂的测试方法来验证板上信号传输的可靠性。  6. 工厂设备  特殊设备需求:制造盲孔和埋孔可能需要投资购置高端的钻孔机、激光设备等特殊加工设备,增加了工厂的设备成本。  7. 组装和焊接  组装困难:盲孔和埋孔结构可能会影响电路板的表面平整度,使得元件的安装和焊接变得更加复杂,增加了组装成本。  8. 维护性  维修难度:盲孔和埋孔结构的存在会增加维护和维修的难度,如果需要更换或维修内部元件,可能需要更多时间和成本。  9. 设计可靠性  信号完整性:盲孔、埋孔等特殊过孔结构应当被设计为确保信号传输的完整性,避免信号干扰和失真。  10. 供应链稳定性  材料供应:特殊过孔结构可能需要使用特定材料或工艺,因此需要确保供应链的稳定性,以避免生产中出现材料短缺或延迟等问题。  11. 环保因素  废料处理:特殊加工工艺可能会产生更多的废料和污染物,需要考虑环保因素,并采取相应措施进行废料处理和回收。  在考虑使用盲孔、埋孔等特殊过孔结构时,必须全面考虑成本和制造因素。尽管这些特殊过孔结构可以带来一些优势,如提高布局灵活性、降低信号传输损耗等,但也需要权衡好成本和制造方面的挑战。因此,在决定是否采用盲孔、埋孔结构时,设计师和制造商应该在设计阶段就充分评估这些因素,以确保最终的 PCB 制造过程能够高效、经济、可靠。通过合理权衡,可以在保证产品质量和性能的前提下,控制制造成本,避免不必要的浪费。
2025-12-31 16:56 阅读量:352
什么是高速PCB设计?如何控制关键信号的阻抗,并解决信号完整性问题
  高速PCB设计是现代电子领域中不可或缺的一部分,尤其在处理高频信号、数字信号传输等场景下显得尤为重要。本文将探讨什么是高速PCB设计,如何有效地控制关键信号的阻抗,并解决相关的信号完整性问题。  1. 什么是高速PCB设计?  1.1 高速信号  在PCB设计中,高速信号通常指的是信号频率较高、上升时间短暂的信号。这包括高速差分信号、时钟信号以及其他需要考虑信号完整性和阻抗匹配的信号类型。  1.2 高速PCB设计原则  高速PCB设计是一种专门针对高频信号传输的设计方法。通过合理规划PCB布局、选择合适的材料、控制信号线路走线方式等来确保信号完整性、降低信号失真和干扰,提高系统稳定性和可靠性。  2. 关键信号阻抗控制  2.1 什么是阻抗?  在电路中,阻抗是指电流和电压之间的关系,它随着信号频率的变化而变化。对于高速PCB设计来说,控制关键信号的阻抗可以有效减少信号反射、串扰和功耗损耗,提高信号质量。  2.2 阻抗匹配技术  使用阻抗匹配技术是控制关键信号阻抗的关键手段之一。通过在信号路径上增加匹配阻抗,如使用微带线或差分传输线、调整信号层间距离等方式,使信号的输入阻抗和输出阻抗匹配,减少信号反射和波形失真。  2.3 差分传输线设计  差分传输线是高速PCB设计中常用的方式之一。通过设计差分传输线,可以减少串扰、提高抗干扰能力,同时也有助于控制信号的阻抗匹配,保证信号传输的稳定性。  3. 解决信号完整性问题  3.1 信号完整性  信号完整性是指在信号传输过程中保持信号质量和稳定性的能力。在高速PCB设计中,信号完整性问题可能导致信号失真、时序偏移、噪声干扰等影响系统性能的情况。  3.2 信号完整性问题常见解决方案  布局优化:合理布局元件和信号线路,减少信号路径长度,降低串扰风险。  信号层堆栈设计:采用合适的信号层堆叠方式,如信号、地平面、电源平面的叠放,减小信号回流路径。  高速PCB设计是保证高频、高速信号传输稳定性和可靠性的关键环节。通过控制关键信号的阻抗、采用阻抗匹配技术以及解决信号完整性问题,设计人员可以有效提高电路板的性能,减少信号失真和干扰,确保系统运行稳定。遵循高速PCB设计原则和采取相应的阻抗控制措施,可以显著改善信号传输质量,降低功耗损耗,提高系统可靠性。
2025-12-31 16:55 阅读量:333
PCB设计中降低电磁干扰的常用方法分享
  在现代电子系统中,电磁干扰(EMI)是一个常见且严重的问题,可能对电路性能和稳定性产生负面影响。为了有效降低电磁干扰,PCB(Printed Circuit Board)设计中采取一系列措施非常重要。本文将分享在PCB设计中降低电磁干扰的常用方法。  1. 地线规划与分层设计  1.1 地线规划  合理的地线规划是降低电磁干扰的关键。通过细致规划地线路径,减小回路面积,降低地线回流路径的电感值,可以有效减少电磁辐射。  1.2 分层设计  采用多层PCB设计,将不同信号层、电源层和地层分隔,可以减少信号间的相互影响,提高抗干扰能力。  2. 差分信号传输  2.1 差分信号线  使用差分信号线传输数据可以有效减少共模噪声,提高抗干扰能力。确保差分信号线匹配,并避免差分线与其他信号线平行走线,有助于降低电磁辐射。  2.2 差分信号接口  差分信号接口的设计也是重要的一环,正确布局和连接差分接口,尽量减小差分信号线的长度和走线路径,有助于降低传输中的电磁辐射。  3. 确保良好的功率分配  3.1 良好的功率平面设计  在PCB设计中,设立合适的功率平面,确保电源供应稳定且电流传输通畅,可有效减小电磁波的辐射。  3.2 降低电流环路  最小化电流环路的面积和长度,特别是高频信号部分的电流环路,可以减小电磁辐射并降低共模噪声。  4. 布局优化与屏蔽设计  4.1 元件布局  良好的元件布局有助于减小信号回流路径和电磁干扰。分组布局相似功能的元件,最小化信号线长短差异,减少串扰。  4.2 屏蔽设计  对于敏感信号或高频部分,考虑采用金属屏蔽罩或屏蔽壳体,阻挡外部干扰,提高系统的电磁兼容性。  5. 接地处理及滤波器应用  5.1 有效接地  设计良好的接地系统,包括单点接地、星型接地等形式,减小接地回路面积,降低接地阻抗,有利于减小电磁干扰。  5.2 滤波器应用  在输入输出端口处使用滤波器,正确选择滤波器类型和截止频率,可以过滤高频噪声和谐波,降低电磁干扰,提高信号质量。  6. 使用合适的元件和材料  6.1 选择低噪声元件  选择低噪声、低电阻、低串扰的元件,例如低ESR电容和低串扰电感,有助于减小电磁干扰。  6.2 合适的材料  选择合适的PCB材料,如具有较好介电性能和抗干扰特性的材料,有助于降低传输线路上的损耗和电磁波辐射。  7. 高频设计与EMC测试  7.1 高频设计  在设计时考虑高频特性,尽量减小高频信号路径长度,减少回流路径,降低电磁辐射。  7.2 EMC测试  最终的PCB设计完成后,进行EMC测试是必不可少的步骤。通过EMC测试可以验证设计的抗干扰性能,发现并解决潜在的电磁干扰问题。  在PCB设计中降低电磁干扰是一个综合性的工作,需要结合地线规划、差分信号传输、功率分配、布局优化、接地处理、滤波器应用、元件材料选择和高频设计等多方面因素。通过合理综合利用这些方法,可以有效降低电磁干扰,提高系统的稳定性、抗干扰能力和整体性能表现。
2025-12-24 11:48 阅读量:396
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码