TAIYO YUDEN Commercializes 1005M-Size Embeddable Multilayer Ceramic Capacitor with 22-μF Capacitance for AI Servers
  TAIYO YUDEN CO., LTD. has commercialized and begun mass production of embeddable multilayer ceramic capacitor (MLCC) that achieves a capacitance of 22-μF in a 1005M size (1.0 x 0.5 mm).  This ceramic capacitor is an MLCC designed for decoupling applications on IC power lines used in AI servers and other types of information devices.  Components embedded in a board require high precision in terms of flatness of the external electrodes for connection to the circuit. With respect to this requirement, TAIYO YUDEN has commercialized an embeddable MLCC that achieves a 22-μF capacitance in a 1005M size by enhancing external electrode formation technology and other elemental technologies.  Mass production of the capacitor began at our Tamamura Plant (Sawa District, Gunma Prefecture) in August 2025. Samples are available for 20 yen per unit.  Technology Background  AI servers and other types of devices with advanced information processing capabilities are equipped with ICs that consume extremely large amounts of power. For decoupling purposes in such power supply circuits, small, high-capacity MLCCs are required to handle large currents.  Additionally, to minimize circuit loss and noise, it is important to route the power supply circuit close to the ICs. Traditional power supply circuits are routed around ICs. But, technological developments are progressing, allowing them to be placed closer, such as on the back of the board or directly under the ICs. Thus, embeddable MLCCs need to be equipped with high-precision external electrodes to connect to the lines.  To satisfy this need, TAIYO YUDEN has improved its external electrode formation technology and commercialized 1005M-size embeddable MLCC with a capacitance of 22 μF.  TAIYO YUDEN is continuing to develop new MLCCs with higher capacitance and other distinguishing features.  ■ Application  Decoupling applications on IC power lines used in AI servers and other types of information devices
Key word:
Release time:2025-10-20 16:40 reading:451 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:726 Continue reading>>
Renesas Adds Capacitive Touch to Ultra-Low-Power RA0 MCUs
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA0L1 microcontroller (MCU) Group based on the Arm® Cortex®-M23 processor. The new devices offer extremely low power consumption and the industry’s best solution for quickly and economically implementing capacitive touch in battery-powered and other consumer electronics, appliances, white goods and industrial system controls.  Renesas introduced the RA0 MCU series in 2024 and it has quickly become very popular with a wide range of customers due to its affordability and low power consumption. With the addition of capacitive touch functionality, RA0L1 devices offer designers the ability to create responsive, attractive, low-power user interfaces at very low cost.  RA0L1 MCUs deliver industry-leading power consumption of only 2.9mA current in active mode, and 0.92mA in sleep mode. In addition, an integrated High-speed On-Chip Oscillator (HOCO) enables the fastest wake-up time for this class of microcontroller. The fast wake-up enables the RA0L1 MCUs to stay in Software Standby mode more of the time, where power consumption drops to a minuscule 0.25 µA. With this feature, current consumption can be reduced by up to 90 percent compared with other solutions.  Feature Set Optimized for Low Cost  The RA0L1 devices have a feature set optimized for cost-sensitive applications. They offer a wide operating voltage range of 1.6V to 5.5V so customers don’t need a level shifter/regulator in 5V systems. The RA0L1 MCUs also integrate multiple communications interfaces, analog functions, safety functions and security functionality to reduce customer BOM cost. A wide range of packaging options is also available, including a tiny 4mm x 4mm 24-pin QFN.  In addition, the new MCU’s high-precision (±1.0%) HOCO improves baud rate accuracy and enables designers to forego a standalone oscillator. Unlike other HOCOs in the industry, it maintains this precision in environments from -40°C to 125°C. This wide temperature range enables customers to simplify thermal design by avoiding costly and time-consuming “trimming,” even after the reflow process.  Renesas Capacitive Touch Leadership  Renesas provides industry-leading capacitive touch technology, ensuring customers can quickly and cost-effectively implement high-quality touch interfaces in a variety of systems. Its self-capacitance method simplifies waterproof design, offering simpler design and reduced complexity compared to mutual capacitance solutions. Renesas’ multi-frequency measurement meets IEC61000 4-3 Level 4 standards, making it ideal for medical applications that demand robust protection from electromagnetic interference. Renesas also offers specialized development resources for capacitive touch, including the QE for Capacitive Touch that streamlines sensitivity adjustments for capacitive touch buttons, speeding up development.  “The RA0L1 combines the industry-leading power consumption and cost-effectiveness of our RA0 Series MCUs with our unmatched capacitive touch technology and tools,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “We look forward to the many innovative touch interface solutions that our customers will create using these devices.”  Key Features of the RA0L1 Group MCUs  Core: 32MHz Arm Cortex-M23  Memory: Up to 64KB integrated Code Flash memory and 16KB SRAM  Extended Temperature Range: Ta -40°C to 125°C  Timers: Timer array unit (16b x 8 channels), 32-bit interval timer (8b x 4 channels), RTC  Communications Peripherals: 3 UARTs, 2 Async UART, 6 Simplified SPIs, 2 I2C, 6 Simplified I2Cs  Analog Peripherals: 12-bit ADC, temperature sensor, internal reference voltage  HMI: Capacitive Touch (up to 24 channels), Controlled Current Drive Port (up to 8)  Safety: SRAM parity check, invalid memory access detection, frequency detection, A/D test, output level detection, CRC calculator, register write protection  Security: Unique ID, TRNG, Flash access window, Flash read protection  Packages: 24-, 32- and 48-pin QFNs, 32-, 48-pin LQFP, 20-pin LSSOP  The new RA0L1 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration to and from other RA family devices.  Winning Combinations  Renesas has combined the new RA0L1 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including the Capacitive Touch Remote Controller. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.  Availability  The RA0L1 Group MCUs are available now, along with the FSP software, the RA0L1 Fast Prototyping Board and the RA0L1 Renesas Solution Starter Kit for Cap Touch. Samples and kits can be ordered either on the Renesas website or through AMEYA360.
Key word:
Release time:2025-09-18 16:11 reading:727 Continue reading>>
ROHM Launches 2-in-1 SiC Molded Module “DOT-247”
  ROHM has developed the "DOT-247," a 2-in-1 SiC molded module (SCZ40xxDTx, SCZ40xxKTx), ideal for industrial applications such as PV inverters, UPS systems, and semiconductor relays. The module retains the versatility of the widely adopted "TO-247" package while achieving high design flexibility and power density.  The DOT-247 features a combined structure consisting of two TO-247 packages. This design enables the use of large chips, which were structurally difficult to accommodate in the TO-247 package, and achieves low on-resistance through an unique internal structure. Additionally, through optimized package structure, thermal resistance has been reduced by approximately 15% and inductance by approximately 50% compared to the TO-247. This enables a power density 2.3 times higher than the TO-247 in a half-bridge configuration –achieving the same power conversion circuit in approximately half the volume.  The new products featuring the DOT-247 package are available in two topologies: half-bridge and common-source. Currently, two-level inverters are the mainstream in PV inverters, but there is growing demand for multi-level circuits such as three-level NPC, three-level T-NPC, and five-level ANPC to meet the need for higher voltages. In the switching sections of these circuits, topologies such as half-bridge and common-source are mixed –making custom products necessary in many cases when using conventional SiC modules.  To address this challenge, ROHM has developed each of these two topologies—the smallest building blocks of multi-level circuits—into a 2-in-1 module. This enables flexibility to support various configurations such as NPC circuits and DC-DC converters, while significantly reducing the number of components and mounting area, and achieving circuit miniaturization compared to discrete components.  Evaluation boards will also be made available progressively to facilitate evaluation during application design. For more information, please contact a sales representative or visit the contact page on ROHM’s website.  Product Lineup  ☆:Under Development  AEC-Q101 is an automotive electronics reliability standard established by the Automotive Electronics Council (AEC).  The Q101 standard is specifically focused on discrete semiconductor components.  Application Examples  PV inverters, semiconductor relays, UPS (uninterruptible power supply), ePTO, and boost converters for FCVs (fuel cell vehicles).  AI servers (eFuse), EV charging stations, etc.  Sales Information  Pricing: $140/unit (samples, excluding tax)  Availability: ROHM construct mass production (September 2025)  Products compliant with the automotive reliability standard AEC-Q101 are scheduled to begin sample shipments in October 2025.  Comprehensive Support  ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered, such as simulations and thermal designs that enable quick evaluation and adoption of DOT-247 products. An evaluation kit for double-pulse testing is already available, allowing immediate testing, while an evaluation kit for 3-phase inverters is currently under preparation, with reference designs scheduled to be released from November 2025.  • About the DOT-247 design models  SPICE models: Available on the product web pages for each part number  LTspice® models: Scheduled to be available for three-level NPC from October 2025 on the web pagesLTspice® is a registered trademark of Analog Devices, Inc.When using third-party trademarks, please adhere to the usage guidelines specified by the rights holder.  For details, please contact a sales representative or visit the contact page on ROHM’s website.  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.• EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Half-bridge/ Common-source  A basic configuration of a power conversion circuit consisting of two MOSFETs. In a half-bridge configuration, the MOSFETs are connected in series, one above the other, and the output is taken from the connection point. By switching the upper and lower MOSFETs alternately, the output voltage can be switched between positive and negative, making this configuration widely used as the basic structure for high-efficiency power conversion in inverters and motor drive circuits.  Common Source is a configuration where the source terminals of the two MOSFETs are connected, and the output is taken from each drain. By grouping the source terminals, the gate drive circuit can be simplified, making it suitable for applications such as multilevel inverters.  Types of NPC-type multi-level circuits  NPC (Neutral Point Clamped) is a multi-level circuit configuration that divides the output voltage into three levels (+, 0, and -) to reduce voltage stress on the switching devices. The "0V" state is created by the neutral point, which is the contact point located between the positive and negative voltages.  T-NPC (T-type NPC) replaces the diode used to stabilize the neutral point with switching devices such as MOSFETs, enabling more efficient operation. ANPC (Active NPC) actively controls the potential of the neutral point itself using a switch, achieving smoother output waveforms and high-precision power conversion. T-NPC and ANPC are suitable for applications requiring higher output and efficiency.  ePTO (electric Power Take-Off)  A system that uses the power from an electric vehicle's motor or battery to drive external work machinery or equipment (such as hydraulic pumps or compressors). This is an electrified version of the PTO (Power Take-Off) used in conventional engine vehicles, and its adoption is advancing in environmentally friendly commercial vehicles and work vehicles.
Key word:
Release time:2025-09-17 13:11 reading:610 Continue reading>>
ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current
  ROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current. This IC is optimized to be applied as a measurement sensing amplifier in size-constrained applications such as handheld measurement instruments, wearable devices, and indoor motion detectors.  As the demand continues to grow for more sophisticated control in battery-driven devices, the importance of sensors that detect parameters such as temperature, humidity, vibration, pressure, and flow rate – along with the op amps used to amplify these sensor signals – continues to rise. At the same time, greater miniaturization and energy savings in applications is a necessary step to realizing a sustainable society –placing similar demands on individual devices as well.  In response to these evolving market needs, ROHM has advanced its process, packaging, and proprietary Nano Energy™ circuit technologies to develop an op amp that addresses three key requirements: lower power consumption, higher accuracy, and compact size. The newly developed TLR1901GXZ achieves an ultra-compact footprint of less than 1mm2 by adopting a WLCSP (Wafer Level Chip Scale Package) with a fine ball pitch of 0.35mm while delivering an industry-leading low operating current of 160nA (typ.). This not only contributes to high-density mounting in space-constrained applications, but also to a significantly extended battery life.  Moreover, the TLR1901GXZ features an exceptionally low input offset voltage of just 0.55mV (max.), one of the best among ultra-low current op amps. This represents an approximate 45% reduction compared to typical products on the market. A maximum input offset voltage temperature drift of 7uV/°C ensures high accuracy operation over the operating temperature range.  Design flexibility can be further enhanced by pairing the op amp with ROHM’s ultra-compact general-purpose resistors, such as the MCR004 (0402 metric / 01005 inch) and MCR006 (0603 metric / 0201 inch), for applications like gain adjustment. The MCR004 series lineup includes the MCR004E –an environmentally friendly, fully lead-free option designed to support sustainable designs. Adapter boards featuring SSOP5 package ICs are offered as well to support initial evaluation and replacement assessments.  Going forward, ROHM will continue to pursue further power savings in op amps by advancing both miniaturization and original ultra-low power technologies. At the same time, we are committed to improving device performance by reducing noise and offset, expanding power supply voltage ranges, and contributing to solving social issues through more precise application control.  Key Product Characteristics  Application Examples  • Consumer devices: wearables, smart devices, motion sensors, etc.  • Industrial equipment: gas detectors, fire alarms, handheld measurement instruments, environmental sensors for IoT, etc.  Online Sales Information  Sales Launch Date: Now  Pricing: $2.1/unit (samples, excluding tax)  Online Distributors: AMEYA360  • Applicable Part No: TLR1901GXZ-E2  • IC-Mounted Adapter Board: TLR1901GXZ-EVK-001  What is Nano Energy™ Technology?  Nano Energy™ refers to proprietary ultra-low current consumption technology that achieves a current consumption on the order of nano ampere (nA) by combining advanced analog technologies covering circuit design, layout, and processes utilizing ROHM’s vertically integrated production system.  This contributes not only to extending operating time of battery operated IoT and mobile devices, but also improving efficiency in industrial and automotive equipment where increased power consumption is problematic.  https://www.rohm.com/support/nano   Nano Energy™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from wafers and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  Input Offset Voltage  The small voltage difference that must be applied between the inverting and non-inverting inputs of the operational amplifier to make the output voltage exactly zero.  Input Offset Voltage Temperature Drift  Refers to how much an op amp's input offset voltage changes as the temperature changes.
Key word:
Release time:2025-09-12 17:23 reading:573 Continue reading>>
Renesas Introduces Ultra-Low-Power RL78/L23 MCUs for Next-Generation Smart Home Appliances
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the new 16-bit RL78/L23 microcontroller (MCU) group, expanding its low-power RL78 family. Running at 32MHz, the RL78/L23 MCUs combine industry-leading low-power performance with essential features such as dual-bank flash memory, segment LCD control, and capacitive touch functionality to support smart home appliances, consumer electronics, IoT and metering systems. These compact, cost-effective devices address the performance and power requirements of modern display-based human-machine interface (HMI) applications.  Ultra-Low Power Operation with Optimized LCD Performance  The RL78/L23 is optimized for ultra-low power consumption and ideal for battery-powered applications that spend the majority of time in standby. They offer an active current of just 109μA/MHz and a standby current as low as 0.365μA, along with a fast 1μs wake-up time to help minimize CPU activity. The LCD controller’s new reference mode, VL4, reduces LCD operating current by approximately 30 percent when compared to the existing RL78/L1X group. The MCUs come with SMS (SNOOZE Mode Sequencer), which enables dynamic LCD segment display without CPU intervention. By offloading tasks to the SMS, the devices minimize CPU wake-ups and contribute to system-level power savings. These innovations significantly extend battery life, simplify design and reduce replacement costs, while minimizing environmental impact.  The RL78/L23 offers a wide operating voltage range of 1.6V to 5.5V, which supports direct operation from 5V power supplies commonly used in home appliances and industrial systems. This capability reduces the need for external voltage regulators. The MCUs also integrate key components such as capacitive touch sensing, a temperature sensor, and internal oscillator, reducing BOM cost and PCB size.  Feature-Rich Peripherals for HMI Systems  Designed to meet the dynamic requirements of the HMI market, RL78/L23 integrates a suite of advanced features in a compact, cost-effective package. Its built-in segment LCD controller and capacitive touch realize sleek, responsive user interfaces for products such as induction cooktops and HVAC systems. The IH timer (Timer KB40) enables precise multi-channel heat control, which is essential in smart kitchen appliances such as rice cookers and IH cooktops. The devices include dual-bank flash memory for seamless firmware updates via FOTA (Firmware Over-the-Air), allowing continuous system operation in applications like metering, where downtime must be minimized. The dual-bank architecture allows one memory bank to run the user program, while the other receives updates. This approach keeps the system functional throughout the process for improved reliability.  “The Renesas RL78 Family of 16-bit microcontrollers has been one of the most successful products since its launch more than 10 years ago, particularly in home appliances,” said Daryl Khoo, Vice President of Embedded Processing at Renesas. “I’m pleased to announce the RL78/L23, a new generation of RL78 microcontrollers with rich features, ideally suited for smart home appliances and cost-sensitive IoT solutions. With these devices, we aim to provide a better user experience with our intuitive development environment so that customers can get to production faster with confidence, based on market-proven Renesas technologies.”  Key Features of the RL78/L23  16-bit RL78 microcontroller running at 32MHz  Built-in segment LCD controller and capacitive touch  Up to 512KB of dual-bank flash memory for seamless FOTA  Up to 32KB of SRAM and 8KB of data flash  SMS for ultra-low power operation  IH Timer (KB40) supporting up to 3-channel induction heating control  Wide operating voltage range from 1.6V to 5.5V  Operating temperature range of -40°C to +105°C  Multiple serial interfaces including UART, I2C, CSI  IEC60730-compliant self-test library  44-100-pin LFQFP, LQFP and HWQFN packages  Intuitive Development Environment for Faster Time-to-Market  The RL78/L23 comes with an easy-to-use development environment. Developers can leverage robust support tools such as Smart Configurator and QE for Capacitive Touch to streamline system design. Renesas offers the RL78/L23 Fast Prototyping Board which is compatible with Arduino IDE, and a capacitive touch evaluation system for in-depth testing and validation.  Winning Combinations  Renesas offers Induction Heating Rice Cooker Solution which combines the new RL78/L23 devices with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RL78/L23 MCUs are available today, along with the Fast Prototyping Board (FPB-RL78L23) and the capacitive touch evaluation system (RSSK-RL78L23). 
Key word:
Release time:2025-08-27 15:18 reading:823 Continue reading>>
Murata Launches iSIM IoT Module with Built-In Global Connectivity from 1NCE
  Murata today introduced a new iSIM-compatible LPWA module, the Type 1SC, pre-integrated with out-of-the-box connectivity from 1NCE, one of the world’s fastest-growing IoT companies. The collaboration delivers simplified, scalable global connectivity, making it easier to launch and manage low-power IoT devices. Optimized for low-power, low-data applications, the solution comes bundled with 50 MB of data and optional top-ups, enabling rapid, cost-effective deployment for applications such as asset tracking, fleet management, and healthcare monitoring. Supporting both LTE-M and NB-IoT, the module offers broad compatibility across networks in 173 countries.  By embedding 1NCE’s cloud-based connectivity directly into the module, Murata eliminates the need for separate SIM provisioning, streamlining the design and manufacturing process for compact, energy-efficient devices. The result is a faster, more reliable path to market. Additionally, with over 30 million devices managed across 23,000+ customers, its platform simplifies lifetime IoT connectivity – bringing seamless integration, global reach, and built-in scalability to the next generation of connected products.  “Murata’s Type 1SC module represents our commitment to driving innovation in the IoT space,” said Hiro Hyogo, Senior Manager, Corporate Technology and Innovation at Murata Americas. “By having connectivity pre-installed on our modules, we’re reducing the complexities and costs associated with global IoT deployments while ensuring strong security and performance.”  "IoT will be dominated by software players, which is why Murata chose and trusted in 1NCE," said Fabian Kochem, Head of Global Product Strategy at 1NCE. “The supply chain of IoT is bloated, but our two companies save our customers time and money.”
Key word:
Release time:2025-08-13 15:33 reading:622 Continue reading>>
BIWIN Industrial-Grade TDC200 Series Storage Cards: Built for Multi-Channel 4K Surveillance
  Designed for high-definition, multi-channel video surveillance, the BIWIN Spec TDC200 Series Industrial-Grade SD Cards & microSD Cards come equipped with various self-developed firmware algorithms featuring high-reliable design and multichannel write optimizations to achieve stable write speeds across multiple video channels. And with design upgrades in physical structure and reliability, these cards are able to support operating temperature within -25°C to 85°C, as well as more protective capabilities like water-, dust-, shock-, wear-, X-ray-resistance and anti-magnetism. They are ideal for intensive scenarios such as vehicle surveillance, security systems, industrial inspection, and medical monitoring applications.  Reliable Multi-Channel 4K Recording,10 Channels of Continuous Recording Without Frame Drops  The BIWIN TDC200 series SD Card & microSD Card are equipped with smart data flow technologies which help to distinguish video stream data from system data and allocate them into separate storage zones. This optimized data structure through partitioned storage assists to reduce data fragmentation and write amplification caused by garbage collection (GC) during full-drive write scenarios, so as to extend products’ lifespan. Additionally, the built-in intelligent cache management system minimizes wear from high-frequency access, ensuring stability and reliability during high-load, continuous writing scenarios. The cards support 10 channels of 4K high-definition recording equipment with 7×24-hour stable continuous writing, ensuring no frame drops or stuttering in surveillance and high-definition recording scenarios, with no frame skipping or data loss during playback.  Adaptive Power Saving for Extended Endurance,Ideal for Demanding Industrial Tasks  Featured with smart low-power management technology, the TDC200 Series SD Card & microSD Card automatically switches to low power mode under standby state, reducing power consumption from milliamps (mA) to microamps (μA)—a drop of up to 85% in sleep mode. With microsecond-level wake-up response, the cards are especially suited for battery-powered or energy-sensitive applications, such as body-worn cameras, portable surveillance units, and inspection devices, significantly extending device uptime in the field.  Comprehensive Protection from the Inside Out,Engineered for Harsh Industrial Environments  In automotive and industrial settings, storage devices must withstand shocks, drops, vibrations, and extreme temperatures. The BIWIN TDC200 Series cards feature a reinforced physical design that ensures stable performance in environments ranging from -25℃ to 85℃. They are built to resist impact, vibration, water, dust, X-rays, and magnetic interference that can lead to circuit shorts or signal loss. Tested under rigorous reliability protocols, the TDC200 achieves a Mean Time Between Failures (MTBF) of up to 3 million hours, greatly reducing the risk of downtime and lowering maintenance costs in mission-critical deployments.  Built with 3D TLC direct write and multiple software optimization technologies, BIWIN TDC200 Series SD Card & micro SD Card include capabilities of VDT (Voltage Detection Technology), S.M.A.R.T. health monitoring, Power Loss Protection, Intelligent Thermal Throttling and advanced ECC algorithms. VDT and S.M.A.R.T. provide predictive failure analysis and real-time health feedback, while intelligent thermal throttling and data retention safeguard data integrity under high-temperature conditions. These features work together to ensure long-term stability and durability even in the most demanding industrial environments.  Conclusion  In application scenarios requiring high-volume, multi-channel video recording, the BIWIN TDC200 Series Industrial-Grade SD & microSD Cards deliver exceptional stability and performance. With zero frame loss and uninterrupted data streams, every critical moment is captured in full. Thanks to superior shock and vibration resistance, these cards are the ideal choice for use in dashcams, in-vehicle DVRs, body-worn cameras, panoramic cameras, smart medical devices, industrial tablets, and industrial UAVs where data integrity is paramount.
Key word:
Release time:2025-07-29 15:33 reading:770 Continue reading>>
Fibocom Unveils the First LTE Cat.1 bis Module L610-IN with IRNSS and NAVIC for India
  Fibocom (Stock code:300638), a global leading provider of AIoT solutions and wireless communication modules, launched the L610-IN, the first LTE Cat.1 bis module that supports dual-mode, dual-frequency positioning technology with IRNSS (Indian Regional Navigation Satellite System) and NAVIC. With its precise positioning capabilities, high compatibility, and adaptability to various IoT scenarios, the L610-IN provides an efficient and cost-effective connectivity solution for the Indian IoT market. It fully complies with the AIS140 standard, empowering intelligent transformation in key sectors such as fleet management and electronic toll collection (eToll).  The L610-IN integrates innovative IRNSS and NAVIC dual-mode, dual-frequency positioning functionality, significantly enhancing positioning accuracy and stability in India and neighboring regions. It effectively addresses the challenge of insufficient navigation signal coverage in complex environments. The module strictly adheres to the AIS140 regulations in India, ensuring compliance for applications like vehicle tracking and eToll collection, making it the ideal communication solution for smart transportation and logistics industries.  The L610-IN features a compact LCC+LGA package with dimensions of 31mm x 28mm and is pin-to-pin compatible with Fibocom's LTE Cat.4 modules NL668/L716. This design enables customers to seamlessly transition between communication technologies while minimizing hardware modification costs. Supporting LTE/GSM networks, the module is ideal for mid-to-low-speed applications such as smart payment, shared economy, industrial IoT, asset tracking, and aftermarket automotive solutions. With additional features like VoLTE HD voice, camera support, LCD display, and multiple sensor interfaces (USB/UART/SPI/I2C/SDIO), the L610-IN delivers flexible and secure end-to-end connectivity for industry clients.  In addition to the L610-IN for the Indian market, Fibocom has also introduced the L610-EU for Europe and the L610-LA for Latin America, covering major global operator frequency bands. These variants cater to seamless positioning and long-distance communication needs, further expanding the boundaries of smart city and intelligent tracking applications.  The L610-IN is expected to begin CS in Q2 2025. With its high cost-efficiency and localized service capabilities, the module will accelerate the development of India's IoT ecosystem.  Ragin Kallanmar Thodikai, Country Sales Manager of India at Fibocom, stated:  "The launch of the L610-IN bridges the gap in the Indian market for high-precision Cat.1 bis modules while simplifying customer upgrades through technology compatibility, accelerating the global deployment of mid-to-low-speed IoT solutions."
Key word:
Release time:2025-07-17 16:25 reading:790 Continue reading>>
Fibocom Debuts 5G Module FG390 Powered by MediaTek T930 Platform, Accelerating FWA Innovation with the Convergence of 5G-A and AI
  Fibocom, a global leading provider of wireless communication modules and AI solutions, announces the launch of its 5G module FG390, developed on the advanced MediaTek T930 platform. Designed specifically for mobile broadband (MBB) terminal products focused on 5G Fixed Wireless Access (FWA), the FG390 series seeks to boost FWA industry growth across diverse applications such as CPEs, ODUs, mobile hotspot devices, enterprise gateways, and industrial gateways.  FG390 is a highly integrated, high-performance 5G module built on MediaTek’s advanced T930 chipset, featuring cutting-edge 4nm process technology. It incorporates the MediaTek M90 5G modem alongside a quad-core ARM Cortex-A55 CPU, delivering robust functionality and full compliance with 3GPP Release 18 standards. Supporting downlink 6-carrier aggregation (6CC CA) and uplink 5-layer 3Tx transmission within the 5G NR Sub-6GHz spectrum, the FG390 achieves peak standalone (SA) downlink speeds of up to 10 Gbps and uplink speeds reaching 2.8 Gbps, providing an outstanding high-speed 5G experience. Furthermore, with 200MHz bandwidth and 8Rx technology, the module significantly enhances spectrum efficiency about 40% at cell edges, greatly extending signal coverage. Paired with a dedicated NPU chip, the FG390 powers AI-enabled gateway devices to offer advanced, intelligent network interaction capabilities.  Amid the swift convergence of 5G-A and AI technologies, the FG390 series harnesses cutting-edge specifications, innovative features, and a comprehensive suite of peripherals to drive digital transformation and continuous innovation across both residential and enterprise applications. This breakthrough empowers telecom operators and the broader market to enhance investment efficiency and accelerate returns in the communications terminal sector.  Leveraged by the MediaTek T930 platform, the FG390 seamlessly integrates robust 5G Release 18 protocol capabilities with exceptional cellular performance and AI-driven intelligence, setting a new benchmark for the next generation of mobile broadband terminals. Enhanced by a dedicated NPU for AI acceleration, this module empowers transformative applications across smart offices, smart homes, and smart cities. Fibocom remains dedicated to deepening the collaboration with MediaTek to drive continuous innovation in 5G technologies, products, and ecosystem development.
Key word:
Release time:2025-07-17 16:21 reading:714 Continue reading>>

Turn to

/ 22

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code