近日,西安电子科技大学郝跃院士团队在半导体材料领域取得关键突破,成功解决了困扰业界二十年的芯片散热与性能瓶颈问题。相关成果已发表于国际顶级期刊《自然·通讯》与《科学·进展》。
该研究的核心在于改善半导体材料层间的界面质量,特别是第三代半导体氮化镓与第四代半导体氧化镓之间的高效集成。
传统方法采用氮化铝作为中间层,但其在生长过程中会自发形成粗糙、不规则的“岛屿”结构,这一自2014年诺贝尔奖相关成果以来始终未能根本解决的难题,严重制约了射频芯片功率的提升。
研究团队通过创新性地在高能离子注入技术,使晶体成核层表面变得平整光滑,从而将界面的热阻降低至原先的三分之一,有效解决了高功率半导体芯片的共性散热问题。

基于此项突破,团队研制出的氮化镓微波功率器件,其单位面积功率较当前市面上最先进的同类器件提升了30%至40%。
据团队成员周弘教授介绍,这项技术意味着未来探测设备的探测距离将显著增加,通信基站则可实现更广的信号覆盖与更低的能耗。
对于普通用户,该技术也有望逐步带来体验升级。周弘指出:“未来若在手机中应用此类芯片,在偏远地区的信号接收能力会更强,续航时间也可能延长。”团队目前正进一步研究将金刚石等超高热导材料应用于半导体,如能攻克相关技术,半导体器件的功率处理能力有望再提升一个数量级,达到当前水平的十倍甚至更高。
这项突破不仅打破了长期存在的技术瓶颈,也为未来半导体器件向更高功率、更高效率发展奠定了关键基础。
Previous:杰华特车规级「芯」组合,破解汽车网关/智驾系统供电痛点!
Next:我国芯片制造核心装备取得重要突破
Online messageinquiry
| model | brand | Quote |
|---|---|---|
| RB751G-40T2R | ROHM Semiconductor | |
| BD71847AMWV-E2 | ROHM Semiconductor | |
| CDZVT2R20B | ROHM Semiconductor | |
| TL431ACLPR | Texas Instruments | |
| MC33074DR2G | onsemi |
| model | brand | To snap up |
|---|---|---|
| BU33JA2MNVX-CTL | ROHM Semiconductor | |
| STM32F429IGT6 | STMicroelectronics | |
| ESR03EZPJ151 | ROHM Semiconductor | |
| TPS63050YFFR | Texas Instruments | |
| IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
| BP3621 | ROHM Semiconductor |
Qr code of ameya360 official account
Identify TWO-DIMENSIONAL code, you can pay attention to
Please enter the verification code in the image below: