纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

发布时间:2025-07-28 14:19
作者:AMEYA360
来源:纳芯微
阅读量:946

  增强型GaN HEMT具有开关速度快、导通电阻低、功率密度高等特点,正广泛应用于高频、高效率的电源转换和射频电路中。但由于其栅极电容小,栅极阈值电压低(通常在1V到2V之间)、耐受电压低(通常-5V到7V)等特点,使得驱动电路设计时需格外注意,防止开关过程中因误导通或振荡而导致器件失效。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

  为应对这一挑战,本文深入分析GaN HEMT在开通与关断时的振荡机制,通过合理配置驱动电阻与栅源间RC吸收支路等策略,有效抑制振荡与过冲。同步结合纳芯微高压半桥NSD2622N GaN HEMT驱动器的应用测试,验证了多种器件与参数组合下的优化效果,助力系统实现稳定、可靠的高频驱动设计。

  01 GaN HEMT开关过程中振荡机制与驱动设计考量

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

图1 GaN HEMT驱动电路

  常见的GaN HEMT驱动电路如图1所示,工作时分别由电阻R1和R2来调节其开通和关断速度。该驱动电路可以看作一个串联的LRC电路。GaN HEMT开通时,受漏极高的dv/dt和米勒电容CGD的影响,栅极电压可能出现振荡或过冲,其电流路径如图1中的ISRC所示。这种振荡或过冲将引起GaN HEMT功耗增加或失效。为了避免过大的振荡或过冲,开通时总的栅极等效电阻建议大于公式(1)中给出的值。

  

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

公式(1)

  其中LG为开通时总的等效寄生电感,RG(eq)为开通时总的等效驱动电阻,CGS为GaN HEMT的栅极等效电容。

  GaN HEMT关断时,受驱动回路寄生电感和栅极关断速度的影响,栅极电压可能出现负向过冲或振荡,这种过大的负向过冲或振荡可能导致栅极击穿或误导通。其电流路径如图1中的Isink所示。设计时要避免这种过大的负向过冲或误开通发生。

  从图1可以看到,开通和关断时的电流路径ISRC和Isink有所不同,对应的开通和关断时总的等效寄生电感LG和等效电阻RG(eq)会有所差异。其中开通时总的等效寄生电感LG包含了的电源部分的寄生电感,而关断时LG则不包含电源部分的寄生电感,分析计算时要注意。

  为了更直观的理解不同驱动电阻对GaN HEMT的影响,我们采用双通道半桥 GaN HEMT驱动器NSD2622N配合不同的GaN HEMT进行了测试验证。下面就相关器件和验证结果进行简要介绍和说明。

  02 纳芯微高压半桥GaN HEMT驱动器NSD2622N

  纳芯微NSD2622N是一款QFN 5X7的高压半桥GaN HEMT驱动器,其功能框图和管脚定义如图2和图3所示。该芯片采用了成熟的电容隔离技术,可以满足高压应用要求。其高低边均集成了专用的正负电压调节器,其中正压为5V~6.5V可调,负压为固定的-2.5V,为GaN HEMT提供可靠的负压关断;该芯片具有传输延时短、驱动电流大(峰值电流分别为2A/-4A)等特点,可以满足不同系统的应用要求;同时还具有欠压保护、过温保护和死区互锁等功能,其中死区互锁功能可以有效防止桥臂的上下管直通。此外,该驱动器还提供一路5V的LDO输出,为系统设计提供更多的便捷性。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

图2 NSD2622N功能框图 图3 NSD2622N Pin定义

  03 GaN HEMT的参数介绍

  试验中采用了两款具有开尔文引脚的TOLL封装高压GaN HEMT进行验证,型号分别为INNO65TA080BS和GS0650306LL,对应的主要参数如下表所示。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

  04 实验结果

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

图4 双脉冲测试框图

  我们采用框图4所示的双脉冲电路对不同驱动电阻下GaN HEMT的栅极波形进行测试验证。其中NSD2622N驱动回路的参考地和GaN HEMT开尔文脚连接,开通时栅极驱动环路总的寄生电感约为38nH,根据 GaN HEMT的规格书CISS计算得到开通时的等效电阻RG(eq)应不小于26Ω。为了直接观察欠阻尼对驱动的影响,R1分别采用10Ω和27Ω进行了对比验证,测试波形如下表1所示,其中蓝色为GaN HEMT的漏极波形,绿色为电感LM的电流,黄色为GaN HEMT的栅极波形。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

表1 调整前的开通波形

  从表1中的波形可以看到, R1为10ohm时,开通驱动回路工作在欠阻尼模式,总线电压50V左右时,两款GaN HEMT的栅极和漏极电压均出现高频振荡,系统无法正常工作;R1为27ohm时,400V电压下,两款GaN HEMT均能正常工作,但INNO65TA080BS在开通过程中,栅极电压出现较为严重的高频振荡。究其原因,主要是由于两款GaN HEMT内部源极的寄生电感和开通时的di/dt存在一定的差异,这种差异导致栅极高频振铃明显不同。为了减小这种振荡,进一步增加驱动电阻R1到33ohm或在栅源极之间并联RC(20ohm+1nF)支路,降低GaN HEMT的开通速度,减小开通时的di/dt,相应的开通关断波形见表2和表3。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

表2 调整参数后的开通波形

  从表2的波形中可以看出,400V总线下,两种方案下工作正常,栅极的高频振荡和过冲明显改善。其中栅源之间并联RC支路与单纯增大R1相比,栅极电压更加平滑,无明显过冲,但开通延时更长,功耗会有所增加,设计时需要注意。

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

表3 关断时的波形

  从表3的波形可以看到,负压关断时,栅极出现明显的负压过冲和振荡,但没有出现误开通。其中栅极没有并联RC支路时,负压过冲超过-5V;并联RC支路后,负压过冲幅值明显减小。关于关断时栅极的负压过冲和振荡可以通过调整电阻R2阻值或并联RC支路的参数来进一步优化。

  结论与建议

  实验结果表明,合理的栅极驱动电阻可以保证GaN HEMT正常稳定工作,过小的驱动电阻易造成栅极电压出现振荡,严重的会导致系统无法正常工作或失效。因此在设计增强型GaN HEMT的驱动电路开通时,栅极驱动电阻尽量满足:

纳芯微:从欠阻尼到过阻尼,一文看懂GaN栅极波形如何“翻身”

  以此来避免开通时栅源电压出现过冲振荡,并且计算LG时,要充分考虑驱动回路中PCB走线的寄生电感和芯片的寄生电感。同时,针对不同的GaN HEMT, 栅源之间可以适当的并联RC支路,有效吸收开通关断时的振荡尖峰。对于高压的GaN HMET,采用负压关断可以防止关断过程中栅极误导通。此外,驱动芯片尽可能靠近GaN HEMT, 减小驱动回路的寄生电感,同时尽量选用带有开尔文脚的GaN HEMT。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码