村田:高功率谐振电路中,MLCC的选择标准和注意事项

发布时间:2025-07-02 15:57
作者:AMEYA360
来源:村田
阅读量:933

  本文介绍适用于汽车OBC、无线电力传输和服务器中的谐振电路的高压低损耗多层陶瓷电容器(MLCC),详细阐述近年来在高功率LC和LLC谐振电路中使用这些电容器的特性和选择标准。

  1.高功率电源系统市场趋势

  近年来,在高功率电源系统中,谐振电路的应用越来越多。

  LLC谐振电路大范围用于100W及以上的高效率电源中,例如EV和PHV(电动汽车和插电式混合动力汽车)的车载OBC、服务器电源和用于大型设备的电源中,采用率预计超过90%。

  此外,在无线功率传输(WPT)中,LC谐振电路用于传输和接收大量电力。配备WPT的产品不仅用于智能手机和平板电脑等小型设备,还用于汽车和制造过程中的运输机器人等大型产品中。

村田:高功率谐振电路中,MLCC的选择标准和注意事项

  高功率电源系统中谐振电路越来越普遍,需要用到容量更大、损耗更低的谐振电容器。

  虽然多种类型的谐振电路(如LC和LLC谐振电路)变得越来越普遍,但处理大量功率的谐振电容器(谐振电路中使用的电容器)需要具有10nF或更大的稳定电容和低损耗性能。

  过去,薄膜电容器是唯一可用的选择,如今多层陶瓷电容器因其多样化的优点而成为主流。尤其对于需要高功率密度的谐振电路来说,多层陶瓷器是其首选。

  这篇技术文章中,我们解释使用多层陶瓷电容作为谐振电容器的好处,并介绍其特性、使用时的注意事项、选择时的考虑因素和村田产品阵容。

  2.大功率谐振电路中的谐振电容器

  这里,我们分三种情况来讨论。

  2.1 高电压谐振电路

  在处理高电流的产品(如车载WPT)中使用的谐振电路中,施加到电容器的电压V(p-p)可能非常高,范围从数百伏(p-p)到1万伏(p-p),在某些情况下可达1万伏(p-p)。由于多层陶瓷电容器的额定电压为630Vdc或1000Vdc,因此需要串联电容器以确保在高电压下工作时,使该V(p-p)保持在额定电压范围内。

  由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。

  因此,谐振电容器越来越多地用于多串联和多并联连接,并且需要具有更小安装面积的产品。

  2.2高谐振频率的谐振电路

  在汽车市场,根据国际标准,汽车WPT的谐振频率固定为85kHz,但用于EV和PHV OBC,谐振频率因制造商而异,范围从60kHz到400kHz。在这些应用中,高频高压被施加到电容器上,容易增加其自热。

  因此,谐振电容器需要具有更低的损耗,并抑制长期使用过程中自发热的增加。

  2. 3MLCC .vs. 薄膜电容器

  与薄膜电容器相比,多层陶瓷电容器具有更高的最高工作温度和更低的发热,因此具有优异的长期可靠性。

  此外,对于具有相同电容的产品,它们的特点是体积更小,ESL更低。

  由于这些特点,多层陶瓷电容器在大功率谐振电路中被大范围用作谐振电容器。

村田:高功率谐振电路中,MLCC的选择标准和注意事项

  多层陶瓷电容器的特性

  安装面积(体积)小

  低发热(低ESR)

  低ESL

  出色的长期可靠性

  最高工作温度高

  3. 中高压、低损耗MLCC方案

  如上所述,高功率谐振电路(如汽车用WPT和电动汽车和PHV用OBC)需要具有低损耗和不易产生自热的谐振电容器。为了满足对谐振电容器的需求,Murata提供了一系列额定电压为630Vdc和1000Vdc且使用低损耗材料的中高压多层陶瓷电容器。

村田:高功率谐振电路中,MLCC的选择标准和注意事项

  产品分为两种类型:标准型片式和带金属端子型片式陶瓷电容(见上表)。

  金属端子类型可以通过连接金属端子将大型芯片(5750M 尺寸)堆叠成两层,这不仅减少了安装面积,还有助于降低汽车市场中令人担忧的“焊料开裂”风险。由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。

  内置谐振电路的车载OBC、服务器电源和大型设施电源等大型产品由于使用时间长,因此需要电容器的长期可靠性。对于这些多层陶瓷电容器,在连续使用的情况下,目标寿命为10年。

  4. 选择谐振电容器要注意什么?

  包括上述介绍的产品在内,在选择谐振电路中使用的电容器(谐振电容器)时,需要注意一些事项。在大功率应用中,谐振电容器的选择不正确可能导致设备冒烟或起火。这也适用于多层陶瓷电容器,它们具备低发热量和长期可靠性;因此,必须在充分考虑其特性后进行选择。

  我们将解释两个我们认为特别重要的项目:“电容器的自加热”和“电压偏离曲线”。

  4.1自热限制

  在高功率应用中使用的谐振电容器在施加电压后立即产生初始热量后,自发热增加。即使在多层陶瓷电容器中,自发热的增加也是不可避免的,但在目标使用寿命(例如10年)内,应避免电压和频率条件超过125°C的最高工作温度(下图)。

  电容器表面温度的变化

  Murata的多层陶瓷电容器将允许电压Vdc定义为电容器表面温度在其目标寿命期间达到最高工作温度125°C的电压。在选择电容器时,施加的电压V(p-p)必须保持在该允许电压内。

  对于每个项目,我们设置了根据频率显示允许电压的“电压偏离曲线”(见下图),并在网站上的产品规格和规格表中提供了详细说明。

  基于自加热评估的允许电压曲线设置

  4.1 允许电压的限制

  这里是我们对允许电压和频率之间关系的看法。上图所示的“电压折损曲线”概括了为每个项目设置的允许电压图,根据频率范围可分为三个区域。

  区域1:

  频率范围―低于几十kHz:受额定电压限制。

  由于几个10kHz或更低的低频,电容器的自加热是最小的,额定电压成为允许电压。然而,为中、高压低损耗设计的多层陶瓷电容器在该低频范围内作为谐振电容器使用的情况很少见。

  区域2:

  频率范围―几十kHz到几百kHz:由于连续温度升高受到限制。

  施加电压后的立即自热在ΔT20度以内,但由于施加几十kHz~几百kHz的高电压,该区域的自热增加。无论是低损耗还是高介电常数片式电容器,我们都要求工作条件确保电容器的自加热保持在20度ΔT内。

  在该区域,允许电压定义为电容器表面温度达到最高工作温度125°C之前的目标寿命(在这里介绍的产品中,目标寿命为10年)的电压。使用中高压、低损耗多层陶瓷电容器作为谐振电容器的情况大多属于这一区域。

  区域3:

  频率范围―几百kHz或更高:由于施加电压后立即产生初始热量而受到限制。

  当频率进一步增加时,施加电压后电容器的自发热会立即超过ΔT20度。如前所述,我们要求,无论低损耗或高介电常数贴片电容器,工作条件都应确保电容器的自加热保持在ΔT20度以内。即使在中、高压低损耗多层陶瓷电容器中,允许电压定义也是自加热达到20度ΔT的电压。因此,应选择温度低于此阈值的产品。

  5.谐振电路MLCC选型工具

  如上所述,选择谐振电容器需要考虑多种特性,这增加了元件选择的难度。这可能是使快速增长领域的技术进步复杂化的一个因素,例如汽车OBC、服务器电源和大型设备电源。特别需要强调以下两点:

  由于施加的电压有升高的趋势,经常会使用多个串联和并联连接,因此需要计算等效电容。

  有必要将单个电容器的施加电压V(p-p)保持在“额定电压”以下。

  村田制作所开发了一款名为“SimSurfing”的工具,该工具支持根据客户的使用环境选择最佳谐振电容器。只需输入谐振电容器的工作电压、温度和所需静电容量,该工具就能显示最佳产品以及推荐的串联和并联连接数。该工具有助于减轻客户在零件选择和设计过程中的负担。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
活动预告 | 村田面向多种定位场景的高性能GNSS定位融合解决方案
2026-01-13 13:12 阅读量:267
村田:工业设备电磁噪声对无线通信的影响及EMC对策
  近年来,运用IoT、AI、机器人和5G等前沿技术的智能工厂在制造业迅速普及。这些技术创新提高了自动化程度,节省了人力,并提高了生产效率。  然而,随着从传统的有线控制向无线控制的转变,确保工厂内部稳定的无线通信已成为一个重要的课题。特别是工业机器人和控制设备产生的电磁噪声对Wi-Fi、LTE和5G等无线信号造成干扰,可能会导致严重的运行问题,例如:  生产设备误动作  因通信错误而导致生产线停工  随着智能工厂的发展,电气和电子设备不仅需要正常运行,而且还需具备不对其他设备造成电磁干扰且不受外部干扰的能力。应对这些EMC(Electromagnetic Compatibility,电磁兼容性)风险对于维持稳定且有效的运行不可或缺。  01 智能工厂电磁噪声来源  智能工厂中潜在的对无线通信产生威胁的电磁噪声很多。在现在的生产现场,同时运行着多种多样的工业机器人、电机和控制设备,会产生从低频到GHz频带的多种电磁噪声。  测量结果也表明,这些噪声频带与Wi-Fi(2.4GHz/5GHz)、LTE和5G等无线通信频带重叠。  因此,在智能工厂中经常出现无线设备接收灵敏度不足和通信出错并威胁到其稳定有效地运行的情况。  表1 无线通信标准的频带  02 智能工厂潜在EMC风险  智能制造环境中,电磁噪声会带来两大风险:“外部干扰”和“设备自身的自干扰”。  首先是外部电磁噪声导致的误动作风险。  在工厂内的实验中,在无噪声环境中仅观察到了LTE信号。然而,在实际的工厂环境中,人们已经确认:信号和电磁噪声水平接近,接收灵敏度下降量可能会达到18dB。  其次,工业机器人和控制设备可能会产生“自干扰”。  自干扰(Self-Interference)是指设备自身发射的电磁波干扰其自身运行的现象,特别是在工业机器人和控制设备等复杂系统中,这可能会导致性能不足或意外行为。  设备自身产生的电磁噪声干扰其自身的运行,特别是DC-DC转换器(将直流电压转换为其他直流电压的装置),人们已经确认:DC-DC转换器会成为噪声源,电缆和金属外壳充当天线,导致接收灵敏度降低量可能会达到13dB。  03 工业机器人的噪声对策  要应对工业机器人电磁噪声,首先我们来分析EMI的产生机理。  工业机器人由三个要素组成:驱动部分(机械臂)、控制部分(包含电路板和DC-DC转换器在内的金属外壳)以及连接两者的电缆。  对电磁噪声源的调查表明,DC-DC转换器是主要的噪声源。而且,已确认电缆和金属外壳会起到像天线一样的作用,向周围辐射噪声。  因此,EMC对策应以下面两点为中心:  遏制来自DC-DC转换器的电磁噪声  预防噪声通过电缆和外壳传播  这些对策对于维持智能工厂中的无线通信质量和稳定运行不可或缺。  04 从案例中学习噪声对策  我们通过工厂现场的接收灵敏度改进,从实际事例中学习总结了对应噪声对策。  在实际生产现场,通过将静噪滤波器(扼流圈)插入DC-DC转换器的输出DC线路,无线通信性能得到了显著改进。具体而言,机器人工作时的LTE下限接收灵敏度改进了约11dB。噪声允许值参考了通用标准IEC61000-6-3(住宅和商业环境)  该对策之所以有效,是因为DC-DC转换器产生的高频噪声被滤波器的阻抗特性反射并返回到转换器侧,从而预防了其泄漏到输出侧。  选择滤波器时,重要的是考虑频率特性和插入损耗(由于插入滤波器而导致的信号衰减)等因素。  在本事例中,我们使用了村田制作所的LQW18CAR16(1.6×0.8×0.8mm,额定电流为1.3A)。另一种选择是村田制作所的BLM系列(铁氧体磁珠电感器),然而,其电流叠加特性与LQW系列不同,因此,请根据所需的噪声消除性能进行选择。  村田建议  静噪滤波器LQW18CAR16:  尺寸:1.6×0.8×0.8mm  额定电流:1.3A  LQW18CAR16  05 EMC标准的新近动向  适用于工业设备和机器人的EMC标准“CISPR11第7版”于2024年2月发布。与上一版(第6.2版)相比,新增了1至6GHz的发射限值。  今后,需要在更宽的频带范围内采取电磁噪声对策并符合相关标准,因此,在现场和设计部门双方及时掌握新近信息并采取实用的对策不可或缺。  在本文中,对实用的电磁噪声对策的思考方法和EMC标准的新近动向进行了相关解说。如有任意疑问或希望讨论具体事例,请随时联系我们。  06 总 结  随着智能工厂的发展,电磁噪声问题预计将在生产现场日益凸显。因此,更加强有力的EMC(电磁兼容性)对策不可或缺。为了有效应对这一问题,以下举措至关重要:  对工厂内的电磁噪声环境进行评估;  在工业设备和机器人中实施电子元件级别的噪声对策(特别是针对DC-DC转换器、电缆和外壳的对策)。  其中,电子元件级别的噪声对策应该是特别优先的事项之一。这是因为它直接影响无线通信的稳定性和设备的可靠性,在现场进行实际应对不可或缺。
2026-01-13 13:03 阅读量:259
村田首款,1210英寸、额定电压1.25kV、静电容达15nF的汽车用陶瓷电容器
  株式会社村田制作所初次*开发并开始量产了1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV、具备C0G特性的、15nF静电容量的多层片式陶瓷电容器。该产品可用于车载充电器(OBC)及高性能民用电子设备的电源电路,有助于实现高效率的电力变换,并在高电压条件下稳定运行。(*由村田调查得出,截至2025年12月1日。)  主要特点  在1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV且具备C0G特性的前提下,实现了15nF特大静电容量的多层片式陶瓷电容器。  1.25kV高耐压,适配SiC MOSFET。  C0G特性带来低损耗与稳定的电容值。  车载充电器(OBC)安装于电动汽车(EV)上,从外部电源为车载电池充电的装置。在电动汽车搭载的车载充电器以及民用设备的电源电路中,通常会包含用于高效电力变换的谐振电路,以及用于遏制电流、电压峰值的缓冲(吸收)电路。由于这两类电路中高电压与大电流反复作用,元件性能的轻微变化就可能导致效率下降、设备发热,进而可能引发工作异常或故障。因此,市场亟需具备在温度变化下性能稳定、损耗低且能承受高电压的电容器。  近年来,电源电路中的开关器件正从Si MOSFET向能够实现更高效率与高速开关的SiC MOSFET转移。开关半导体器件以高速对电流进行通断控制,实现电压与频率变换的,Si MOSFET采用硅半导体的电力控制用开关器件,多用于低至中耐压场景。SiC MOSFET是采用碳化硅的高耐压、高效率电力控制用开关器件,多用于超过1.2kV的场景,通常要求1.2kV的耐压规格,因此对额定电压高于该水平的电容器需求在增加。  为此,村田通过特有的陶瓷材料与内部电极薄层化技术,首次在1210英寸尺寸实现了额定电压1.25kV、具备C0G特性、静电容量为15nF的本产品,并已开始量产。借助C0G特性的低损耗及电容随温度变化的稳定性,本产品适用于谐振电路与缓冲(吸收)电路。
2026-01-07 10:25 阅读量:364
高绝缘、低漏电、高可靠!村田新一代DC-DC转换器,是如何做到的?
  在医疗、工业与能源领域,设备对电源性能与可靠性的要求日益提高。无论是工业和能源中的储能系统、可再生能源设施,还是直接接触人体的医疗设备,这些高性能应用都依赖具备高绝缘性与高可靠性的DC-DC转换器,以保障电子设备更高效、稳定地运行。  村田针对高性能市场,推出了新一代表面贴装型小型化DC-DC转换器“NXJ1T系列”。该产品具有4.2kV DC高绝缘耐压、低漏电流及高可靠性。  NXJ1T系列主要特性  高绝缘性能、低漏电流设计及高可靠性:有助于提高应用场景的可靠性和安全性。  效率提升:实现了约80%的效率,并且支持低开关频率(500kHz至2MHz)。  小型化设计:尺寸为13.70mm(L)*10.55mm(W)*4.04mm(H),有助于节省设备空间。  符合与安全和医疗相关的标准:本产品支持UL62368和2ANSI/AAMI ES60601-1。  高绝缘、低漏电、高可靠:如何做到?  村田的这款新一代DC-DC转换器,是怎么做到高绝缘、低漏电、高可靠的呢?  首先,NXJ1T系列具有高绝缘耐压优势,一个主要原因是其得益于村田专有的封装制造技术。  这款小型化表面贴装型的DC-DC转换器,采用了村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压,即使开关或控制器发生故障,也能形成隔离屏障,从而实现了出众的热性能、机械性能和绝缘性能,加强了产品的安全性。村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压  传统的DC-DC转换器采用隔离材料形成隔离屏障,树脂灌封层内部的微小局部放电可能导致微孔的形成,这些微孔随着时间的推移而聚结,导致隔离屏障的永久性击穿,从而使任意的高压放电都能够从输出端传导到输入端,反之亦然。  这款新型转换器模塑封装所采用的实心隔离材料,具有远超传统转换器好几倍的局部放电耐受能力。即使发生放电,依然能够维持隔离屏障的完整性,有效遏制微孔的产生。  其次,传统的DC-DC转换器通常采用双绞线绕制的变压器,线圈间距较近,容易导致较高的电容耦合。这意味着输出侧开关产生的任意噪声都可能被反射至输入电路。这可能导致控制电路出现误触发,从而需要使用更多的滤波元件,进而增加成本。  而这款新型转换器内的变压器则采用实心骨架上的独立绕组,可实现行业内居先的低绕组间容抗,形成高频隔音屏障,其共模瞬态抗扰度(CMTI)超过200kV/uS。  通过村田专有的封装技术,NXJ1T实现了更优的热性能表现,产品能够承受1,000次以上的-40°C至125°C的温度循环测试。更强的热循环表现能够使其具有更长的使用寿命。  此外,NXJ1T系列的封装能预防粉尘和细小颗粒侵入,保护内部器件及电路,确保更高的可靠性。因此,能够应对从工业和能源领域到医疗领域的大量应用。  需要进一步指出的是,这些性能优势都得以集成在这个行业标准封装中。NXJ1T采用符合行业标准的封装尺寸,且向后兼容现有的表面贴装方案,不需要变更设计即可实现更强的性能。
2025-12-22 11:34 阅读量:343
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码