With 16-bit PWM dimming and 4-channel LED drivers, NSUC1500 from NOVOSENSE redefines cockpit experience

发布时间:2025-03-14 09:57
作者:AMEYA360
来源:NOVOSENSE
阅读量:338

  NOVOSENSE announced the addition of a new member to its NovoGenius product family - NSUC1500-Q1, a highly integrated ambient lighting driver SoC product.

  Integrating an ARM® Cortex®-M3 core and 4-channel high-precision current-mode LED drivers, NSUC1500-Q1 provides 16-bit independent PWM dimming and 6-bit analog dimming capabilities, and enables more accurate dimming and color mixing control while effectively compensating for lumen depreciation. Additionally, NSUC1500-Q1 is compliant with the AEC-Q100 Grade 1 and CISPR 25 Class 5 EMC standards, promising high reliability and flexibility.

  This innovative product allows opportunities to develop more efficient and creative smart cockpit lighting solutions that provide users with more superior visual experience.

With 16-bit PWM dimming and 4-channel LED drivers, NSUC1500 from NOVOSENSE redefines cockpit experience

  With continuous advancements of automotive personalization and innovation, vehicles of the future will be more than a means of transportation, but a mobile living space full of human touch and intelligence. The rapid evolvement of smart cockpits has further stimulated strong demand for more intelligent and comfortable driving experience from end-users. In this context, the creation of in-vehicle atmosphere is increasingly valued, as users expect to enhance the sense of immersion and emotional connection experience in the overall cabin through the integration and interaction between the ambient lighting system and other cockpit applications.

  The role of cabin ambient lighting is also quietly transforming. It goes beyond the traditional lighting and decoration functions, and has become a core element in enhancing the driving experience. By integrating personalized customization, intelligent response to driving conditions, and enhanced interactive features, the ambient lighting system can greatly improve the sense of immersion and ownership for drivers and passengers, creating a unique driving atmosphere for each individual.

  The NSUC1500-Q1, a highly integrated ambient lighting driver SoC, comes with an ARM® Cortex®-M3 processor core and four LED driver circuits. It also integrates high-precision constant current source, signal control, and LIN interface. These components work together to enable precise current control for each LED, and provide a perfect solution that answers complex and changing ambient lighting design requirements. Additionally, it supports flexible regulation of numerous LEDs. With internal high-precision PWM signals, NSUC1500-Q1 delivers exceptionally smooth dimming and color mixing effects. It also effectively compensates for brightness decay in RGB ambient lights due to temperature fluctuations and long-time aging, thereby ensuring consistent and outstanding lighting effects.

With 16-bit PWM dimming and 4-channel LED drivers, NSUC1500 from NOVOSENSE redefines cockpit experience

With 16-bit PWM dimming and 4-channel LED drivers, NSUC1500 from NOVOSENSE redefines cockpit experience

  High system reliability and effective protection mechanisms

  NSUC1500-Q1 is a good performer in system reliability, meeting the stringent reliability requirements of AEC-Q100 Grade 1. It also comes with advanced SoC-level LED diagnostics and protection functions. These design features significantly bolster the overall system reliability, and ensure stable operation of the ambient lighting system in a wide range of complex environments, thus delivering a more reassuring and dependable driving experience for users.

  Outstanding electrical properties and application flexibility

  In terms of electrical properties, NSUC1500-Q1 demonstrates exceptional adaptability and flexibility. Its LIN port provides reverse voltage withstand range from -40V to 40V, ensuring reliable operation in high-stress electrical environments. The BVDD pin supports a wide withstand voltage range from -0.3V to 40V, allowing it to directly use 12V power from the automotive battery. This greatly simplifies the system design process and significantly enhances the application flexibility.

  Integrated high-precision ADC for enhanced signal processing capability

  NSUC1500-Q1 integrates a high-performance 12-bit SAR ADC, providing more precise signal processing support for ambient lighting drivers. In the single-ended mode, its differential non-linearity (DNL) is controlled between -1LSB and +0.8LSB, and its integral non-linearity (INL) is maintained in the range from -1.1LSB to +1.1LSB, ensuring high accuracy and stability in signal processing. In the differential-ended mode, the DNL and INL of NSUC1500-Q1 can range from -0.8LSB to +0.8LSB, enabling smoother and more refined color transitions and brightness adjustments even in complex lighting scenarios.

With 16-bit PWM dimming and 4-channel LED drivers, NSUC1500 from NOVOSENSE redefines cockpit experience

  Ultimately streamlined BOM for significant cost reduction

  With an ultimately streamlined BOM, NSUC1500-Q1 from NOVOSENSE brings significant cost efficiency enhancement and design optimization for ambient lighting systems. Apart from the ambient lighting LEDs, its peripheral circuit requires only five components: three capacitors, one ferrite bead, one reverse protection diode, and an optional Transient Voltage Suppressor (TVS) diode. This streamlined BOM design markedly reduces system costs, and allows a smaller PCB footprint, helping achieve an optimal balance between system cost and performance.

  Excellent EMC performance and shortened design cycle

  NSUC1500-Q1 from NOVOSENSE offers reference designs for ambient lighting, with optimized EMC (Electromagnetic Compatibility) and thermal management performance. NSUC1500-Q1 has successfully undergone and passed all automotive EMC/EMI tests according to the CISPR 25: 2021 standard, meeting the most stringent Class 5 requirements. Its outstanding EMC performance ensures stable operation even in complex electromagnetic environments. In addition, the reference designs tailored for specific applications are carefully optimized and well answer customer needs, thereby shortening the design cycle and saving valuable time and resources for customers.

  Cortex-M3 core for enhanced scalability

  NOVOSENSE NSUC1500-Q1 is equipped with an Arm® Cortex®-M3 core, and offers rich scalability, including memory and package options. This not only allows flexible platform development, but also provides a highly cost-effective solution for ambient lighting applications.

  Key features of NSUC1500-Q1

  - 32-bit ARM® Cortex®-M3

  - 32 KB Flash, 2 KB SRAM, 2 KB EEPROM, 15KB ROM with integrated UDS bootloader

  - On-chip high-precision oscillator with a main frequency of 32 MHz

  - 35 kHz low-power and low-speed clock

  - Operating voltage range from 6.0V to 28V

  - 4-channel high-precision current-mode LED drivers, with a maximum drive current of 64 mA

  - Supporting 16-bit independent PWM dimming and 6-bit analog dimming

  - 1-channel 12-bit high-precision ADC with a sampling rate of up to 1.5Msps

  - LIN PHY supporting LIN 2.x standards and SAE J2602

  - Supporting various fault diagnostics capabilities, such as LIN diagnostics, RGB diagnostics, and supply voltage monitoring, as well as thermal shutdown functionality

  - Typical power consumption in sleep mode at 20μA

  - Compliant with AEC-Q100 Grade 1

  - Available in QFN20/SOP8/HSOP packages


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
NOVOSENSE Achieves ISO 26262 ASIL D
  NOVOSENSE Microelectronics today announced it has earned the ISO 26262 ASIL D "Defined-Practiced" certification from TÜV Rheinland, a significant milestone validating the company's robust functional safety management system.  This achievement confirms NOVOSENSE's successful implementation of functional safety practices in critical automotive applications, including ABS wheel speed sensors and isolated gate drivers. Moving from the "Managed" (system establishment) to the "Defined-Practiced" (system implementation) level signifies a major leap in NOVOSENSE's functional safety capabilities and underscores the maturity of its research and development (R&D) and quality management systems.  Transitioning from Compliance to Real-World Application  Since securing the ISO 26262 ASIL D "Managed" certification in December 2021, NOVOSENSE has focused on refining its R&D processes and strengthening its functional safety management. TÜV Rheinland's comprehensive audit assessed various aspects, including functional safety lifecycle management, safety culture, and R&D proficiency. The review specifically examined the practical application of these systems in NOVOSENSE's NSM41xx series wheel speed sensors and the NSI6911 isolated gate driver, confirming the company's systems meet the stringent "Defined-Practiced" standard.  Key Product Highlights:  • NSM41xx Series ABS Wheel Speed Sensors: These AMR-based sensors, designed to ISO 26262 ASIL B (D) standards, support ASIL D system-level functional safety. They offer precise wheel speed monitoring for critical systems like ABS, ESP, and EPS, ensuring reliability in demanding conditions. These are currently in mass production.  • NSI6911 Isolated Gate Driver: Designed for new energy vehicle (NEV) main drives, this ASIL D-compliant driver features a 12-bit high-precision ADC, advanced diagnostics, and an SPI programmable interface. It provides robust driving and protection for SiC MOSFETs and IGBTs, ensuring NEV safety. Samples are now available.  Commitment to Automotive Excellence  Automotive applications remain a core focus for NOVOSENSE, driving the company to uphold its "Robust & Reliable" values. Building strong functional safety capabilities is a strategic priority, supported by a comprehensive ISO 26262:2018-compliant development process and a rigorous automotive-grade quality management system.  As of 2024, NOVOSENSE has shipped over 500 million automotive chips, with automotive business representing more than 35% of its total revenue. Its products are trusted by leading NEV OEMs and Tier-1 suppliers.  NOVOSENSE aims to be a preferred chip supplier in the global automotive supply chain. Through its strong R&D, reliable quality assurance, proven mass production, and flexible customization, NOVOSENSE delivers high-quality, high-reliability, and high-performance analog and mixed-signal chips, along with comprehensive system-level solutions.
2025-03-20 09:57 阅读量:281
Leading Performance for High Voltage Applications: NOVOSENSE Launches the NSI67X0 Series of Smart Isolated Drivers
  NOVOSENSE has officially launched the NSI67X0 series of smart isolated drivers with Isolated Analog Sensing function. Suitable for driving power devices such as SiC, IGBTs and MOSFETs, and available in both automotive (AEC-Q100 compliant) and industrial variants, this series can be widely used in new energy vehicles, air conditioners, power supplies, photovoltaics and other applications.  This series of isolated gate drivers equates an isolated analog to PWM sensor, which can be used for temperature or voltage detection. The design further enhances driver versatility, simplifies system design, effectively reduces system size and lowers overall cost.  High-voltage Drive and Ultra-high Common-mode Immunity  Designed to drive IGBTs or SiC up to 2121V DC operating voltage, NSI67X0 offers advanced protection functions, excellent dynamic performance, and outstanding robustness. This series uses SiO2 capacitor isolation technology to isolate the input side from the output side, providing ultra-high common-mode immunity (CMTI>150kV/μs) while ensuring extremely small offset between devices, which is at the leading level in the industry.  Powerful Output Capability and Miniaturized Package  The NSI67X0 series has powerful output capability, supporting ±10A drive current and a maximum output drive voltage of 36V, far exceeding most similar products. Its SOW16 package design further enhances safety by achieving a creepage distance of more than 8mm while maintaining miniaturization.  Comprehensive Protection Functions and Automotive Certification  With comprehensive protection functions, including fast overcurrent protection, short-circuit protection, fault soft turn off, 4.5A Miller clamp, and undervoltage protection, this series is a reliable choice for driving power devices such as IGBTs. The entire product family meets the AEC-Q100 standard for automotive applications and can be widely used in new energy vehicles, industrial control and energy management.  Features of NSI67X0 Series  ◆ Smart isolation drivers up to 2121Vpk for driving SiC and IGBTs  ◆ High CMTI: 150 kV/μs  ◆ Input side supply voltage: 3V ~ 5.5V  ◆ Driver side supply voltage: up to 32V  ◆ Rail-to-rail output  ◆ Peak source and sink current: ±10A  ◆ Typical propagation delay: 90ns  ◆ Operating ambient temperature: -40°C ~ +125°C  ◆ Compliant with AEC-Q100 for automotive applications  ◆ RoHS compliant package type: SOW16, creepage distance > 8mm  Protection Functions  ◆ Fast over-current and short-circuit protection, with optional DESAT threshold voltage of 9V and 6.5V and OC threshold voltage of 0.7V  ◆ Integrated soft turn off function in case of fault, with optional soft turn off current of 400mA and 900mA  ◆ Integrated Miller clamp function, with clamp current up to 4.5A  ◆ Independent undervoltage protection UVLO on both HV and LV sides  ◆ Fault alarm (FLT/RDY pin indication)  Isolated Analog Sampling Function  ◆ Isolated analog sampling function  ◆ AIN input voltage range: 0.2V ~ 4.7V  ◆ APWM output duty cycle: 96% ~ 6%  ◆ Duty cycle accuracy: 1.6%  ◆ APWM output frequency: 10kHz  ◆ Optional AIN integrated constant current source output  Safety Related Certification  ◆ UL Certification: 1 minute 5700Vrms  ◆ VDE Certification: DIN VDE V 0884-11:2017-01  ◆ CSA Certification: Approved under CSA Component Acceptance Notice 5A  ◆ CQC Certification: Compliant with GB4943.1-2011  Introduction to Principle of High-precision Temperature Sampling of NSI67X0 Series  The AIN interface of the NSI6730 has a built-in 200uA current source. When an external NTC is connected, a voltage drop will be generated and demodulated into a 10kHz PWM signal for isolated output. The PWM signal is captured by the processor MCU, and the corresponding voltage value and temperature are obtained by calculating the duty cycle.  When the AIN voltage is in the range of 0.2V ~ 4.7V, the AIN input voltage and APWM output duty cycle are linearly related. When the AIN voltage is converted to a PWM signal, the PWM duty cycle conforms to the following formula:  That is, the AIN voltage of 0.2V ~ 4.7V corresponds to a PWM duty cycle of 96% ~ 6%.  Model Selection Chart of NSI67X0 Series  This series offers a variety of models to meet the needs of different applications. Specifically, in the NSI67X0 series, when X is 3, the AIN interface integrates a constant current source; when X is 7, the AIN interface does not integrate a constant current source.
2025-02-24 16:18 阅读量:515
NOVOSENSE Launches NSIP3266 Full-Bridge Transformer Driver with Integrated Crystal Oscillator, Simplifying Isolated Driver Power Supply Design
  NOVOSENSE today announced the launch of the NSIP3266 full-bridge transformer driver with integrated crystal oscillator, multiple protection functions and soft start support, which can be widely used in isolated driver power supply circuits in automotive on-board chargers (OBCs), traction inverters and charging piles, photovoltaic power generation and energy storage, server power supply and other systems. NSIP3266 supports a full-bridge topology with a wide range of inputs, and with clever pin and function design, it greatly simplifies the design of isolated driver’s power supply circuits, facilitating system manufacturers to optimize system circuits and shorten product time to market.  Currently, isolated driver's power supply in high-voltage systems is available in three architectural forms: centralized, fully distributed, and semi-distributed. Centralized architecture has only one stage of power supply, and the auxiliary power input voltage has a wide input range, requiring closed-loop operation. At the same time, the transformer design is complicated, and especially when a single low-cost isolated power supply is used, there are problems of multi-output load regulation and long wiring, which increase the difficulty of system design and debugging.  Fully distributed architecture uses independent isolated power modules to supply power to isolated drivers. The advantage is that 1-to-1 power supply and targeted protection can be achieved for isolated drivers, but a corresponding number of isolated power modules need to be configured, and the system cost is high.  Semi-distributed architecture adopts a balanced strategy. Through a two-stage auxiliary power architecture, the first stage uses devices with a wide input voltage range to generate regulated rails, and the second stage can be a compact open-loop form using other devices to provide isolated power supply for isolated drives. Semi-distributed architecture is gaining popularity among engineers because of its simplicity in design and balance of system cost, performance, and protection requirements.  Simplified circuit design with full-bridge topology  NOVOSENSE's NSIP3266 full-bridge transformer driver is designed for semi-distributed architecture with isolated driver power supply. Common topology options for semi-distributed architecture include push-pull, LLC, and full-bridge. NSIP3266 adopts full-bridge topology. Compared with other solutions, the principle of full-bridge topology is simple, the transformer structure does not require a center tap, the working principle does not involve the design and selection of external L and C, and the peripheral BOM is often minimal. At the same time, the full-bridge topology is more tolerant to transformer design, including leakage inductance and parasitics, which saves engineers' efforts in system design and debugging.  Ingenious design releases MCU resources  It is worth mentioning that NSIP3266, through the internal integrated crystal oscillator circuit and RT pin design, allows engineers to complete the switching frequency configuration with only external resistors, achieving decoupling of MCU control and more flexible layout. At the same time, it can still provide safe power supply when the MCU fails, promoting higher system safety. In addition, the built-in soft-start function of NSIP3266 also eliminates the need for MCU control. While not requiring MCU domain routing, it saves secondary-side current limiting resistors, greatly simplifying board design and improving architectural flexibility.  Wide voltage input and comprehensive protection  NSIP3266 supports a wide operating voltage range of 6.5V~26V. No additional TVS protection tube is required in the system circuit, allowing engineers to choose the pre-stage power supply more flexibly. In addition, NSIP3266 provides multiple protection functions, including undervoltage protection, overcurrent protection, over-temperature protection, etc. The comprehensive protection functions enable engineers to focus on the optimization and innovation of the core system functions, and to design the system quickly and efficiently to meet the reliability requirements.  Packaging and selections  NSIP3266 is available in EP-MSOP8 package (3.0 x 3.0mm x 0.65mm, with thermal pad). The industrial version, NSIP3266-D, and the automotive version, NSIP3266-Q1, which meets the requirements of AEC-Q100, will be mass-produced in the first half of 2025. Please contact NOVOSENSE's sales team (sales@novosns.com) for product details or to request samples.  Rich isolation products meet diverse needs  With its expertise and leadership in isolation technology, NOVOSENSE provides a series of isolation and "isolation+" products covering digital isolators, isolated sampling, isolated interfaces, isolated power supply, and isolated drivers. NSIP3266 is a new addition to NOVOSENSE's isolated power supply family. NOVOSENSE also offers a selection of other cost-effective and high-performance, high-integration options, including: the NSIP605x series of push-pull transformer drivers; the NSIP88/89xx and NIRSP31x series with integrated transformers and multi-channel digital isolators; the NSIP83086 isolated RS485 transceiver and the NSIP1042 isolated CAN transceiver with integrated transformers and isolated interfaces. NOVOSENSE's comprehensive "isolation+" product portfolio can meet the diverse system design needs of various types of customers and provide one-stop chip solutions for them.
2025-02-19 09:59 阅读量:646
NOVOSENSE's NCA1044-Q1 CAN Transceiver Successfully Passes the IBEE/FTZ-Zwickau EMC Certification
  NOVOSENSE announced that its newly launched NCA1044-Q1, an automotive-grade CAN transceiver, had received the EMC certification test reports from IBEE/FTZ-Zwickau, a prestigious European testing organization. NCA1044-Q1 successfully passed all test items. NOVOSENSE now can provide the test report to support automakers in streamlining their system certification process and accelerating their product launches.  CAN transceivers are commonly used in automotive CAN bus networks typically for critical control and diagnostics functions, such as battery, motor control, electronic control, braking, steering, and airbag systems. These applications are prone to various sources of electromagnetic interference (EMI), including battery, motor and electronic control systems for EVs, engine, frequency converter and wireless communication devices. Such disturbances can adversely affect data transmission, leading to signal errors or system failures, and even compromised system safety.  In addition, due to the long distance of CAN bus wiring in automotive systems, CAN transceivers can easily radiate noise through the CAN bus acting as an antenna. This can result in radiated emission and conducted emission from modules or the entire system that exceed the requirements for vehicle. Therefore, CAN transceivers that provide good electromagnetic compatibility (EMC) performance are essential for ensuring system reliability.  Full compliance with IBEE/FTZ-Zwickau certification  Given the critical role of CAN transceiver's EMC performance in automotive safety, countries or regions have established stringent automotive EMC standards and certification procedures for automakers to follow. For example, both the SAE J2962 standard and the European IBEE/FTZ-Zwickau certification set clear requirements for the EMC performance of automotive electronics.  The IBEE/FTZ-Zwickau certification is carried out according to the IEC 62228-3 standard. Compared with SAE J2962, IEC 62228-3 excludes the effects of peripheral circuits, focuses more on the EMC property of the CAN transceiver itself, and specifies higher performance level requirements. The IEC 62228-3 standard is also extensively adopted by automakers outside of Europe. The IBEE/FTZ-Zwickau certification includes four tests: Emission RF Disturbances, Immunity RF Disturbances, Immunity Transients, and Immunity ESD. NCA1044-Q1 from NOVOSENSE successfully passed all four tests.  Industry-leading interference immunity  NCA1044-Q1 features an ingenious circuit design that addresses the issue of output signal errors caused by abnormal high-voltage interference affecting its output circuit. This enhances its EMC performance, helping customers substantially reduce their EMC design complexity, simplify peripheral components, and lower costs.  Furthermore, NCA1044-Q1 boasts industry-leading interference immunity. According to IEC 62228-3, when external RF noise at different frequency bands couples to the CAN bus, a higher pass-through power indicates stronger interference immunity. This means a lower risk of errors in the system.  Even without the use of a common-mode inductor filter on the bus, NCA1044-Q1 from NOVOSENSE can still meet the highest power requirements specified in the standard (as shown in Figure-1 and Table-2). Although this test is typically not required at the application level, NCA1044-Q1 still successfully passed the test. This capability helps users reduce peripheral circuits, lower costs, and enhance system robustness.  Packages and selection  NCA1044-Q1 is now in mass production and is available in SOP8 and DFN8 packages. Compliant with the AEC-Q100 Grade 1 requirements, it operates in a wide temperature range from -40°C to 125°C, and provides over-temperature protection. NCA1044-Q1 also supports TXD dominant timeout function and remote wake-up in standby mode. 
2024-12-16 17:06 阅读量:947
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码