MOS管失效的六大原因

发布时间:2024-04-23 11:51
作者:AMEYA360
来源:网络
阅读量:1093

  功率器件在近几年的市场方面发展的非常火爆,尤其是 MOS 管,他主要应用在电源适配器,电池管理系统以及逆变器和电机控制系统中。

  而随着计算器主板,AI 显卡,服务器等行业的爆发,低压功率 MOS 管将再次迎来爆发性的市场需求。

MOS管失效的六大原因

  在开关电源应用领域,由于电源的 Controller 做的已经非常完善,且大部分 Controller 为纯硬件控制,厂家一般也会对布局布线和 MOS 的驱动做专门的优化,因此在开关电源应用中的 MOS 烧坏的情况比较少,大部分表现为过热。

  而在电池管理系统,和电机控制系统以及逆变器系统中,MOS 管的烧坏概率就变得非常大,其原因在于,电池管理系统的保护瞬间电流突变,电机和逆变器系统中的 MOS 带载都是非常大的感性负载,尤其是电机控制还面临着制动带来的反向电动势,都对 MOS 管的工作电压和电流提出了更大的挑战。

  今天我们趁热打铁,分析一下 MOS 管最常见的 6 个失效模式。

  失效模式 雪崩失效雪崩失效指的就是过压击穿,也就是我们常常说的漏极和源极之间的电压超过了 MOSFET 的额定电压,并且达到了 MOSFET 耐受的极限,从而导致 MOSFET 失效。

  SOA 失效SOA 失效指的是过流损坏,也就是说,电流超过了 MOSFET 的安全工作区引起的失效,一般是由于 Id 超过了器件规格测定的最大值,使得 MOSFET 的热损耗过大,长期热量累积而导致的失效。

  静电失效静电失效比较好理解,几乎任何电子元器件都面临静电问题,尤其是在北方干燥的冬天。要知道,MOS 管的一般静电耐受是 500V,非常的脆弱,所以冬天我们在操作 MOS 管的时候还是尽量使用防静电手环和镊子。

  栅极击穿栅极击穿指的是栅极遭受异常电压导致栅极栅氧化层失效,一般我们驱动 MOS 管的 Vgs 设定在 12V,器件手册中虽然标注了 Vth 一般在 2-5V,但是对于不同的 Vgs 会对应不同的 Rdson,因此我们通常选用 12V 或者 15V 来保证 MOSFET 的完全开启。而这个电压并不能像 MOS 的 Vds 一样具备很高的耐电压能力,Vgs 一般会被限制在 20V 以内,超过 20V 将有可能击穿栅极。

  栅极击穿后,一般使用万用表可以测量出来,GS 之间短路,而 DS 之间正常成高阻态。

  谐振失效无论是电池管理系统,还是逆变器和电机控制领域,我们通常会使用 MOS 的多并联设计,由于 MOSFET 本身参数的不一致性会导致每个 MOSFET 的栅极及电路寄生参数不同,在一同开关的时候,由于开通的先后顺序问题引起开关震荡,进一步损坏MOSFET,因此在并联使用的时候一定要注意布局布线,以及 MOS 的Vth 选择和供应链管理,这一点我将专门另一起篇文章讨论。

  体二极管失效在电机控制,桥式整流和 LLC 等控制系统中,我们需要利用 MOSFET 的体二极管进行续流,一般情况下体二极管的反向恢复时间会比较慢,因此容易出现过功率而导致体二极管失效。因此一般控制频率比较高的系统中,我们需要在 MOSFET 外面并联一个快恢复二极管或者肖特基。下面,我们就过压击穿和过流烧毁再详细分析一下它的失效过程和预防措施

  雪崩失效及其预防

  简单来说,MOSFET 在电源板上由于母线电压,变压器反射电压,电机的反向电动势,漏感尖峰电压等等系统中的高压交叠之后,都将叠加在 MOSFET 的漏源极之间。MOSFET 的手册中一般会包含单面冲雪崩能量 Eas、重复脉冲雪崩能量 Ear 和单次脉冲雪崩电流 Ias 等参数,这些参数反映了该功率 MOSFET 的雪崩能力。

MOS管失效的六大原因

  ‍其实在实际的 MOSFET 中还存在着一个寄生的三极管,就像漏源极之间的续流二极管一样,可以看下面的内部示意图和对应的等效电路图:

MOS管失效的六大原因

  我们可以看到,这个寄生的 BJT 是直接并联在 MOSFET 上面的,因此,当 MOSFET 漏极存在一个大电流 Id 和高压 Vd 时,器件内部的电离作用加剧,出现大量的空穴电流,这些电流流过 Rb 电阻进入源极就导致了寄生三极管的基极电势升高,也就是 Vb 会升高,那么寄生三极管就会导通,从而发生雪崩击穿,所以,其内部是由于过压产生了电流流入了寄生三极管,三极管导通了,就等于 MOSFET 也导通了。

  预防的措施:雪崩失效归根结底是电压失效,因此预防我们着重从电压来考虑。具体可以参考以下的方式来处理。1:合理降额使用,目前行业内的降额一般选取80%-95%的降额,具体情况根据企业的保修条款及电路关注点进行选取。2:合理的变压器反射电压。3:合理的RCD及TVS吸收电路设计。4:大电流布线尽量采用粗、短的布局结构,尽量减少布线寄生电感。5:选择合理的栅极电阻Rg。6:在大功率电源中,可以根据需要适当的加入RC减震或齐纳二极管进行吸收。

  SOA失效机器预防SOA失效是指电源在运行时异常的大电流和电压同时叠加在MOSFET上面,造成瞬时局部发热而导致的破坏模式。或者是芯片与散热器及封装不能及时达到热平衡导致热积累,持续的发热使温度超过氧化层限制而导致的热击穿模式。关于SOA各个线的参数限定值可以参考下面图片,每个 MOSFET 的数据手册里面都有。

  下面我们分析下图中标注的 5 个区域的含义

MOS管失效的六大原因

  这个地方主要限制最大的额定电流和脉冲电流,因为此刻的横轴显示电压很低,那么更多的是大电流导致的 SOA 失效。

  在 2 的区域内属于电流电压都安全的区域,但是也要看器件的结温(取决于 Rdson 大小),如果结温超过了 150 度,也会导致 SOA 失效。

  在 3 号区域内,我们可以看到根据不同的时间被扩展了三次,分别对应着 10ms,1ms 和 100us,这里主要看器件的耗散功率,本质上是能够承受住 10ms 的最大电流值。

  在 4 号区域,这是一个电流值封顶的区域,这里指的就是脉冲电流的最大值的限制,超过了就会导致 SOA 失效。

  在 5 号区域,这是一个电压的封顶区域,这里主要限制 Vds 上的电压。

  我们电路中的MOSFET,只要保证能器件处于上面限制区的范围内(2 和 3),就能有效的规避由于MOSFET而导致的电源失效问题的产生。预防措施:

  确保在最差条件下,MOSFET的所有功率限制条件均在SOA限制线以内。

  将OCP功能一定要做精确细致。在进行OCP点设计时,一般可能会取1.1-1.5倍电流余量,然后就根据IC的保护电压比如0.7V开始调试RSENSE电阻。另外有些MOSDriver 还集成了过流保护功能,也可以尝试,就是贵。

  合理的热设计冗余也是非常必要的,对于额定电流和最大电流工作时间的可靠性测试必不可少,记得叠加上工作环境温度。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
如何区分MOS管的三个极
  MOS管在现代电子电路中应用广泛准确区分MOS管的三个极——源极(Source)、漏极(Drain)、栅极(Gate),是电路设计和实际应用中的基础环节。下面就一块来了解MOS管的三个极该如何区分吧!  一、MOS管的结构及极的定义  MOS管主要有N沟(N-MOS)和P沟(P-MOS)两类,其内部结构类似,但极的定义一致。三极分别为:  源极(Source, S)  是载流子的输入端,三极管中相当于发射极,电子或空穴由此流入或流出。  漏极(Drain, D)  是载流子的输出端,对应普通三极管的集电极,电流由源极流向漏极(N沟为电子,P沟为空穴)。  栅极(Gate, G)  控制通断的输入端,相当于三极管的基极。栅极本身无直流电流流过,仅通过施加电压来形成电场,从而调节源漏间的导通。  二、外观与引脚辨识方法  1. 常见封装  TO-92小功率管(直插式)  平面朝前,自左至右:栅极(G)- 漏极(D)- 源极(S)  TO-220等功率较大封装(直插式/贴片式)  正面(正字面)朝前,自左至右:栅极(G)- 漏极(D)- 源极(S),背后贴片通常为漏极(D)  SOT-23等三脚贴片封装  正对引脚,对应的Datasheet上通常有详细标识,常见引脚顺序为:1-G、2-S、3-D  不同厂商和封装存在差异,实际以原厂数据手册(Datasheet)为准。  2. 电路符号识别  栅极(G,Gate):  与其他两极正交,并不与“主体”相接触,通常画在符号的一侧边上。  漏极(D,Drain):  位于来源方向的箭头端,经历“通道”流向负载的那一段。  源极(S,Source):  有向通道内的三角箭头,N沟MOS箭头朝内,P沟MOS箭头朝外。  三、实际区分与检测技巧  1. 通过万用表测量(栅极-漏极、栅极-源极间应为绝缘)  栅极-源极、栅极-漏极:均为绝缘状态(开路)。  源极-漏极测量:根据MOS类型,通过测量正反阻值,且N-MOS、P-MOS特征不同。如N沟MOS“导通方向”为源→漏。  2. 阅读Datasheet  查阅具体器件的数据手册,能准确找到引脚定义图,是最保险的方法。  四、典型应用场合的极的连接  开关电路:  栅极接升压(N-MOS)或降压(P-MOS)控制信号,源极接地或电源,漏极连接负载。  放大电路:  栅极接输入信号,通过漏极输出,源极接稳压/偏置。  区分MOS管的三个极——源极、漏极、栅极,是电路设计和装配的基础环节。具体可通过外观引脚顺序、符号结构、万用表测量和数据手册查阅等多种方式进行判别。
2025-09-17 16:03 阅读量:305
一文了解MOS管
行业新闻

一文了解MOS管

  从计算机芯片到电源管理,从音频放大到高速通信,MOS管的广泛应用推动了现代电子工业的繁荣。已经成为现代电子器件最重要的基础之一。  MOS管的基本原理  MOS管,全称Metal-Oxide-Semiconductor Field Effect Transistor(金属氧化物半导体场效应管),属于场效应晶体管的一种。它的工作原理基于电场调控导通通道的原理,通过栅极施加电压,控制源极与漏极之间的电流。  简单来说,MOS管由源极(Source)、漏极(Drain)和栅极(Gate)三部分组成。核心结构包括一层薄薄的氧化层(通常是二氧化硅,SiO₂)和在其上的金属或多晶硅栅极。当在栅极施加电压时,会在半导体基体内部形成导电通道,从而实现源极到漏极的导通或截止。  作用机理  栅极电压形成的电场:栅极电压相对于源极产生电场,调节半导体材料中的载流子浓度。  导通通道的控制:当栅极电压超过一定阈值电压(Vth)时,导电通道在半导体基体内形成,实现源极到漏极的导通。  电流控制:通电状态由栅极电压决定,而不是由源极电压控制,这也是MOSFET的高输入阻抗的原因。  MOS管的结构组成  典型的MOS管结构主要包括以下几个部分:  源极(S):供电子或空穴进入导电通道的端口。  漏极(D):导通的电子或空穴离开的端口。  栅极(G):控制导通状态的电极。  衬底(Substrate):晶体管的基础半导体连接,通常是硅材料。  氧化层(Oxide Layer):在栅极和半导体基体之间形成的绝缘层,通常为二氧化硅。  漂移区和源/漏区:用以形成PN结,确保稳定的导通和截止特性。  在制造过程中,通常采用硅基础上,通过氧化层沉积、光刻、扩散或掺杂等工艺,形成所需结构。  MOS管的类型分类  MOSFET可按照不同标准进行分类,主要包括以下几种:  1. 按工作方式分类  N沟MOSFET(NMOS):通过N型半导体形成导电通道,电子载流子为主要载流子,导通速度快,应用广泛。  P沟MOSFET(PMOS):通过P型半导体形成导电通道,空穴为主要载流子,相比NMOS速度较慢,但具有不同的电路特性。  2. 按极性分类  增强型:在没有栅极电压时,器件处于截止状态,施加正向栅极电压后导通。  耗尽型:在没有栅极电压时已导通,通过加偏压可使器件截止。  3. 按沟道结构分类  平面MOSFET:传统的结构,沟道为平面型。  斗篷MOSFET(FinFET):采用三维结构,沟道呈“鳍”状,增大沟道面积,改善性能。  4. 按导通方式分类  场效应晶体管(MOSFET):最常用。  绝缘栅晶体管(IGBT):结合了MOSFET和 BJT(双极型晶体管)优点,适合高电压、大功率场合。  MOS管的工作特性  1. 阈值电压(Vth)  是指栅极电压达到的临界值,使导通通道形成的最低电压。不同类型、结构的MOSFET其阈值电压不同,影响电路设计。  2. 导通区域  线性区(三极区):栅极电压高于阈值,漏极-源极电压较低,导通,但漏极电流随漏极-源极电压线性变化。  饱和区(数字区):漏极-源极电压高于某一值,电流趋于稳定,是数字电路中的主要工作区域。  3. 转移特性  描述在一定漏极-源极电压下,栅极电压变化引起的漏极电流变化关系。对于强化型N沟MOSFET,其转移特性可以用阈值电压作为参数描述。  4. 漏极-源极电阻  在导通状态下,MOSFET的导通电阻较低,使其成为理想的开关器件。  5. 开关速度  由寄生电容等参数决定,是高速电子电路的基础。  MOS管的应用领域  MOS管广泛应用于各种电子电路中,主要涵盖:  1. 数字电路  微处理器:作为基本开关单元构建逻辑门。  存储器:如DRAM、SRAM中的存储单元。  数字信号处理器(DSP):实现高速开关和运算。  2. 模拟电路  放大器:运用MOSFET的线性区进行信号放大。  电源管理:开关电源、DC-DC转换器。  传感器接口:MOSFET在模拟信号调节中的作用。  3. 电力电子  电机驱动:高效率的开关控制。  逆变器:转换直流为交流能源。  4. 其他特殊应用  光电子、传感器接口:由于其高输入阻抗和快响应。  智能芯片:在智能手机、平板、车载电子中的广泛应用。  MOS管作为现代电子产业的基石器件,以其优异的电性能和广泛的应用成为电子系统中的“核心血管”。从早期的数字电路到现在的智能设备,MOSFET的技术不断革新和优化,推动着电子技术的持续发展。
2025-07-07 14:28 阅读量:720
一文了解常见的几种MOS管驱动电路
  MOS管最显著的特性是开关特性好,因此被广泛应用在需要电子开关的电路中。MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。  下面给大家介绍下平时在工作中经常会用到的一些MOS管驱动电路。  01直接驱动  电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式。但使用这种驱动方式,需要注意以下几点。  (1)了解电源IC手册的最大驱动峰值电流,因为不同芯片制造工艺不同,驱动能力可能不同。  (2)了解MOS管的寄生电容,寄生电容越小越好。因为寄生电容越大,MOS管导通时要的能量就越大,如果电源IC没有比较大的驱动峰值电流,MOS管导通的速度会受到很大影响。  IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择。如果驱动能力不足,上升沿可能出现高频振荡,也不能无限减小Rg。  02推挽驱动  当选择MOS管寄生电容比较大,电源IC内部驱动能力不足时,可以采用推挽驱动。常使用图腾柱电路增加电源IC驱动能力,一般应用在电源IC的驱动能力较弱的电路上。另外,图腾柱电路也有加快关断的作用。  推挽驱动电路通过提升电流提供能力,迅速完成对于栅极输入电容电荷的充电过程。这种拓扑增加了导通所需要的时间,但是减少了关断时间,开关管能快速开通且避免上升沿的高频振荡。  03快速关断  MOS管一般都是慢开快关。在关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压快速泄放,保证开关管能快速关断。  为使栅源极间电容电压的快速泄放,常在驱动电阻上并联一个电阻和一个快恢复二极管,如上图所示,其中D1常用的是快恢复二极管。这使得MOS管的关断时间大大缩短,同时减小关断时的损耗。Rg2在此处的作用是限流,防止把电源IC给烧掉。  比较常见的是用三极管来泄放栅源极间电容电压。如果Q1的发射极没有电阻,当PNP三极管导通时,栅源极间电容短接,达到最短时间内把电荷放完,最大限度减小关断时的交叉损耗。栅源极间电容上的电荷泄放时电流不经过电源IC,提高了电路可靠性。  04隔离驱动  为了满足高端MOS管的驱动或是满足安全隔离,经常会采用变压器驱动。下图中使用的R1目的是抑制PCB板上寄生的电感与C1形成LC振荡,C1的目的是通过交流,隔开直流,同时也能防止磁芯饱和。  除开以上介绍的几种常见的驱动电路外,还有其他形式的驱动电路,大家可以结合具体情况选择最合适的驱动。
2025-05-13 10:52 阅读量:659
MOS管选型指南:如何选择合适的MOS管?
       MOS管(Metal Oxide Semiconductor Field Effect Transistor)是一种常用的半导体器件,具有低开关损耗、高开关速度、低驱动电压等优点,被广泛应用于电源管理、驱动电路、放大器等领域。但是,市面上MOS管品种繁多,如何选择合适的MOS管成为了工程师们面临的难题。本文将为您介绍MOS管选型的几个关键要素,帮助您选择合适的MOS管。  1.电压和电流  MOS管的电压和电流是选型时需要考虑的重要因素。电压是指MOS管能承受的较大电压,一般分为栅极-源极电压(Vgs)和漏极-源极电压(Vds),选型时需要根据实际应用场景选择合适的电压等级。电流是指MOS管能承受的较大电流,也是选型时需要考虑的重要因素,需要根据实际应用场景选择合适的电流等级。  2.导通电阻  导通电阻是指MOS管在导通状态下的电阻大小,也是选型时需要考虑的重要因素。导通电阻越小,MOS管的导通能力越强,同时也会带来更小的开关损耗。因此,在选型时需要根据实际应用场景选择合适的导通电阻。  3.开关速度  开关速度是指MOS管从关断到导通或从导通到关断的时间,也是选型时需要考虑的重要因素。开关速度越快,MOS管的响应能力越强,同时也会带来更小的开关损耗。因此,在选型时需要根据实际应用场景选择合适的开关速度。  4.温度特性  温度特性是指MOS管在不同温度下的性能表现,也是选型时需要考虑的重要因素。MOS管的温度特性越好,其性能表现越稳定。因此,在选型时需要根据实际应用场景选择具有良好温度特性的MOS管。  综上所述,MOS管选型需要考虑的因素有很多,需要根据实际应用场景选择合适的MOS管。同时,在选型时需要注意MOS管的品牌、质量和可靠性等因素,选择具有优良品质和可靠性的MOS管,才能确保系统的稳定性和可靠性。
2025-03-31 15:07 阅读量:706
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码