PCB设计中最常见到的五个错误

Release time:2022-10-26
author:Ameya360
source:网络
reading:3013

    PCB 设计过程是由一系列工业设计步骤组成,是保证大批量电路板产品质量、减少故障排查的关键环节。PCB 是工业电子产品设计的基础。无论是小批量制作,还是大规模生产的消费电子,几乎所有的设计技术中都包含有 PCB 设计。由于设计过程错综复杂,很多常见的错误会反复出现。下面罗列出在 PCB 设计中最常见到的五个设计问题以及相应的对策。

    01 管脚错误

    串联线性稳压电源比起开关电源更加便宜,但电能转效率低。通常情况下,鉴于容易使用和物美价廉,很多工程师选择使用线性稳压电源。但需要注意,虽然使用起来很方便,但它会消耗大量的电能,造成大量热量扩散。与此形成对比的是开关电源设计复杂,但效率更高。然而需要大家注意的是,一些稳压电源的输出管脚可能相互不兼容,所以在布线之前需要确认芯片手册中相关的管脚定义。

PCB设计中最常见到的五个错误

    02 布线错误

    设计与布线之间的比较差异是造成 PCB 设计最后阶段的主要错误。所以需要对一些事情进行重复检查,比如器件尺寸,过孔质量,焊盘尺寸以及复查级别等。总之需要对照设计原理图进行重复确认检查。

PCB设计中最常见到的五个错误

    03 腐蚀陷阱

    当 PCB 引线之间的夹角过小(呈现锐角)的时候就可能形成腐蚀陷阱(Acid Trap)。这些锐角连线在电路板腐蚀阶段可能残存腐蚀液从而将该处的敷铜更多的去除,从而形成卡点或者陷阱。后期可能造成引线断裂,形成线路开路。现代制作工艺由于使用了光感腐蚀溶液之后,这种腐蚀陷阱现象大大减少了。

PCB设计中最常见到的五个错误

    04 立碑器件

    在利用回流工艺焊接一些小型表贴器件的时候,器件会在焊锡的浸润下形成单端翘起现象,俗称“立碑”。这种现象通常会由不对称的布线模式造成,使得器件焊盘上热量扩散不均匀 。使用正确的 DFM 检查可以有效缓解立碑现象的产生。

PCB设计中最常见到的五个错误

    05 引线宽度

    当 PCB 引线的电流超过 500mA 的时候,PCB 最先线径就会显得容量不足。通常的厚度和宽度,PCB表面的导线比起多层电路板内部导线通过更多的电流,这是因为表面引线可以通过空气流动进行热量扩散。线路宽度也与所在层的铜箔厚度有关系。大多数 PCB 生产厂家允许你选择 0.5 oz/sq.ft 到 2.5 oz/sq.ft 不同厚度的铜箔。

PCB设计中最常见到的五个错误

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
从两层到八层板:详解PCB叠层设计的黄金法则
  总的来说叠层设计主要要遵从两个规矩:  1、每个走线层都必须有一个邻近的参考层(电源或地层);  2、邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容;  下面列出从两层板到八层板的叠层来进行示例讲解:  一、单面PCB板和双面PCB板的叠层  对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑;  单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。  关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。  单、双层板通常使用在低于10KHz的低频模拟设计中:  1)在同一层的电源走线以辐射状走线,并最小化线的长度总和;  2)走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取到这个回路,而不是其它地线路径。  3)如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于线路板的厚度乘以信号线的长度。  二、四层板的叠层  1、SIG-GND(PWR)-PWR (GND)-SIG;  2、GND-SIG(PWR)-SIG(PWR)-GND;  对于以上两种叠层设计,潜在的问题是对于传统的1.6mm(62mil)板厚。层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。  对于第一种方案,通常应用于板上芯片较多的情况。这种方案可得到较好的SI性能,对于EMI性能来说并不是很好,主要要通过走线及其他细节来控制。主要注意:地层放在信号最密集的信号层的相连层,有利于吸收和抑制辐射;增大板面积,体现20H规则。  对于第二种方案,通常应用于板上芯片密度足够低和芯片周围有足够面积(放置所要求的电源覆铜层)的场合。此种方案PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低,也可通过外层地屏蔽内层信号辐射。从EMI控制的角度看,这是现有的最佳4层PCB结构。  注意:中间两层信号、电源混合层间距要拉开,走线方向垂直,避免出现串扰;适当控制板面积,体现20H规则;如果要控制走线阻抗,上述方案要非常小心地将走线布置在电源和接地铺铜的下边。另外,电源或地层上的铺铜之间应尽可能地互连在一起,以确保DC和低频的连接性。  三、六层板的叠层  对于芯片密度较大、时钟频率较高的设计应考虑6层板的设计,推荐叠层方式:  1、SIG-GND-SIG-PWR-GND-SIG;  对于这种方案,这种叠层方案可得到较好的信号完整性,信号层与接地层相邻,电源层和接地层配对,每个走线层的阻抗都可较好控制,且两个地层都是能良好的吸收磁力线。并且在电源、地层完整的情况下能为每个信号层都提供较好的回流路径。  2、GND-SIG-GND-PWR-SIG -GND;  对于这种方案,该种方案只适用于器件密度不是很高的情况,这种叠层具有上面叠层的所有优点,并且这样顶层和底层的地平面比较完整,能作为一个较好的屏蔽层来使用。需要注意的是电源层要靠近非主元件面的那一层,因为底层的平面会更完整。因此,EMI性能要比第一种方案好。  小结:对于六层板的方案,电源层与地层之间的间距应尽量减小,以获得好的电源、地耦合。但62mil的板厚,层间距虽然得到减小,还是不容易把主电源与地层之间的间距控制得很小。对比第一种方案与第二种方案,第二种方案成本要大大增加。因此,我们叠层时通常选择第一种方案。设计时,遵循20H规则和镜像层规则设计。  四、八层板的叠层  1、由于差的电磁吸收能力和大的电源阻抗导致这种不是一种好的叠层方式。它的结构如下:  1)Signal 1 元件面、微带走线层2)Signal 2 内部微带走线层,较好的走线层(X方向)3)Ground4)Signal 3 带状线走线层,较好的走线层(Y方向)5)Signal 4 带状线走线层6)Power7)Signal 5 内部微带走线层8)Signal 6 微带走线层  2、是第三种叠层方式的变种,由于增加了参考层,具有较好的EMI性能,各信号层的特性阻抗可以很好的控制。  1)Signal 1 元件面、微带走线层,好的走线层2)Ground 地层,较好的电磁波吸收能力3)Signal 2 带状线走线层,好的走线层4)Power 电源层,与下面的地层构成优秀的电磁吸收5)Ground 地层6)Signal 3 带状线走线层,好的走线层7)Power 地层,具有较大的电源阻抗8)Signal 4 微带走线层,好的走线层  3、最佳叠层方式,由于多层地参考平面的使用具有非常好的地磁吸收能力。  1)Signal 1 元件面、微带走线层,好的走线层2)Ground 地层,较好的电磁波吸收能力3)Signal 2 带状线走线层,好的走线层4)Power 电源层,与下面的地层构成优秀的电磁吸收5)Ground 地层6)Signal 3 带状线走线层,好的走线层7)Ground 地层,较好的电磁波吸收能力8)Signal 4 微带走线层,好的走线层  对于如何选择设计用几层板和用什么方式的叠层,要根据板上信号网络的数量,器件密度,PIN密度,信号的频率,板的大小等许多因素。对于这些因素我们要综合考虑。  对于信号网络的数量越多,器件密度越大,PIN密度越大,信号的频率越高的设计应尽量采用多层板设计。为得到好的EMI性能最好保证每个信号层都有自己的参考层。
2025-08-08 14:18 reading:294
PCB电路板什么情况下需要机械切割?
  在PCB制造中,机械切割以高精度、低应力、强适应性等优势,成为解决特殊工艺需求的关键技术。本文精选十大核心应用场景,以供参考。  1. 异形板精密成型  场景:非矩形PCB(如圆形、齿轮形)  技术:机械铣削通过定制刀具路径,实现复杂轮廓切割,避免激光切割对柔性材料的热损伤。  案例:智能手表FPC采用机械切割,确保边缘无毛刺,适配曲面屏幕贴合。  2. 高精度边缘控制  场景:医疗设备PCB(尺寸误差<0.02mm)  技术:调整刀片厚度与进给速度,结合雾化冷却,实现切口垂直度<0.005mm。  案例:心脏起搏器主板切割,确保与外壳精密装配。  3. 特殊材料适应性  场景:PTFE高频板、陶瓷填充基板  技术:碳化钨刀具+低温冷却,减少脆性材料碎裂,替代激光切割的毛刺问题。  案例:5G基站PCB采用机械切割,保障信号完整性。  4. 连接器区域强化  场景:USB/HDMI接口补强板切割  技术:精准切割FR-4或金属补强片,避免装配间隙。  案例:手机主板接口区域机械切割,提升插拔耐久性。  5. 散热模块集成  场景:LED驱动板散热片嵌入  技术:机械切割散热区域轮廓,确保热传导路径连续。  案例:高功率LED灯板切割,降低热阻30%。  6. 多层板无损分板  场景:航空航天用8层以上PCB  技术:铣刀分板避免层间分离,替代激光切割的潜在风险。  案例:卫星电路板分板,保障信号层完整性。  7. 测试点精准暴露  场景:ICT在线测试焊盘  技术:机械去除阻焊层,确保测试探针100%接触。  案例:汽车ECU主板切割,提升测试通过率。  8. 金手指接口成型  场景:PCIe/内存条金手指  技术:精密切割边缘,避免信号传输故障。  案例:服务器主板金手指切割,接触电阻<50mΩ。  9. 刚柔结合板过渡区切割  场景:可穿戴设备刚柔结合板  技术:机械切割刚性-柔性连接处,避免激光损伤柔性部分。  案例:智能手环FPC切割,弯曲寿命>10万次。  10. 小批量定制化生产  场景:原型开发/小批量试产  技术:快速换刀+参数调整,降低模具成本。  案例:工业控制器定制PCB切割,交付周期缩短50%
2025-07-23 14:11 reading:397
一文了解电路板PCB的作用
  随着电子技术的飞速发展,电路板(简称PCB)已经成为现代电子设备中不可或缺的基础元件。它不仅作为电子元器件的支撑平台,更在电子产品的性能、可靠性与封装上发挥着关键作用。  01提供机械支撑  PCB的最基本作用是为各种电子元器件提供机械支撑。通过在PCB上焊接和固定元件,可以保持电子器件的稳定性和牢固性,确保电路在振动、冲击等环境条件下的安全运行。  02实现电子连接  PCB的核心作用是实现电子元件之间的电气连接。通过布线(导线)将各个元件互连以此形成完整的电路功能。其中,导线、铜箔层和连接孔共同确保了电流的可靠传导。  03电气性能控制  PCB设计可以优化电气性能,包括:  信号完整性:减小信号干扰和串扰,提高信号传输质量。  阻抗控制:确保高速信号的传输稳定,特别是在通信和高速数字电路中至关重要。  滤波与屏蔽:在关键电路中设置滤波层,减少噪声和干扰。  04热管理  高功率或高速运行的电子器件会产生大量热量,PCB承担着散热和热管理的关键作用。通过设计合理的走线、散热片、散热孔等措施,可有效散发热量,保障器件安全稳定工作。  05实现电源管理  在电子系统中,PCB不仅能传导信号,还承担电源分配的角色。合理的电源铺铜、滤波电路,确保电能稳定供应,减少电源噪声。  06提供机械标识与布局空间  PCB上印刷有标识、编号、测试点等信息,方便后续的调试、测试与维护。同时,合理的布局设计可以减少布局中的干扰,提高整体性能。  07信号隔离与干扰抑制  在多层PCB设计中,可以实现不同信号的隔离,减少干扰和信号串扰,保证高频和敏感电路的正常工作。  08辅助功能  随着技术的发展,PCB还承担着多项新增功能,为其在系统中的核心作用提供关键支撑。例如:  抗静电保护功能;  EMC/EMI电磁兼容设计功能;  集成微芯片、传感器等多功能模块的能力。  PCB作为电子产品的“神经中枢”,其作用已远远超出了简单的电路连接。它在保障电子设备的性能、可靠性、热管理和电气性能方面至关重要。随着电子技术不断深化与复杂化,PCB的设计和制造也逐步向多层、多功能、高速、高密度方向发展,成为现代电子工业中不可或缺的核心基础。
2025-06-18 16:53 reading:518
原理图和PCB设计常见错误速查清单
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code