雷卯电子:物联网产品的电源可靠性设计

发布时间:2022-10-10 17:38
作者:Ameya360
来源:网络
阅读量:2763

  在整个世界朝向5G网络建设迈进,物联网应用也将更加的蓬勃发展,而众多的物联网设备必须面对的问题,便在于如何稳定、长期地运作,充电端和电池端便在其中扮演关键的角色。

雷卯电子:物联网产品的电源可靠性设计

  一、电池端的保护

  目前的物联网应用相当多样,依据应用需求的不同,对电池的需求也会有所差别。举例来说,一些需要进行频繁的数据传输的设备,如智能医疗设备、遥控器等,便需要采用高容量的电池;一些仅在专用时间和距离内交换信号的设备,如智能家居控制中心、智能警报器等,则需要较大电流的电池;针对一些要求体积小巧便于携带的应用,如活动追踪器、智能衣服等,则要求具有紧凑设计的电池。不管电池是否是一次性或者充电电池,在拆装过程中都会有静电和过压现象发生,对敏感的受电设备产生威胁,雷卯针对电池端退出小体积的保护方案如图。

  ESD4521C 是DFN1006封装的ESD二极管,专门应用于4.5V 以下的电池端静电和浪涌保护,可以满足国家要求的静电和浪涌测试要求。如果客户产品电池容量大,外界环境恶劣,雷卯推荐采用SOD323封装的SD4581D3W的大电流的保护器件。

  二、充电端的保护

  市面经常有些充电电子产品因为插电瞬间冒火花,导致后端芯片打坏,从而走入售后阶段,这类产品大部分是没有在充电端做充分的保护考虑。

  雷卯电子以手机为案例,提供充电端的保护设计,这里有3个原则需要重点考虑:

  1 保护电压的选择

  由于现在很多电子产品都支持快充,电压会选择很多档位,所以在选择保护器件的电压时需要考虑最高充电电压,因为保护器件的电压V rwm是向下兼容的,但选择低了则会影响正常功能使用。

  2 保护电流的选择

  基于产品用电环境不同而不同,在一些电源环境恶劣的国家和地区,我们需要选用功率大的保护器件,Ipp需要满足测试要求,比如出口印度的产品在保护方面需求就比大陆强很多。

  3 箝位电压的考虑

  由于主IC的各种进步,电压和敏感性越来越强,对于保护器件就不得不用低残压的产品来应对,也就是常说的会扫器件,雷卯在2017年就推出了大回扫的ESD器件,在满足Ipp大幅上升的情况下,箝位电压表现稳定不增加,可以保证后端的IC 安全。

  三、总结

  5G催发的物联网产品数量剧增,希望雷卯的可靠性方案可以让工程师设计一次通过,减少反复,加快产品出货,雷卯电子电磁兼容实验室提供全套项目免费测试申请,相关规格书可以官网获取或联系业务和代理。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
理想二极管+雷卯TVS:过抛负载P5A测试,功耗降97%
  一.优点:  1、极低功耗:导通压降仅 10-20mV,20A 电流下功耗降至 0.4W(较肖特基二极管降低 97%),无需额外散热片;  2、瞬时响应:反向电流检测响应时间 < 1μs,彻底消除反向恢复浪涌,避免对后端芯片的冲击;  3、宽域兼容:部分型号反向耐压可达-65V,覆盖 12V 汽车蓄电池反接(-12V)、24V 工业电源波动等极端场景。  二.目前理想二极管中主流的专用控制器型号及适合场景  1、TI LM74700:65V 耐压,集成过温保护,适合汽车电子电源冗余设计  LM5050-1:75V 耐压,低静态电流(7μA),适用于电池供电的便携式设备;  2、荣湃Pai8150x/Pai8151x 系列:支持背靠背FET 架构、电池反向保护及电源路径冗余,适用于新能源汽车低压系统。  3、美信 MX16171:1-50V 宽输入,支持并联扩展电流,工业控制冗余电源首选;  4、芯洲科技 SCT53600Q:±65V 耐压,AEC-Q101 认证,车载 ECU、BMS 系统核心防护器件。  三.传统二极管pk 理想二极管  四.雷卯TVS+理想二极管12V/24V直流电源浪涌保护方案  “双重屏障” 防护逻辑:理想二极管与 TVS 的协同需满足 “时间+能量” 双维度配合:  理想二极管:负责反向电流阻断(如荣湃的Pai8151系列在0.75μS内关断)和持续过流保护(如芯洲 SCT53600Q 支持 50A 过载 10ms);  雷卯TVS:承担正向浪涌能量泄放(响应时间 < 1ns)和电压钳位(雷卯TVS二极管将瞬态电压限制在理想二极管耐压范围内)  12V汽车电子方案(满足 ISO 7637-2 测试)  核心器件:  理想二极管专用控制器:荣湃Pai8150C(-55V至80V 耐压, AEC-Q100 认证);  TVS:雷卯 SM8S24CA(24V VRWM,38.9V VC,6600W 峰值功率,AEC-Q101 认证)。  参数匹配逻辑:  VRWM=24V(1.2×12V 系统电压),确保正常工作时 TVS 无漏流;  VC=38.9V(< Pai8150C 的80V 耐压),避免浪涌击穿 MOSFET;  峰值电流 IPP=170A(>ISO 7637-2 脉冲 5A 的 100A 需求)。  实测表现 :雷卯EMC团队在雷卯实验室环境下验证:  脉冲 5A 测试(100V 输入,1Ω 源阻抗,300ms):钳位电压稳定在 38.5V;  反接测试(-12V 持续 1min):Pai8150C 快速关断,后端电路零损伤。  24V工业控制浪涌防护方案(满足 IEC 61000-4-5 等级 3)  核心器件:  理想二极管:荣湃Pai8150C(-55V至80V耐压);  TVS:雷卯 SMDJ26CA(26V VRWM,42V VC,3000W 峰值功率)。  参数匹配逻辑:  VRWM=26V(1.08×24V 系统电压),适配工业电源波动范围;  VC=42V(< Pai8150C 的80V 耐压),保护驱动电路;  冗余设计可配合雷卯 GDT(2R090-5S)组成两级防护,GDT 泄放 80% 浪涌电流(>2kA)。  实测表现:2kV 浪涌测试(8/20μs 波形):系统压降≤5V,后端PLC无复位;  电动汽车12V辅助电池充电控制与浪涌综合防护方案  电动汽车12V辅助电池需解决 3 个问题:  1、充电时可控通断(充满自动关断,避免反向放电);  2、动阶段双向供电(12V电池给高压侧电容预充电);  3、防护两类浪涌:  电压浪涌(雷击、电源尖峰,损伤电路);  电流浪涌(启动时电容充电的大电流,冲击 MOSFET)。  上海雷卯方案架构:  前级 TVS:钳位瞬态过压,雷卯采用SM8S24CA,满足 ISO 7637-2 测试;  背靠背 MOSFET(Q1+Q2):配合控制器实现 充电路径开关 + 双向导通;  充电路径通:EN 信号低→Q1、Q2 导通→DC/DC 给电池充电;  充电路径断:电池充满→EN信号高→Q1、Q2关断→切断电路,防反向放电。  控制器阴极(CATHODE)引脚悬空→允许能量反向流动(比如 12V 电池给高压侧电容预充电)。  理想二极管控制器:驱动 MOSFET,内置软启动逻辑(通过外接 RC 网络缓启动)。  雷卯通过TVS+理想二极管的科学搭配,不仅能解决传统二极管的功耗与可靠性痛点,更能构建符合国际标准的浪涌防护体系。
2025-08-28 10:21 阅读量:148
雷卯电子:防静电和浪涌TVS layout设计要点
  最新的AR,VR,5G产品,新的电子产品更智能、更复杂,嵌入了脆弱和敏感的集成电路。这些设备的环境往往很恶劣,产生高水平静电和快速瞬态浪涌。这些ESD器件可能会干扰设备,从故障到集成电路的破坏。  将这些问题最小化的最佳方法是从PCB入口放置瞬态电压抑制器(TVS),放置在可能出现浪涌的地方;但在选择这些组件PCB布局必须小心,以确保最好的保护。  电磁兼容可靠性要求  很明显,敏感部件可能会出现静电损坏风险。国际电工委员会IEC委员会定义了标准,该标准定义了四种严重等级,对应于四种电压等级,有两种放电、接触和空气类型。对接触放电的类别与电压水平和电流波形的定义显示了对接触放电的这些类别的定义以及与不同电压水平的波形的定义。  下表是IEC61000-4-2规定最新定义的接触静电放电的波形4级测试要求,附带测试标准波形的具体时间和电压图。  线路中TVS设置  大家都知道要在接口处设置TVS保护器件,但有时候达不到理想的测试效果,这里要分析一下原因:  1、TVS型号选型不当;  2、PCB设计不合理,导致TVS保护效果不佳  这里主要讨论在PCB上怎么合理设计让TVS发挥最大的保护功效。  这里就要考虑线路上的各种寄生电感,包括TVS管脚自身的寄生感值。这会影响静电或浪涌发生时后端IC处的箝位电压Vc值。  TVS本身遵从以下公式:  VCL = VBR + RD × IPPR为TVS本身的寄生电容值,越小的产品他的箝位电压会更好,更有效保护IC,IPP是测试瞬间通过TVS本身的电流值。  在测试图中,A点的电压并不是Vc值,Va电压需要加上TVS 两端的电压。  LIN和LIC由PATH通常由线路的控制阻抗(例如50Ω或100 Ω差分)驱动。为了迫使浪涌电流通过保护电路,我们必须确保LGND和LTVS路径尽可能低。此外,为了减少PCB上的辐射,最好的方法是将保护电路尽可能靠近连接器针脚。  以下有三种TVS在板子上的接线方式,供大家选择优劣。  以上ABC的设置方式,大家可以评论哪种方式最好。答案是C  设计案例  需要考虑未被保护的路径远离在保护路径上,否则会有EMI干扰的风险。  总结  以上我们看到,为了限制各种寄生电路的布局,必须注意产生的过电压和电磁干扰。注意接地连接和将TVS放置在正确的方式上,保证一个成功的电路,以确保设备的高可靠性水平的关键。综上所述,以下要点:确保保护装置连接到地面尽可能短,尽量减少寄生电感路径从静电电源到保护组件,然后从保护组件到芯片保护(而不是从静电电源到芯片保护,然后保护连接到该路径)。这也是一种避免寄生电感,将保护组件尽可能接近ESD源:这将最小化PCB上的EMI,与其他路径耦合化PCB上的EMI,与其他路径耦合。
2025-08-05 13:28 阅读量:441
上海雷卯电子:近场通信NFC接口防静电ESD
  上海雷卯EMC小哥针对NFC接口静电保护,推出了ESD器件和保护方案:ULC1811CDN 满足18V的低容参数需求,而且VC箝位电压低,电容超低,可保护NFC接口天线的有效使用。  近场通信(Near Field Communication,NFC)是一种短距离无线通信技术,通过将两个设备的NFC芯片靠近,实现数据的传输和共享。NFC技术基于射频识别(RFID)技术,运行在13.56MHz的无线频段。NFC设备通常包括两种模式:卡模式和读写模式。在卡模式下,NFC设备可以作为一个被动的卡片,用于支付、门禁控制、公交卡等应用。在读写模式下,NFC设备可以主动读取或写入其他NFC设备中的数据。NFC技术的特点:短距离通信、快速传输、简便易用、兼容性广泛。  1. NFC设备接口的特点  NFC设备接口通常工作在低电压和高频率的环境下,因此,选择合适的TVS/ESD二极管需要考虑以下几个因素:  1、低电压响应:选择具有低电压响应特性的TVS/ESD二极管,以确保在低电压下也能起到保护作用。  2、快速响应时间:选择具有快速响应时间的TVS/ESD二极管,以能够迅速抑制瞬态过电压和静电放电。  3、低电容:选择具有低电容的TVS/ESD二极管,以避免对NFC信号的干扰。  2.注意TVS/ESD二极管的安装和布局  为了确保TVS/ESD二极管发挥最佳的保护作用,需要注意以下几点:  · 尽量靠近NFC设备接口的位置安装TVS/ESD二极管,以最大程度地减少静电放电和过电压对设备接口的影响。  · 使用封装良好的二极管,以防止外部环境对其造成损害。  · 采用合适的布局,确保电路的地线和信号线布线合理。
2025-07-23 11:01 阅读量:376
雷卯电子:三级浪涌防护及退耦设计
  浪涌(surge)也叫突波、瞬变(voltagetransient),是电路短路、电源切换或大型发动机开关机引起的电流瞬间超出稳定值峰值的突发现象,一般指发生在几百万分之一秒时间内的一种尖峰脉冲,通常包括浪涌电压和浪涌电流。  浪涌防护原理  浪涌的危害性非常大,可使电路瞬间烧坏,而浪涌保护就是利用线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感。对于商用设备,一般通过含有浪涌阻绝装置的产品吸收突发的尖峰能量,保护连接设备免受浪涌损害。  在电路设计中,一般遵循“多级防护、逐级削减”的原则,组合使用多种保护元器件方案,实现系统级、高可靠的浪涌防护。  第一级保护  大多数防护电路中,第一级是最容易引入雷电等尖峰的端口。  对于建筑物进线口、AC电源输入端口等应用,这些场合选取气体放电管等大通流保护器件,如GDT、SPG、TSS、信号类防雷模块(SPD)等。在直流电路可以适用高灭弧电压的GDT,类似雷卯电子的2R350-8LH,可以用于DC24V的直接跨接,  浪涌两级保护方案  对于电源端口场合,第一级防护一般选用能够承受较高电压或较大电流的箝位型大通流保护器件。若在电源端口选用开关型保护器件,过电压时开关型器件导通后电压较低,本身影响系统的供电电压,另一方面系统电压有可能会维持一直处于导通状态不能正常断开,系统长时间通过较大的电流(如A级电流)可能对电路板造成致命伤害,甚至引起火灾。  MOV加GDT保护方案  针对电源端口第一级箝位型过电压保护器件,一般选取金属氧化物压敏电阻(MOV)、超大功率TVS(hyperfix),或由这几种器件组合而成的防雷模块(SPD)等。当然,低速信号端口也可选择箝位型器件进行第一级防护,但前提是箝位型器件的结电容不能影响通信线路的正常通信。  第二级保护  第二级防护与第一级防护类似,一般选用反应速度快箝位电压低的TVS、ESD等。  在第二级,过于突出的尖峰脉冲已经被第一级削掉,只剩下小于第一级阈值的干扰信号、EMI以及二次产生的噪声。其中,ESD专为门防静电元件,由多个二极管或TVS组合而成,适用于高速数据线路ESD防护,如HDMI、USB3.0、IEEE1394等。  退耦元器件  退耦元件具有一定阻抗,作用是保证两级过电压保护器件协同工作。由于第一级防护器件与第二级防护器件采用的过电压保护器件种类不同,击穿电压大小不同,响应时间不同,只好通过退耦元件进行匹配。  设计中,第二级过电压保护器件一般采用响应速度较快的小通流低压器件,浪涌电压冲击时会先导通,退耦器件具有一定的内阻,经过大浪涌电流时,会将退耦元件之前的电压提高到第一级过电压元件的击穿电压之上,第一级元件导通后可泄放大浪涌电流,从而分担了第二级保护器件的压力。如果两级过电压保护器件之间不加退耦器件,这样第二级保护器件就会一直处于先导通状态,当浪涌电流超过第二级元器件能力时便会使其损坏。  选择退耦器件时,要根据线路的工作电流大小来选取,如一些信号电路工作电流较小,在保证其正常通信的情况下可选取功率型电阻或自恢复保险丝(PPTC),退耦电阻一般选取10Ω以内。从浪涌防护角度看,退耦电阻越大越好,但也不能太大,否则会影响线路正常工作电流,需要工程师在电路设计时综合考虑。  对于一些输入电流较大的低频线路,可选用电感来进行退耦,电感阻抗的计算公式为Z=2πfL,当确定好退耦阻抗值后,可从公式中计算出所用电感的大小。  单TVS防护方案  在类似5G基站的防雷设计电路上,对电力的VC箝位电压要求非常高,也可以采用单TVS的保护方案,使用的是雷卯电子的AK系列TVS,类似AK10 AK15 防护10KA级别的TVS,这类方案的特点是残压很低。  上面只是一些基本思路,实际应用中要根据每种电路保护元件的特点,取长补短搭配选用,这样才能获得高性价比的电路保护方案,为用户提供高可靠、高性能的电子电子产品,在激烈的市场竞争中获得先机。
2025-07-21 17:09 阅读量:384
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码