开关电源作用及其布线规则技巧

发布时间:2022-08-23 09:54
作者:Ameya360
来源:网络
阅读量:2769

    在日常的电源使用当中,开关电源是最为常见的一种现代电子供电产品。不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。理想上,开关电源本身是不会消耗电能的。电压稳压是透过调整晶体管导通及断路的时间来达到。相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。

开关电源作用及其布线规则技巧

    若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚未加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。

    对于开关电源的布线处理时,我们还是有以下事项需要注意:

    1、参数设置

    相邻导线之间的距离必须满足电气安全要求,间距应尽可能宽,以便于操作和生产。最小间距应至少适合所承受的电压。当布线密度较低时,可适当增加信号线间距。对于高低电平相差较大的信号线,间距应尽可能短,并应加大间距。一般情况下,配线间距应设置为8mil。焊盘内孔边缘与PCB板边缘的距离应大于1mm,以避免焊盘在加工过程中产生缺陷。当与焊盘连接的导线较薄时,焊盘与导线之间的连接应设计为水滴。这样做的好处是,焊盘不易剥落,而接线和焊盘不易断开。

    2、元器件布局

    实践证明,即使电路原理图设计正确,PCB电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果PCB电路板的两条细平行线相互靠近,会形成信号波形的延迟,在传输线的末端会形成反射噪声;由于不考虑电源和地线而引起的干扰会降低产品的性能。因此,在设计PCB电路板时应采用正确的方法。其实无论是在参数设置还是在元器件布局上,民熔电气都有它的优势所在。民熔电气的口碑是毋庸置疑的。

    每个开关电源有四个电流回路(1)、电源开关交流电路(2)、输出整流器交流电路(3)、输入信号源电流回路(4)、输出负载电流回路

    输入电路通过近似的直流电流对输入电容器充电,滤波电容器主要起宽带储能功能;同样,输出滤波电容器还用于存储输出整流器的高频能量,消除输出负载的直流电能电路。因此,输入和输出滤波电容的端子是非常重要的。输入和输出电流电路只能从滤波电容器的端子连接到电源;如果输入/输出电路和电源开关/整流器电路之间的连接不能直接连接到电容器的端子上,交流能量将从输入或输出滤波电容器辐射到环境中。

    电源开关和整流器的交流电路含有高振幅梯形电流。这些电流的谐波成分非常高,其频率远远大于开关的基频。峰值振幅可高达连续输入/输出直流电流幅值的5倍,过渡时间通常在50ns左右。这两种电路都容易产生电磁干扰。因此,这些交流电路必须在电源中其他印刷线路布线之前敷设。各回路的滤波电容器、功率开关或整流器、电感或变压器应相邻放置,并调整元件的位置,使它们之间的电流通路尽可能短。

    3、布线

    开关电源含有高频信号。印刷电路板上的任何印刷线都可以起到天线的作用。印刷导线的长度和宽度会影响其阻抗和电感电抗,从而影响频率响应。即使是通过直流信号的印刷线路也可以耦合到来自相邻印刷线路的射频信号,从而导致电路问题(甚至再次辐射干扰信号)。因此,所有通过交流电流的印刷线路应设计得尽可能短和宽,这意味着所有连接到印刷线路和其他电源线的部件必须放在一起。印刷导线的长度与电感和阻抗成正比,而宽度与电感和阻抗成反比。

    长度越长,印刷电路发射和接收电磁波的频率越低,辐射的射频能量也就越多。根据印刷电路板电流的大小,尽量缩短电源线的宽度,以减小回路电阻。同时,使电源线和地线的方向与电流方向一致,有助于增强抗噪声能力。接地是开关电源四个电流回路的最底层分支。它作为电路的共同参考点起着重要的作用。这是控制干扰的重要方法。因此,布置时应仔细考虑接地线的布置。各种接地线混接会导致电源运行不稳定。

    相信通过阅读Ameya360电子元器件采购网介绍的上面的内容,大家对开关电源有了初步的了解,同时也希望大家在学习过程中,做好总结,这样才能不断提升自己的专业水平。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
开关电源五大保护功能
         开关电源通常具备以下保护功能:  01过流保护  功能原理:当输出电流超过设定的安全阈值时,过流保护电路会被触发。这通常是通过检测输出电流大小来实现的,例如在电源输出线路中串联一个小阻值的采样电阻,利用欧姆定律,通过检测采样电阻两端的电压来获取电流信息。一旦检测到过流,电源会采取措施限制电流进一步增大。  例如,当连接的电子设备内部发生短路故障时,过流保护可以防止过大的电流损坏电源本身和其他正常的电路部分,保护电源和整个电子系统的安全。  02短路保护  功能原理:短路保护是过流保护的一种特殊情况,当输出端被直接短接时,输出电流会瞬间急剧增大。此时,短路保护电路会迅速动作,一般会立即切断输出,以避免电源在短路状态下持续大电流输出,从而防止电源内部元件因过热而损坏。在实际应用中,由于线路老化、接口松动或用户误操作等原因,可能会导致输出短路。短路保护能够有效应对这种突发状况,确保电源不会因为短路而损坏。  03过压保护  功能原理:过压保护主要是为了防止输出电压超过预定的最大值。电源内部通过电压检测电路实时监测输出电压,当输出电压超出设定范围时,过压保护机制启动。这可能涉及到调整开关电源的占空比(对于脉宽调制型开关电源)来降低输出电压,或者在极端情况下切断输出,以保护连接的负载设备免受过高电压的损害。在一些情况下,如电源内部反馈环路出现故障或外部干扰导致电压调节失控时,输出电压可能会异常升高。过压保护功能可以确保这些设备不会因为过高的电压而损坏。  04欠压保护  功能原理:欠压保护是当输入电压或输出电压低于某个设定的下限值时起作用。对于输入欠压保护,它可以防止电源在输入电压过低的情况下继续工作,因为此时电源可能无法正常稳定地输出所需电压,还可能会导致内部元件工作异常。在电网电压波动较大或者电池供电的设备中,输入欠压保护很重要。  05过热保护  功能原理:开关电源内部通常会安装温度传感器来监测关键元件(如开关管、变压器等)的温度。当温度超过设定的安全温度阈值时,过热保护电路会启动。这可能会导致电源降低输出功率,以减少元件的发热,或者直接切断电源,直到温度下降到安全范围内。在高负载运行、散热不良或者环境温度过高的情况下,电源内部元件的温度可能会快速上升。如果没有过热保护,元件可能会因为过热而损坏,甚至引发火灾等安全事故。
2025-04-10 14:00 阅读量:199
一文盘点开关电源MOS损耗
一文了解开关电源调试中的5个常见问题
  开关电源调试的5个常见问题,你遇到过吗?       01输出电压异常  输出电压过高或过低:可能是由于反馈回路故障、基准电压不准确、变压器匝数比不合适等原因引起。例如,反馈电阻阻值变化、光耦损坏等都可能导致输出电压偏离设定值。  电压不稳定:在负载变化或输入电压波动时,输出电压出现较大幅度的波动。这可能是由于稳压控制电路响应速度慢、滤波电容容量不足或损坏等原因造成。  02输出电流异常  输出电流不足:可能是由于功率开关管导通不良、变压器绕组短路、输出滤波电感饱和等原因导致。例如,功率开关管老化、驱动不足会使导通电阻增大,从而限制了输出电流。  过流保护频繁触发:当负载电流超过设定值时,开关电源应启动过流保护功能。但如果过流保护阈值设置不合理、检测电路故障或负载存在瞬间大电流冲击等情况,就会导致过流保护频繁触发,影响电源的正常工作。  03纹波噪声过大  高频纹波:主要由开关频率及其谐波引起,通常是由于输出滤波电容容量不足、电感值不合适或 PCB 布局不合理导致。例如,滤波电容的等效串联电阻(ESR)过大,会使高频纹波无法有效滤除。  低频纹波:一般是由输入电源的波动或负载变化引起的,可能是由于输入滤波不良、反馈回路响应慢等原因造成。  04发热严重  功率开关管发热:功率开关管在导通和截止过程中会产生较大的功耗,如果散热设计不合理,如散热片面积过小、风道不畅等,就会导致开关管温度过高。  变压器发热:变压器的磁芯损耗和绕组电阻损耗会产生热量,如果变压器设计不合理或工作在饱和状态,就会发热严重。此外,变压器的绕制工艺不良也可能导致局部过热。  05电磁干扰(EMI)问题  传导干扰:开关电源的高频开关动作会产生电磁干扰,通过电源线传导到其他设备。这可能是由于输入滤波器设计不合理、接地不良或 PCB 布线不合理等原因引起。  辐射干扰:开关电源的电磁场会向空间辐射电磁干扰,影响周围的电子设备。辐射干扰主要与开关频率、功率等级、PCB 布局和外壳屏蔽等因素有关。
2025-04-09 14:26 阅读量:206
工程师如何处理开关电源的磁芯损耗?
  在开关电源设计中,总会碰见各种各样的损耗,其中之一是磁芯损耗,由磁滞损耗和涡流损耗组成,难以直接估测,需要精确计算与合理选择磁芯材料来控制。  1知晓磁芯损坏的组成  磁滞损耗:与磁芯偶极子重新排列相关,正比于频率和磁通密度。  涡流损耗:由交变磁通在磁芯中产生的局部电流导致,表现为I²R损耗。  2选择合适的磁芯材料  优先选用低损耗磁芯:如铁镍钼磁粉芯(MPP),其损耗低于其他常见铁粉磁芯。  权衡成本与性能:虽然铁粉芯成本较低,但磁芯损耗较大,需根据具体应用需求选择。  3精确计算磁芯损耗  确定峰值磁通密度:利用公式B = (L * ΔI) / (N * A),其中L为电感,ΔI为电感纹波电流峰峰值,A为磁芯横截面积,N为线圈匝数。  查阅磁芯损耗曲线:根据磁芯制造商提供的磁通密度与磁芯损耗(和频率)图表,估算磁芯损耗。  4利用专业工具辅助设计  下载并使用制造商提供的计算软件:如某公司的在线电感磁芯损耗和铜耗计算公式,快速准确估算损耗。  模拟与验证:通过仿真软件模拟不同磁芯与电感参数下的损耗情况,进行验证与优化。  5实时热管理措施  设计有效的散热路径:确保磁芯及其周边组件的热能能够高效散出。  监控温度:在实际应用中,通过温度传感器监控磁芯温度,及时调整设计或增加散热措施。  6持续优化与迭代  收集应用数:在实际应用中收集磁芯损耗与温度数据,分析损耗来源。  迭代设计:根据数据分析结果,调整磁芯材料、电感参数或散热设计,持续降低磁芯损耗。
2025-03-28 14:43 阅读量:243
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码