TMSC, ARM, Xilinx, Cadence Partner on 7-nm Process

Release time:2017-09-12
author:Ameya360
source:Alan Patterson
reading:3276

  Xilinx, ARM, Cadence, and TSMC have announced a partnership to build a test chip in 7-nm FinFET process technology for delivery next year that promises to speed data center applications.

  The chip will be the first demonstration in silicon of Cache Coherent Interconnect for Accelerators (CCIX) enabling multi-core high-performance ARM CPUs working via a coherent fabric with off-chip FPGA accelerators, said the partners in a press statement.

  Accelerating applications in data centers is a growing requirement due to power and space constraints. Applications such as big data analytics, search, machine learning, wireless 4G/5G, and network processing benefit from acceleration engines that move data effectively among various system components.

  CCIX will allow components to access and process data irrespective of where it resides without the need for complex programming environments. CCIX will use existing server interconnect infrastructure and deliver higher bandwidth, lower latency, and cache coherent access to shared memory.

  This will result in a significant improvement in the effectiveness of accelerators as well as overall performance and efficiency of data center platforms, lowering the barrier to entry into existing server systems and improving the total cost of ownership of acceleration systems.

  The test chip, implemented on TSMC’s 7-nm process, will be based on the latest ARM DynamIQ technology, CMN-600 coherent on-chip bus, and foundation IP.

  “With the surge in artificial intelligence and big data, we’re seeing increasing demand for more heterogeneous compute across more applications,” said Noel Hurley, vice president and general manager of ARM's Infrastructure Group. “The test chip will not only demonstrate how the latest ARM technology with coherent multichip accelerators can scale across the data center but reinforces our commitment to solving the challenge of accessing data quickly and easily.”

  To validate the complete subsystem, Cadence provided key I/O and memory subsystems, which include the CCIX IP solution (controller and PHY), PCI Express 4.0/3.0 (PCIe-4/3) IP solution (controller and PHY), DDR4 PHY, peripheral IPs such as I2C, SPI and QSPI, as well as associated IP drivers. Cadence verification and implementation tools are being used to build the test chip.

  The test chip provides connectivity to Xilinx’s 16-nm Virtex UltraScale+ FPGAs over CCIX chip-to-chip coherent interconnect protocol.

  “Our Virtex UltraScale+ HBM family is built using TSMC’s third-generation CoWoS technology, which is now the industry standard assembly for HBM integration and cache-coherent acceleration with CCIX," said Victor Peng, chief operating officer at Xilinx.

  The test chip will tape out early in the first quarter of 2018, with silicon availability expected in the second half of 2018.

  “By building an ecosystem for high-performance computing with our collaboration partners, we will enable our customers to quickly deploy innovative new architectures at 7 nm and other advanced nodes for these growing data center applications,” said Babu Mandava, senior vice president and general manager of the IP Group at Cadence. “The CCIX industry standard will help drive the next generation of interconnect that provides the high-performance cache coherency that the market is demanding.”

  Artificial intelligence and deep learning will significantly impact industries including media, consumer electronics, and healthcare, according to Cliff Hou, TSMC vice president, Research & Development/Design and Technology Platform.

  “TSMC’s most advanced 7-nm FinFET process technology provides high-performance and low-power benefits that satisfy distinct product requirements for High-Performance Computing applications targeting these markets,” said Hou.

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
model brand To snap up
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code