升压变压器

发布时间:2022-12-14 13:18
作者:Ameya360
来源:网络
阅读量:2687

  升压变压器是指将电压瞬间启动,目前国内能有效做到瞬间升压的变压器生产商比较稀少,升压变压器瞬间启动升压能力比较强、升压效果较好。它区别在于无励磁调压开关不具备带负载转换档位的能力,因为这种分接开关在转换档位过程中,有短时断开过程,断开负荷电流会造成触头间拉弧烧坏分接开关或短路,故调档时必须使变压器停电。因此一般用于对电压要求不是很严格而不需要经常调档的变压器。

升压变压器


升压变压器定义

  变压器是一种常见的电气设备,可用来把某一数值的交变电压变换为同频率的另一数值的交变电压。升压变压器就是用来把低数值的交变电压变换为同频率的另一较高数值交变电压的变压器。其在高频领域应用较广,如逆变电源等。

升压变压器分类

  高频式

  高频升压变压器采用高频倍压整流电路,应用最新的PWM脉宽调制技术和功率IGBT器件,并根据电磁兼容性理论,采用特殊工艺,使直流发生器实现高品质、便携式。由控制箱和倍压装置两 部分组成,内设保护电阻,具有电压零位闸保护、过流及过压保护功能。体积小、重量轻、便于携带、方便、安全可靠,适用于电力部门现场直流高压试验,避雷器直流特性测试及其它需要直流高压的场合。

  直流式

  直流升压变压器具有体积小、重量轻、结构紧凑、功能齐全,通用性强和使用方便等特点。特别适用于电力系统、工矿企业、科研部门等对各种高压电气设备、电气元件、绝缘材料进行汇频或直流高压下的绝缘强度试验。是高压试验中必不可少的重要设备。

  节能低噪:采用优质冷轧硅钢片叠装;全斜接缝;采用特殊处理工艺,有效降低了运行时的震动和噪声;以及计算机优化设计等新材料、新工艺、新技术的引入,使的变压器更加节能、更加宁静。

  高可靠性:提高产品质量和可靠性,将是我们不懈的追求。在质保体系及可靠性工程方面进行大量的基础研究,积极进行可靠性认证,进一步提高变压器的可靠性和使用寿命。

  环保特性:具有耐热性,防潮性,稳定性,化学兼容性,低温性,抗辐射性和无毒性。

  交流式

  交流升压变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。交流升压变压器具有体积小、重量轻、结构紧凑、功能齐全,通用性强和使用方便等特点。特别适用于电力系统、工矿企业、科研部门等对各种高压电气设备、电气元件、绝缘材料进行汇频或交流高压下的绝缘强度试验。是高压试验中必不可少的重要设备。

  干式

  相对于油式变压器,干式升压变压器因没有油,也就没有火灾、爆炸、污染等问题,故电气规范、规程等均不要求干式变压器置于单独房间内。特别是新的系列,损耗和噪声降到了新的水平,更为变压器与低压屏置于同一配电室内创造了条件。干式升压变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的,根据使用环境特征及防护要求,干式升压变压器可选择不同的外壳。通常选用IP23防护外壳,可防止直径大于12mm的固体异物及鼠、蛇、猫、雀等小动物进入,造成短路停电等恶性故障,为带电部分提供安全屏障。若须将变压器安装在户外,则可选用IP23防护外壳,除上述IP20防护功能外,更可防止与垂直线成60°角以内的水滴入。但IP23外壳会使变压器冷却能力下降,选用时要注意其运行容量的降低。

  低频式

  低频变压器铁芯磁通和施加的电压有关。在电流中励磁电流不会随着负载的增加而增加。虽然负载增加铁芯不会饱和,将使线圈的电阻损耗增加,超过额定容量由于线圈产生的热量不能及时的散出,线圈会损坏,假如你用的线圈是由超导材料组成,电流增大不会引起发热,但变压器内部还有漏磁引起的阻抗,但电流增大,输出电压会下降,电流越大,输出电压越低,所以变压器输出功率不可能是无限的。假如你又说了,变压器没有阻抗,那么当变压器流过电流时会产生特别大电动力,很容易使变压器线圈损坏,虽然你有了一台功率无限的变压器但不能用。只能这样说,随着超导材料和铁芯材料的发展,相同体积或重量的变压器输出功率会增大,但不是无限大!


升压变压器故障

  因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。

  1、绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。

  2、各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。

  3、绕组的预紧力控制不当造成普通换位导线的导线相互错位。

  4、抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么Satons变压器重合闸后发生短路事故居多。

  5、采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。

  6、外部短路事故频繁,多次短路电流冲击后电动力的积累效应引起电磁线软化或内部相对位移,最终导致绝缘击穿。

  7、绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

上一篇:反馈变压器

下一篇:电泳仪

在线留言询价

相关阅读
变压器运行中为什么会发热或发烫?过热有什么危害
  变压器是电力系统中重要的设备之一,用于改变交流电压的大小,以实现电能输送、分配和转换。在变压器运行过程中,发热或发烫是一个常见现象,其产生原因及危害值得深入探讨。本文将详细解释变压器运行中为何会发热或发烫,并探讨过热对变压器的危害。  1. 变压器发热原因  1.1 铁损和铜损  铁损:主要由于铁芯在交流磁场中的磁滞和涡流损耗而产生。  铜损:由导线(主要是绕组)上的电流通过时引起的电阻损耗。  1.2 负载电流  高负载时,变压器的绕组会受到更大的电流冲击,导致发热。  1.3 效率损失  变压器工作时不可避免地存在一定的效率损失,其中一部分即为热量。  2. 变压器发热影响  2.1 绝缘老化  高温会导致变压器绝缘材料老化,降低其绝缘性能,增加绝缘击穿风险。  2.2 导致电气元件故障  长期高温运行会使绕组变形、绝缘层开裂,从而导致绕组短路甚至相间短路。  2.3 热应力影响  温度升高会导致变压器内部零部件承受热应力增加,加速金属材料的老化与劣化。  3. 过热的危害  3.1 减少变压器寿命  过热使变压器内部各部件的绝缘老化加剧,缩短了变压器的使用寿命。  3.2 增加维修成本  变压器过热导致绕组或其他零部件受损,需要更频繁的维护和维修,增加维修成本。  3.3 安全隐患  过热可能导致绝缘击穿,造成火灾或其他安全事故,威胁人员和设备的安全。  3.4 能效损失  过热会导致变压器效率降低,增加电能转换的损耗,从而影响整个电力系统的能效。  4. 如何预防过热  4.1 合理设计和选型  根据实际负载情况选择合适容量的变压器。  优化变压器结构和散热设计,提高散热效率。  4.2 定期检测和维护  定期检查变压器运行状态,确保正常工作。  及时清理变压器周围空间,保持通风畅通。  4.3 控制负载  严格控制变压器的负载,避免过载运行,以减少变压器的热损耗。  4.4 温度监测和保护装置  安装温度传感器和保护装置,及时监测变压器温度,并在超温情况下自动切断电源。  4.5 维护与绝缘检测  定期对变压器进行清洁、检修和绝缘测试,确保绝缘材料的性能。  4.6 使用冷却系统  对于大型变压器或高负荷运行的变压器,可以考虑安装冷却系统进行散热,有效降低温度。  变压器在运行中发热或发烫是由铁损、铜损、负载电流和效率损失等因素引起的常见现象。过热将导致变压器寿命减少、维修成本增加、安全隐患加剧以及能效损失,因此预防过热至关重要。通过合理设计选型、定期检测维护、控制负载、安装温度监测和保护装置等方法,可以有效预防变压器的过热问题,确保其安全稳定运行,延长使用寿命,并提高电力系统的可靠性和效率。
2026-01-04 16:46 阅读量:301
非晶合金变压器和普通变压器区别介绍
  在电力系统和各种电子设备中,变压器是一种关键的电气设备,用于改变交流电压的大小。非晶合金变压器和普通变压器是两种常见的变压器类型,它们在材料、性能、效率等方面有着不同之处。本文将对非晶合金变压器和普通变压器进行比较。  1. 基本介绍  普通变压器是传统的电力变压器,由铁芯和线圈组成。铁芯一般采用硅钢片制成,线圈则包裹在铁芯上。普通变压器具有简单的结构、稳定的性能和可靠的工作特性,广泛应用于电力系统、工业生产和家用电器等领域。  非晶合金变压器采用非晶合金材料制成铁芯,该材料具有非晶态结构和优异的磁性能。这种特殊的材料可以显著降低铁损耗和涡流损耗,提高变压器的效率和能量转换效率。非晶合金变压器通常用于要求高效率和节能的领域。  2. 区别对比  2.1 材料  普通变压器:使用传统的硅钢片材料作为铁芯,具有较高的导磁性和饱和磁感应强度。  非晶合金变压器:采用非晶合金材料制成铁芯,具有低磁滞、低涡流损耗和高饱和磁感应强度的特点。  2.2 效率  普通变压器:传统变压器效率通常较低,存在一定的铁损耗和涡流损耗。  非晶合金变压器:非晶合金变压器由于材料特性,具有较高的效率,能降低能量损耗,提高能量转换效率。  2.3 功率密度  普通变压器:传统变压器的功率密度一般较低,尺寸较大。  非晶合金变压器:非晶合金变压器由于较低的损耗和高效率,可以实现更高的功率密度,使得设备体积更小、更轻便。  2.4 成本  普通变压器:制造成本相对较低,适用于一般应用场合。  非晶合金变压器:由于采用高性能的非晶合金材料、制造工艺复杂,因此成本可能较高,但在长期使用中节能效益明显。  2.5 稳定性  普通变压器:稳定性较好,适用于长期运行的场合。  非晶合金变压器:由于材料特性和高效率,非晶合金变压器具有较高的稳定性和可靠性,适用于对能效要求较高、长期运行的场合。  2.6 环保性  普通变压器:传统变压器中可能含有一些环境污染物质,需要注意处理和回收。  非晶合金变压器:由于其高效率、低损耗等特点,可以减少对能源资源的浪费,更为环保。  2.7 适用领域  普通变压器:广泛应用于电力系统、工业生产、家用电器等领域,成熟而稳定。  非晶合金变压器:主要应用于要求高效率和节能的领域,如新能源领域、高端电子设备等。  非晶合金变压器和普通变压器在材料、效率、功率密度、成本等方面存在明显差异。普通变压器具有传统的优点和应用范围,而非晶合金变压器则在高效率、节能、环保等方面具有优势。根据实际需求选择合适的变压器类型是关键,以确保电气设备的性能和稳定性,并实现能源利用的最佳效益。
2025-12-01 15:41 阅读量:467
变压器设计:在矛盾中寻找动态平衡的艺术
  当我们拆解任何一台现代电子设备时,总会发现那个被铜线缠绕的磁性元件——变压器。它看似简单,却是电源系统中最为复杂的定制化组件之一。在实验室里,经常能听到工程师们的争论:“这个设计方案是否已经最优?”而真相是,变压器设计从来不存在普适的最优解,只有针对特定场景的暂时平衡。  多维约束下的设计困境  设想一位电源工程师面临的设计挑战:客户要求变压器在-40℃至125℃环境下工作,效率必须高于98%,同时成本不能超过3美元,体积需缩小30%。这就像要求一位建筑师在10平方米内建造兼具游泳池、健身房和花园的别墅。  在某个实际案例中,工程师为服务器电源设计的变压器最初采用传统EE型磁芯,虽然成本低廉,但效率始终无法突破96%。经过三个月的反复试验,团队最终选择了平面变压器与低损耗磁芯组合,效率成功提升至97.5%,但成本上升了40%。这种性能与成本的拉锯战,每天都在设计实验室上演。  材料科学的隐形边界  变压器设计的自由度首先被材料科学限定。第三代半导体技术的兴起使得开关频率从传统的几十kHz跃升至MHz级别,这对磁芯材料提出了全新要求。纳米晶、非晶材料与传统铁氧体在不同频率下各显神通:纳米晶在100kHz以上频段展现出色表现,但其脆弱的机械特性却成为自动化生产的噩梦。  漆包线的选择同样充满妥协。厚漆膜线材固然耐压性能优异,却会降低铜线的填充系数,导致窗口利用率下降。在汽车电子领域,工程师甚至需要评估绕组材料在热胀冷缩过程中的应力变化,这些微观层面的考量常常成为设计成败的关键。  热管理的艺术  大功率变压器的散热设计已从简单的热传导演变为多物理场耦合的复杂课题。某通信设备厂商的5G基站电源模块中,变压器通过埋入式热管将热量导向外壳,再配合相变材料吸收瞬时热冲击。这种多层次热管理方案使功率密度提升了三倍,但设计周期却延长了四个月。  温度对磁性元件的影响非线性。实验数据显示,磁芯损耗在80℃至100℃区间的增长率是60℃至80℃的两倍。这种特性使得简单的“降额设计”在某些场景下完全失效,必须采用实时温度补偿电路进行动态调整。  工业化生产的现实考量  实验室原型与量产产品之间存在巨大鸿沟。某消费电子巨头曾设计出性能卓越的变压器方案,却在量产时发现绕线张力控制偏差导致0.1%的产品存在匝间短路。这种看似微小的缺陷,在百万级出货量下就意味着上千台设备的故障。  自动化生产对变压器结构提出严苛要求。磁芯必须能够承受机械臂的抓取力度,引脚间距需要兼容贴片机的精度极限,甚至绝缘胶带的缠绕方向都必须标准化。这些制造约束常常迫使设计师放弃性能更优的方案,转向更适合规模化生产的设计。  成本方程的多个变量  在竞争激烈的市场环境中,变压器的成本优化已进入“分毫之争”。然而,精明的工程师正在重新定义成本概念:某个方案虽然材料成本高出15%,但通过简化装配工序,总生产成本反而降低8%。这种全生命周期成本分析正在成为行业新标准。  供应链韧性也成为设计考量因素。某家电企业曾因执着于特定尺寸的磁芯,在原材料短缺时期被迫停产两周。教训之后,他们的新规范要求所有变压器设计必须提供至少两个磁芯供应商的兼容方案。  创新技术的破局可能  新兴技术正在打破传统设计边界。三维打印技术允许制造传统方法无法实现的磁芯结构,某研究机构通过梯度密度设计成功将涡流损耗降低40%。人工智能辅助设计平台能够在一小时内评估数万种参数组合,找出人类工程师容易忽略的最优区间。  集成化是另一个发展方向。将变压器与电感器、电容器融合为单一电磁元件,这种“拓扑集成”理念可能在未来五年内重塑电源架构。不过,这些创新都面临同样的考验:如何跨越从实验室奇观到工业产品的“死亡之谷”。  设计哲学的演变  变压器设计的本质是在相互矛盾的需求间寻找平衡点。这个平衡点随着技术演进不断漂移:昨天追求极致效率,今天强调成本控制,明天可能注重环境友好。优秀的设计师如同经验丰富的舵手,在技术、市场和制造的多重浪涛中把握方向。  真正的专业智慧体现在懂得何时坚持、何时妥协。在某个医疗电源项目中,团队拒绝客户缩小体积的要求,因为保持足够的爬电距离关乎患者安全。这种基于专业知识的坚持,往往比盲目满足所有需求更能体现工程价值。  变压器设计就像一场没有终点的优化之旅,每个方案都是特定时空条件下的暂时平衡。或许,承认“没有最优解”这个事实,才是我们寻找更好解决方案的真正起点。
2025-10-22 10:15 阅读量:559
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码