高频电子变压器

发布时间:2022-09-28 14:18
作者:Ameya360
来源:网络
阅读量:2562

  高频电子变压器就是作频率高的电子变压器。具有适用范围广,工作频率高,工作电压范围宽,输出功率大等。广泛应用于各种LED驱动电源,电源适配器,等各种电子产品。

高频电子变压器

高频电子变压器的功能

  变压器完成的功能有3 个:功率传送、电压变换和绝缘隔离。电感器完成功能有2 个:功率传送和纹波抑制。

  功率传送有2 种方式。第一种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边。传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB。

  功率传送的第二种是电感器传送方式,即输入给电感器绕组的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁变成电能释放给负载。传送功率的大小决定于电感器磁芯的储能,也就是决定于电感器的电感量。电感量不直接与饱和磁通密度有关,而与磁导率有关,磁导率高,电感量大,储能多,传送功率大。各种软磁材料的磁导率从大到小顺序为:Ni80 坡莫合金为(1.2~3)×106,钴基非晶合金为(1~1.5)×106,铁基微晶纳米晶合金为(5~8)×105,铁基非晶合金为(2~5)×105,Ni50坡莫合金为(1~3)×105,硅钢为(2~9)×104,锰锌铁氧体为(1~3)×104。作为电感器的磁芯用材料,Ni80 坡莫合金、钴基非晶合金、铁基微晶纳米晶合金占优势,硅钢和锰锌铁氧体处于劣势。

高频电子变压器的发展趋势

  一,整体结构优化为适应电子设备愈来愈轻薄短小,高频电子变压器可从立体结构向平面结构、片式结构、薄膜结构发展,从而形成一代又一代的新高频电子变压器。比如:平面变压器、片式变压器、薄膜变压器。在设计方面,要研究各种新结构的电磁场分布,如何达到最佳优化设计,还研究多层结构的各种问题;在生产工艺方面,要研究各种新的加工方法,从而保证性能的一致性和实现加工工艺的机械化和自动化等;还可探讨空心变压器的结构、设计方法、制造工艺和应用特点。采用计算机对整体结构方案进行优化和具体设计,这样可以缩短设计时间,减少材料用量,缩短生产周期,降低成本。

  二、降低磁芯材料成本磁芯在以电磁感应原理工作的高频电子变压器中是最关键的部件。磁芯材料的主要发展方向是降低损耗,加宽使用的温度范围和降低成本。

  软磁铁氧体是现在高频电子变压器使用的主要磁芯材料,发展方向是开发性能更好的新品种和降低成本的新工艺。它与传统的软磁铁氧体和软磁合金相比,其磁性金属粒子或者薄膜可以分布在非导体和其他材料中,使高频损耗明显降低,提高了工作频率。加工工艺既可采用热压法加工成粉芯,也可以利用现在的塑料工程技术,注塑成复杂形状的磁芯,具有密度小、重量轻、生产效率高、成本低,产品重复性和一致性好等特点。还可以采用不同的配比,改变磁性。上面已介绍软磁铁氧体和坡莫合金组成的复合材料的例子,现在已开发出工作频率10khz以上的软磁复合材料粉芯,在高频用滤波电感器中可代替软磁铁氧体。

  根据高频电子变压器整体结构的发展要求,磁芯结构发展方向是平面磁芯、片式磁芯和薄膜磁芯。平面磁芯以前有的是用原来的软磁铁氧体磁芯进行改造,现在已有专门用于平面变压器的各种低高度软磁铁氧体磁芯。将来还可能开发出各种低高度软磁复合材料磁芯。片式变压器的磁芯除了将平面磁芯进一步压缩而外,也有采用共烧法制造的片式磁芯。

  三、线圈结构发展线圈结构主要的发展方向是平面线圈,片式线圈和薄膜线圈。

  立体结构的高频变压器线圈,导线材料考虑集肤效应和邻近效应采用多股绞线,有时也采用扁铜线和铜带。绝缘材料采用耐热等级高的材料,以便提高允许温升和缩小线圈体积,采用双层和三层绝缘导线,减少线圈尺寸。曾经国内开发出以纳米技术把云母泳涂在铜线上的c级绝缘电磁线,已经在工频电机和变压器中应用,取得良好的效果,估计在高频电子变压器中也会得到应用。


高频电子变压器的使用要求

  高频电子变压器的使用条件,包括两方面内容:可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。

  可靠性是指在具体的使用条件下,高频电子变压器能正常工作到使用寿命为止。一般使用条件中对高频电子变压器影响最大的是环境温度。决定高频电子变压器受温度影响强度的参数是软磁材料的居里点。软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大。

  例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据。因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃。钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下。铁基非晶合金的居里点为370℃,可以在150℃~180℃以下使用。高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用。微晶纳米晶合金的居里点为600℃,取向硅钢居里点为730℃,可以在300℃~400℃下使用。

  电磁兼容性是指高频电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。

  高频电子变压器的使用条件,包括两方面内容:可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。

  可靠性是指在具体的使用条件下,高频电子变压器能正常工作到使用寿命为止。一般使用条件中对高频电子变压器影响最大的是环境温度。决定高频电子变压器受温度影响强度的参数是软磁材料的居里点。软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大。

  例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据。因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃。钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下。铁基非晶合金的居里点为370℃,可以在150℃~180℃以下使用。高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用。微晶纳米晶合金的居里点为600℃,取向硅钢居里点为730℃,可以在300℃~400℃下使用。

  电磁兼容性是指高频电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

上一篇:动力锂电池

下一篇:陶瓷谐振器

在线留言询价

相关阅读
非晶合金变压器和普通变压器区别介绍
  在电力系统和各种电子设备中,变压器是一种关键的电气设备,用于改变交流电压的大小。非晶合金变压器和普通变压器是两种常见的变压器类型,它们在材料、性能、效率等方面有着不同之处。本文将对非晶合金变压器和普通变压器进行比较。  1. 基本介绍  普通变压器是传统的电力变压器,由铁芯和线圈组成。铁芯一般采用硅钢片制成,线圈则包裹在铁芯上。普通变压器具有简单的结构、稳定的性能和可靠的工作特性,广泛应用于电力系统、工业生产和家用电器等领域。  非晶合金变压器采用非晶合金材料制成铁芯,该材料具有非晶态结构和优异的磁性能。这种特殊的材料可以显著降低铁损耗和涡流损耗,提高变压器的效率和能量转换效率。非晶合金变压器通常用于要求高效率和节能的领域。  2. 区别对比  2.1 材料  普通变压器:使用传统的硅钢片材料作为铁芯,具有较高的导磁性和饱和磁感应强度。  非晶合金变压器:采用非晶合金材料制成铁芯,具有低磁滞、低涡流损耗和高饱和磁感应强度的特点。  2.2 效率  普通变压器:传统变压器效率通常较低,存在一定的铁损耗和涡流损耗。  非晶合金变压器:非晶合金变压器由于材料特性,具有较高的效率,能降低能量损耗,提高能量转换效率。  2.3 功率密度  普通变压器:传统变压器的功率密度一般较低,尺寸较大。  非晶合金变压器:非晶合金变压器由于较低的损耗和高效率,可以实现更高的功率密度,使得设备体积更小、更轻便。  2.4 成本  普通变压器:制造成本相对较低,适用于一般应用场合。  非晶合金变压器:由于采用高性能的非晶合金材料、制造工艺复杂,因此成本可能较高,但在长期使用中节能效益明显。  2.5 稳定性  普通变压器:稳定性较好,适用于长期运行的场合。  非晶合金变压器:由于材料特性和高效率,非晶合金变压器具有较高的稳定性和可靠性,适用于对能效要求较高、长期运行的场合。  2.6 环保性  普通变压器:传统变压器中可能含有一些环境污染物质,需要注意处理和回收。  非晶合金变压器:由于其高效率、低损耗等特点,可以减少对能源资源的浪费,更为环保。  2.7 适用领域  普通变压器:广泛应用于电力系统、工业生产、家用电器等领域,成熟而稳定。  非晶合金变压器:主要应用于要求高效率和节能的领域,如新能源领域、高端电子设备等。  非晶合金变压器和普通变压器在材料、效率、功率密度、成本等方面存在明显差异。普通变压器具有传统的优点和应用范围,而非晶合金变压器则在高效率、节能、环保等方面具有优势。根据实际需求选择合适的变压器类型是关键,以确保电气设备的性能和稳定性,并实现能源利用的最佳效益。
2025-12-01 15:41 阅读量:193
变压器设计:在矛盾中寻找动态平衡的艺术
  当我们拆解任何一台现代电子设备时,总会发现那个被铜线缠绕的磁性元件——变压器。它看似简单,却是电源系统中最为复杂的定制化组件之一。在实验室里,经常能听到工程师们的争论:“这个设计方案是否已经最优?”而真相是,变压器设计从来不存在普适的最优解,只有针对特定场景的暂时平衡。  多维约束下的设计困境  设想一位电源工程师面临的设计挑战:客户要求变压器在-40℃至125℃环境下工作,效率必须高于98%,同时成本不能超过3美元,体积需缩小30%。这就像要求一位建筑师在10平方米内建造兼具游泳池、健身房和花园的别墅。  在某个实际案例中,工程师为服务器电源设计的变压器最初采用传统EE型磁芯,虽然成本低廉,但效率始终无法突破96%。经过三个月的反复试验,团队最终选择了平面变压器与低损耗磁芯组合,效率成功提升至97.5%,但成本上升了40%。这种性能与成本的拉锯战,每天都在设计实验室上演。  材料科学的隐形边界  变压器设计的自由度首先被材料科学限定。第三代半导体技术的兴起使得开关频率从传统的几十kHz跃升至MHz级别,这对磁芯材料提出了全新要求。纳米晶、非晶材料与传统铁氧体在不同频率下各显神通:纳米晶在100kHz以上频段展现出色表现,但其脆弱的机械特性却成为自动化生产的噩梦。  漆包线的选择同样充满妥协。厚漆膜线材固然耐压性能优异,却会降低铜线的填充系数,导致窗口利用率下降。在汽车电子领域,工程师甚至需要评估绕组材料在热胀冷缩过程中的应力变化,这些微观层面的考量常常成为设计成败的关键。  热管理的艺术  大功率变压器的散热设计已从简单的热传导演变为多物理场耦合的复杂课题。某通信设备厂商的5G基站电源模块中,变压器通过埋入式热管将热量导向外壳,再配合相变材料吸收瞬时热冲击。这种多层次热管理方案使功率密度提升了三倍,但设计周期却延长了四个月。  温度对磁性元件的影响非线性。实验数据显示,磁芯损耗在80℃至100℃区间的增长率是60℃至80℃的两倍。这种特性使得简单的“降额设计”在某些场景下完全失效,必须采用实时温度补偿电路进行动态调整。  工业化生产的现实考量  实验室原型与量产产品之间存在巨大鸿沟。某消费电子巨头曾设计出性能卓越的变压器方案,却在量产时发现绕线张力控制偏差导致0.1%的产品存在匝间短路。这种看似微小的缺陷,在百万级出货量下就意味着上千台设备的故障。  自动化生产对变压器结构提出严苛要求。磁芯必须能够承受机械臂的抓取力度,引脚间距需要兼容贴片机的精度极限,甚至绝缘胶带的缠绕方向都必须标准化。这些制造约束常常迫使设计师放弃性能更优的方案,转向更适合规模化生产的设计。  成本方程的多个变量  在竞争激烈的市场环境中,变压器的成本优化已进入“分毫之争”。然而,精明的工程师正在重新定义成本概念:某个方案虽然材料成本高出15%,但通过简化装配工序,总生产成本反而降低8%。这种全生命周期成本分析正在成为行业新标准。  供应链韧性也成为设计考量因素。某家电企业曾因执着于特定尺寸的磁芯,在原材料短缺时期被迫停产两周。教训之后,他们的新规范要求所有变压器设计必须提供至少两个磁芯供应商的兼容方案。  创新技术的破局可能  新兴技术正在打破传统设计边界。三维打印技术允许制造传统方法无法实现的磁芯结构,某研究机构通过梯度密度设计成功将涡流损耗降低40%。人工智能辅助设计平台能够在一小时内评估数万种参数组合,找出人类工程师容易忽略的最优区间。  集成化是另一个发展方向。将变压器与电感器、电容器融合为单一电磁元件,这种“拓扑集成”理念可能在未来五年内重塑电源架构。不过,这些创新都面临同样的考验:如何跨越从实验室奇观到工业产品的“死亡之谷”。  设计哲学的演变  变压器设计的本质是在相互矛盾的需求间寻找平衡点。这个平衡点随着技术演进不断漂移:昨天追求极致效率,今天强调成本控制,明天可能注重环境友好。优秀的设计师如同经验丰富的舵手,在技术、市场和制造的多重浪涛中把握方向。  真正的专业智慧体现在懂得何时坚持、何时妥协。在某个医疗电源项目中,团队拒绝客户缩小体积的要求,因为保持足够的爬电距离关乎患者安全。这种基于专业知识的坚持,往往比盲目满足所有需求更能体现工程价值。  变压器设计就像一场没有终点的优化之旅,每个方案都是特定时空条件下的暂时平衡。或许,承认“没有最优解”这个事实,才是我们寻找更好解决方案的真正起点。
2025-10-22 10:15 阅读量:412
一文看懂电抗器与变压器的区别
  在电力系统中,电抗器和变压器都是重要的电气设备,在电能传输和分配中扮演着关键角色。虽然它们都涉及到电磁感应和电气参数的转换,但电抗器和变压器在原理、作用和应用领域上有着明显的区别。  1.电抗器(Reactor)  工作原理:  电抗器是一种被动元件,主要用于改变电路中的电流波形,并产生感性或容性电抗。感性电抗器(电感)通过电磁感应来阻碍电流的变化速度,而容性电抗器(电容)则通过存储和释放电荷来影响电流的变化。电抗器起到限流、稳流和过滤等作用,可以降低谐波、提高功率因数和保护设备。  特点:  被动元件,不具有增益功能。  通常用于对电流进行限制和调节。  可以用于平衡电路、消除谐波以及提高电路的稳定性。  2.变压器(Transformer)  工作原理:  变压器是一种电气设备,用于将交流电能从一个电路传输到另一个电路,通过磁耦合实现电压和电流的变换。变压器主要由两个或多个线圈(绕组)共同构成,当输入端(初级绕组)施加电压时,将在输出端(次级绕组)产生相应的电压,并根据绕组匝数比例实现电压升降。  特点:  实现电压和电流的变换,不改变频率。  具有增益功能,能够实现电能传输和分配。  在电力系统中广泛用于调整电压、降低损耗和提高传输效率。  3.区别与联系  工作原理:  电抗器是一种被动元件,通过感性或容性电抗来影响电路中的电流波形。  变压器是一种主动设备,通过磁耦合实现电能的变换和传输。  功能作用:  电抗器主要用于调节电流、限制谐波以及提高功率因数。  变压器主要用于电压和电流的变换,实现电能的传输、分配和调整。  应用领域:  电抗器常用于电力系统中的稳定性控制、谐波抑制和电力负载平衡等方面。  变压器广泛应用于电力系统中的电压调节、电能传输和分配、电力负载管理等方面。  结构形式:  电抗器通常由线圈和磁芯组成,用于产生电感或电容。  变压器由主绕组和副绕组组成,通过磁耦合实现电压和电流的变换。  电气参数:  电抗器影响电路中的电流波形,功率因数和谐波特性。  变压器主要影响电路中的电压、电流大小和相位关系,以实现电能传输和分配的功能。  工作方式:  电抗器是被动元件,在电路中不放大信号,仅通过电磁感应或电容存储和释放电荷来调节电路特性。  变压器具有放大功能,可以将输入端的电压信号变换为输出端的相应电压信号,实现电能的有效传输和分配。  安装位置:  电抗器通常安装在电力系统中的电源侧或负载侧,用于降低谐波、稳定电流和提高功率因数。  变压器通常安装在电力系统中的供电点或变电站,用于管理电能传输、调整电压等级和匹配负载需求。  在电力系统中,电抗器和变压器扮演着不同但互补的角色。电抗器通过调节电路中的电流特性,帮助维持系统稳定运行和优化功率因数。而变压器则通过变换电压和电流,实现电能的传输、分配和调整,确保系统各部分之间的电气参数匹配。两者共同构成了电力系统中重要的组成部分,为电能传输和分配提供了坚实的基础和技术支持。
2024-11-07 10:24 阅读量:1610
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
型号 品牌 抢购
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码