NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient <span style='color:red'>Automotive</span> Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:460 Continue reading>>
Adapting to challenging magnetic environments: MT73xx 3D dual-output Hall latches from NOVOSENSE enable precise automotive motor control
  The NOVOSENSE MT73xx series dual-output Hall latches, based on 3D Hall technology, support SS (Speed & Speed) or SD (Speed & Direction) dual-channel outputs and complies with Automotive Grade 0 standards. Ideal for motor control systems such as power windows, liftgates, and sunroofs, this product family enhances the accuracy and stability of speed and position detection, optimizing overall in-vehicle comfort.  In motor control systems, precise detection of speed and direction signals directly influences system response speed and operational stability. Traditional solutions typically rely on a combination of two separate Hall latches, requiring high magnetic ring installation precision. This often leads to issues such as signal phase deviation, poor synchronization, and structural complexity.  Integrates a 3D Hall sensing structure with inherent orthogonal output characteristics, the MT73xx series can simultaneously deliver dual-channel speed signals (SS output) with a 90° phase difference or speed and direction signals (SD output), making it widely suitable for “speed-direction” detection applications. This design reduces dependency on precise positioning of magnetic poles, mitigates dual-channel phase deviation, simplifies system architecture, and improves overall system stability, providing a more flexible and reliable solution for motion control detection.  Compatibility with diverse magnetic ring configurations enabled by VHS technology  To achieve high-precision 3D sensing, the MT73xx series adopts NOVOSENSE’s proprietary VHS (Vertical Hall Sensor) technology. Through combinations of XY, YZ, and XZ axial sensing, any two axes naturally deliver orthogonal outputs, enhancing signal synchronization.  Additionally, the MT73xx series offers excellent compatibility with various magnetic ring configurations – whether axial, radial, or irregularly shaped magnets – maintaining robust duty cycle performance. This allows customers to adapt designs flexibly depending on magnetic ring characteristics and installation environments, further reducing development complexity and tuning costs.  Dual-output design for optimized system integration  Regarding system integration, the MT73xx’s dual-output capability allows it to replace traditional single- or dual-Hall solutions by directly transmitting SS (Speed & Speed) or SD (Speed & Direction) signals to ECU, minimizing the requirements for peripheral redundant position sensors.  This approach not only saves PCB space and simplifies structural layouts, but also enhances solution integration, offering greater design flexibility for innovative applications in motor control and intelligent cockpit systems.
Key word:
Release time:2025-08-13 15:35 reading:666 Continue reading>>
PRI Certification, the #2 Certification Body in China, Launches IATF 16949 Services to Support Growing <span style='color:red'>Automotive</span> Industry
  PRI Certification Expands by Adding IATF 16949 Certification Services in China and Enhances Position as One of the Top Two Chinese CBs with 18% Market Share  PRI Certification proudly announces the official launch of IATF 16949 certification services in China. The expansion through PRI China’s Beijing office allows the organization to offer IATF 16949 services directly to the Chinese marketplace. In addition to this stronger presence in China, PRI Certification also holds the #2 market share in the United States. This dual-market leadership underscores PRI’s global credibility and trusted reputation across two of the world’s most significant manufacturing regions.  This strategic move solidifies PRI Certification’s commitment to delivering high-quality, industry-specific certification solutions throughout Asia. While the Beijing office will serve as the local hub for client engagement and auditing, all technical and certification decisions will continue to be supported through PRI’s team in Warrendale, Pennsylvania, USA—ensuring global consistency, technical rigor, and impartial oversight.  Over a Decade of Experience in Asia  PRI Certification has been delivering IATF 16949 certification in Japan for over 10 years, earning a strong reputation for excellence and reliability in the region. Expanding into China is a natural progression that aligns with growing demand in the Asian automotive market.  Expert Auditors with Deep Automotive Knowledge  PRI’s auditors bring unmatched technical expertise and practical insight to each audit. This ensures clients receive not just compliance evaluations but also process improvements that contribute to lasting business value.  Tailored Audits Across 30+ Industries  PRI Certification has successfully delivered certification services across more than 30 industries worldwide. The organization’s approach to auditing is tailored to the specific needs of the automotive sector, making PRI a trusted partner for companies pursuing or maintaining IATF 16949 Certification.  Continuing a Legacy of Quality in China  PRI has been providing certification services in China since 2010, helping organizations achieve international quality benchmarks across a wide range of sectors. The introduction of IATF 16949 services marks a significant milestone, strengthening PRI’s ongoing commitment to the region’s automotive manufacturing excellence.
Key word:
Release time:2025-08-05 14:46 reading:554 Continue reading>>
Murata Launches World’s First 10µF/50Vdc MLCC in 0805-inch Size for <span style='color:red'>Automotive</span> Applications
  Murata Manufacturing Co., Ltd. has announced the new GCM21BE71H106KE02 multilayer ceramic capacitor (MLCC) has entered mass production. The device is the world's first 0805-inch size (2.0 x 1.25 mm) MLCC to offer a capacitance of 10µF with a 50Vdc rating and is specifically engineered for automotive applications*. This cutting-edge product marks a significant advancement in MLCC design, delivering a smaller 0805-inch package while maintaining capacitance, voltage rating, and MLCC reliability.  Advancements in advanced driver-assistance systems (ADAS) and autonomous driving (AD) technologies necessitate deploying an increased number of integrated circuits (ICs) within vehicle systems. This surge in ICs simultaneously leads to a greater demand for supporting high-capacitance passive components while imposing tighter spatial constraints – as a greater number of capacitors must be accommodated on increasingly crowded automotive printed circuit boards (PCBs).  Designed for 12V automotive power lines, the GCM21BE71H106KE02 capacitor leverages Murata’s proprietary ceramic material and thinning technologies to help engineers to save PCB space and reduce the overall capacitor count, resulting in smaller, more efficient, and reliable automotive systems. As the first automotive-specific MLCC to achieve a 10µF capacitance with a 50Vdc rating in the compact 0805-inch size the GCM21BE71H106KE02 represents a significant advancement in capacitance efficiency. It offers roughly 2.1 times the capacitance of Murata’s previous 4.7µF/50Vdc product, despite sharing the same physical size. Furthermore, compared to the previous 10µF/50Vdc MLCC in the larger 1206-inch size (3.2 x 1.6 mm), the new MLCC occupies approximately 53% less space, providing substantial space savings for automotive applications.  Murata will continue to pursue further miniaturization and increased capacitance of MLCCs, while expanding its product lineup to meet the evolving needs of the automotive market. These efforts will support the industry as they look to develop higher-performance and more multifunctional vehicles. In addition, by downsizing electronic components, Murata aims to reduce material usage and improve production efficiency per unit, helping to lower electricity consumption at its manufacturing sites and reduce overall environmental impact.
Key word:
Release time:2025-07-04 13:59 reading:607 Continue reading>>
NOVOSENSE introduces NSDA6934-Q1: <span style='color:red'>Automotive</span>-grade Class D audio amplifier with digital input
  NOVOSENSE recently announced the launch of the NSDA6934-Q1, a digital-input automotive-grade Class D audio amplifier designed for vehicle audio systems. Featuring four-channel audio output with up to 75W per channel, it supports low-latency mode and sampling rates up to 192kHz. The amplifier offers flexible switching frequencies, multiple modulation options, and comprehensive protection features, making it highly adaptable to various automotive audio system designs.  Class D amplifiers: Driving the evolution of automotive audio  As automotive electronics continue to advance, Class D amplifiers have emerged as the preferred choice for vehicle audio systems due to their high efficiency, low heat dissipation, and compact form factor. These amplifiers not only meet modern vehicles’ stringent energy efficiency demands but also enhance audio quality and power output within limited space, playing a key role in the evolution of automotive audio technology.  Optimized Low-Latency Mode: Reducing Path Delay by Over 70%  In automotive audio systems, amplifiers boost signals from the DSP (Digital Signal Processor) before transmitting them to the speakers. Traditional amplifiers can contribute to over 30% of total signal transmission latency, impacting system performance.  The NSDA6934-Q1 features a unique low-latency mode that reduces transmission path delay by more than 70%, granting the DSP additional time for signal processing. This reduces DSP resource demands and enhances the effectiveness of RNC (Road Noise Cancellation). Additionally, the amplifier supports up to 192kHz sampling rates, delivering high-resolution audio with enhanced clarity and detail for an immersive in-car listening experience.  Flexible Configurations to Suit Various Designs  The NSDA6934-Q1 provides a wide range of switching frequencies and modulation options, allowing system engineers to optimize efficiency and size.  Adjustable Switching Frequency (384kHz – 2.1MHz)  At 384kHz, the amplifier achieves up to 93% efficiency, ideal for applications prioritizing power savings, though it requires a 10μH inductor for operation.  At 2.1MHz, the amplifier supports a compact 3.3μH inductor, making it suitable for space-constrained smart cockpit integration.  Selectable Modulation Modes (BD Mode & 1SPW Mode)  BD Mode (50% duty cycle) ensures superior linearity at high power levels, making it ideal for high-output applications.  1SPW Mode (20% duty cycle) reduces conduction losses, improving efficiency in low-power scenarios  Additionally, the NSDA6934-Q1 supports TDM16 data format, ensuring seamless integration with mainstream audio interfaces. With eight selectable I2C addresses, it prevents communication conflicts among peripheral devices. It also features integrated PVDD voltage monitoring, eliminating the need for external resistor dividers and simplifying system wiring and debugging.  Enhanced EMC Performance & Comprehensive Protection  The NSDA6934-Q1 incorporates multiple EMC optimization techniques, including slew rate control, phase control, and three spread-spectrum modes (triangular wave, random spread, hybrid spread), helping customers pass system-level EMC tests efficiently.For system reliability, the amplifier integrates multiple intelligent protection and diagnostic functions, including:  • I2C watchdog for real-time bus monitoring.  • Thermal protection, which automatically reduces gain under high-temperature conditions.  • AC/DC diagnostics for real-time power supply monitoring.  • Comprehensive protection suite, including temperature alarms, over-temperature shutdown, undervoltage, overvoltage, and overcurrent protection, ensuring robust system stability.
Key word:
Release time:2025-04-24 17:19 reading:869 Continue reading>>
TAIYO YUDEN Commercializes LCQPB Series of Power Inductors for <span style='color:red'>Automotive</span> Application
  TAIYO YUDEN CO., LTD. has commercialized the new LCQPB series of wire-wound ferrite power inductors, which have AEC-Q200 qualification for automotive passive components.  The LCQPB series power inductors are designed for use as choke coils and noise filters in DC-DC converters in power circuits for automotive body and information systems.  TAIYO YUDEN previously released the LCEN series and LCCN series of metal power inductors made from metallic magnetic substances for automobile application and the LCXN series and LCXH series of ferrite power inductors. To these, we add the new LCQPB series to give our customers more choice by substance and structure and a high degree of freedom in design.  The LCQPB series inductors have been manufactured by our overseas subsidiary, TAIYO YUDEN (PHILIPPINES), (Lapulapu City, Cebu) since March 2025. Samples are available for 50 yen per unit.  Technology Background  The advancements that we have seen in recent years in electronic controls in vehicles, as typified by ADAS units, have led to a greater number of power supply circuits on vehicles, which in turn has led to growth in the demand for power inductors that are used in these circuits. In order to miniaturize power supply circuits, engineers demand inductors with specific properties that allow high-density mounting with a high degree of freedom in design and noise suppression by frequency.  Therefore, TAIYO YUDEN has newly commercialized the LCQPB series, which complies with AEC-Q200. The LCQPB series inductors have a frameless structure that results in a small footprint. The new LCQPB series, together with our other series of inductors designed for automotive application, give our customers more choice by substance and structure and a high degree of freedom in design.  TAIYO YUDEN focuses on the development of products that meet market needs, and will continue to expand its power inductor product lineup.  ■ Application  The LCQPB series power inductors are applicable as choke coils and noise filters in DC-DC converters in power circuits for automotive body and information systems.
Key word:
Release time:2025-04-10 13:18 reading:531 Continue reading>>
Renesas Introduces Low-Power Bluetooth Low Energy SoC for <span style='color:red'>Automotive</span> Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced a new industry-leading Bluetooth chip that combines a radio transceiver, an Arm® M0+ microcontroller, memory, peripherals and security features in a compact SoC design. The DA14533, the first automotive-qualified device in the company’s Bluetooth® Low Energy system-on-chip (SoC) family, includes advanced power management features to simplify system integration and reduce power consumption. With its software stack qualified against Bluetooth Core 5.3 and support for extended temperatures, developers can jump-start projects in applications from tire pressure monitoring and keyless entry to wireless sensors and battery management systems.  Optimized Design to Deliver Unparalleled Power Efficiency  Building on Renesas’ leadership in Bluetooth LE SoCs (SmartBond Tiny Family) with industry-leading low power consumption, the new DA14533 includes some of the most advanced power management features in the industry. The device includes an integrated DC-DC buck converter, which accurately adjusts the output voltage according to system requirements. Active system power consumption is lower than comparable devices in the market, requiring only 3.1mA during transmission and 2.5mA during reception. In hibernation mode, the current drops to 500nA. These power management and power-saving features help extend the operational life of small-capacity battery-powered systems and meet the stringent power requirements of tire pressure monitoring systems’ mission profile.  Auto-Grade AEC-Q100 Qualified and Up-to-Date Security Features  The DA14533 is an AEC-Q100 Grade 2 qualified device, which means the device has passed strict testing to sustain quality and reliability in harsh automotive environments. Moreover, the device’s extended temperature range (-40 to +105°C) ensures reliable performance in demanding conditions, making it ideal for automotive and industrial systems where stability and durability are essential. Qualified against Bluetooth Core 5.3 specifications, the device contains the latest security features to safeguard connected devices from various threats.  “Our SmartBond Tiny SoC family has seen remarkable success in the industrial market, with over 100 million units shipped to date,” said Chandana Pairla, VP of Connectivity Solutions Division at Renesas. “This new automotive-grade device will enable a new class of Bluetooth LE applications that demand high power efficiency, a small footprint and broader temperature tolerance for next-generation battery-powered automotive and industrial systems.”  Lower Bill-of-Materials Reduces Costs and Simplifies Development  Similar to other Bluetooth LE SoC devices in the SmartBond Tiny family, the DA14533 only requires 6 external components, offering a best-in-class engineering bill of materials (eBOM).  A single external crystal oscillator (XTAL) is used for both active and sleep modes, eliminating the need for a separate oscillator for sleep mode. Its ultra-compact design – available in a WFFCQFN 22-pin 3.5 x 3.5 mm package – makes the device the smallest automotive Bluetooth LE SoC on the market. With its compact design and low eBOM, the device integrates seamlessly into space-constrained systems, reducing overall system costs and accelerating time-to-market for customers.  Key Features of the DA14533  Arm® Cortex®-M0+ microcontroller – Standalone application processor or data pump in hosted systems  64KB RAM and 12KB One-Time Programmable (OTP) memory  2.4 GHz radio transceiver  Integrated low IQ buck DC-DC converter  External SPI flash  Single XTAL operation (single crystal oscillator)  Software stack qualified against Bluetooth Core 5.3  AEC-Q100 Grade 2-qualified with wide operating temperature range support (-40 to +105°C)  WFFCQFN 22-pin 3.5 x 3.5 mm package
Key word:
Release time:2025-04-08 14:06 reading:836 Continue reading>>
ROHM and TSMC Launch Strategic Gallium Nitride Technology Collaboration for <span style='color:red'>Automotive</span> Industry
  ROHM Co., Ltd. (ROHM) announced today that ROHM and TSMC have entered a strategic partnership on development and volume production of gallium nitride (GaN) power devices for electric vehicle applications.  The partnership will integrate ROHM's device development technology with TSMC's industry-leading GaN-on-silicon process technology to meet the growing demand for superior high-voltage and high-frequency properties over silicon for power devices.  GaN power devices are currently used in consumer and industrial applications such as AC adapters and server power supplies. TSMC, a leader in sustainability and green manufacturing, supports GaN technology for its potential environmental benefits in automotive applications, such as on-board chargers and inverters for electric vehicles (EVs).  The partnership builds on ROHM and TSMC’s history of collaboration in GaN power devices. In 2023, ROHM adopted TSMC’s 650V GaN high-electron mobility transistors (HEMT), whose process is increasingly being used in consumer and industrial devices as part of ROHM's EcoGaN™ series, including the 45W AC adapter (fast charger) "C4 Duo" produced by Innergie, a brand of Delta Electronics, Inc.  "GaN devices, capable of high-frequency operation, are highly anticipated for their contribution to miniaturization and energy savings, which can help achieve a decarbonized society. Reliable partners are crucial for implementing these innovations in society, and we are pleased to collaborate with TSMC, which possesses world-leading advanced manufacturing technology" said Katsumi Azuma, Member of the Board and Senior Managing Executive Officer at ROHM. “In addition to this partnership, by providing user-friendly GaN solutions that include control ICs to maximize GaN performance, we aim to promote the adoption of GaN in the automotive industry."  “As we move forward with the next generations of our GaN process technology, TSMC and ROHM are extending our partnership to the development and production of GaN power devices for automotive applications,” said Chien-Hsin Lee, Senior Director of Specialty Technology Business Development at TSMC. “By combining TSMC's expertise in semiconductor manufacturing with ROHM's proficiency in power device design, we strive to push the boundaries of GaN technology and its implementation for EVs.”  About TSMC  TSMC pioneered the pure-play foundry business model when it was founded in 1987, and has been the world’s leading dedicated semiconductor foundry ever since. The Company supports a thriving ecosystem of global customers and partners with the industry’s leading process technologies and portfolio of design enablement solutions to unleash innovation for the global semiconductor industry. With global operations spanning Asia, Europe, and North America, TSMC serves as a committed corporate citizen around the world.          TSMC deployed 288 distinct process technologies, and manufactured 11,895 products for 528 customers in 2023 by providing broadest range of advanced, specialty and advanced packaging technology services. The Company is headquartered in Hsinchu, Taiwan.  EcoGaN™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-04-02 15:36 reading:572 Continue reading>>
Renesas Introduces Highly Integrated LCD Video Processor that Enables Next-Generation ASIL B <span style='color:red'>Automotive</span> Display Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RAA278830 Video Diagnostics Bridge IC, a highly integrated dual Low-Voltage Differential Signal (LVDS) LCD video processor. The new IC integrates many of the features necessary to design ISO 26262-compliant ASIL B automotive display systems such as heads-up-displays (HUD), digital instrument clusters, camera monitor systems (CMS), and electronic mirrors.  As automotive safety systems are increasingly dependent on display systems, it has become more critical that clear, uncorrupted images be presented to the driver. Missing frames, frozen images, and even incorrect warning icons can seriously compromise driver safety. The RAA278830 addresses these concerns with Functional Safety features built into the device specifically to avoid any corruption of images through monitoring of the signal integrity as well as the video content itself. The internal diagnostics and measurement engines can detect frozen video, incorrect colors, broken or corrupt video images, as well as flashing, flickering, and video images that could obstruct the driver’s view of the road (in the case of HUD systems).  Renesas’ Automotive Video Signal Processing Expertise  Renesas has a long and successful track record of providing video signal processing solutions for the automotive market. In addition to standard analog video decoders, Renesas offers the award-winning Automotive HD-Link (AHL) family of products that enables high-resolution images to be transported over low-cost cables and connectors. The RAA278830 adds to Renesas’ leading line of integrated LCD controllers that have been implemented worldwide.  Key Features of the RAA278830  Dual Open-LDI Input/Output  ISO 26262 Functional Safety ASIL B rating  CRCs, parity, BIST, and redundancy safety mechanisms implemented throughout the entire data path  Video Diagnostic Capabilities  Input/Output monitoring of video timing, signal integrity, and content  Flickering, flashing, occlusion, and glare detection  Spread Spectrum for lower system level EMI profile  Image enhancement engine for superior image quality  Dual host interface: I2C & SPI (configurable)  SPI-Flash based OSD as well as an embedded font based OSD  SPI boot capability (boot from SPI Flash, no MCU needed)  Supports multi-bank for fail-safe OTA updates  Space-efficient 72SCQFN, 10mm x 10mm  AEC-Q100 Grade 2 qualified  “Our automotive customers have consistently asked us to add functional safety features to our industry-leading video processing technology,” said Jason Kim, Vice President and General Manager of the Configurable Mixed-Signal Division at Renesas. “The RAA278830 delivers all of the features needed to create safe, easy-to-implement and economical LCD display for all types of passenger vehicles.”
Key word:
Release time:2025-04-01 14:36 reading:626 Continue reading>>
Mazda and ROHM Begin Joint Development of <span style='color:red'>Automotive</span> Components Using Next-Generation Semiconductors
  Mazda Motor Corporation (hereinafter “Mazda”) and ROHM Co., Ltd. (hereinafter “ROHM”) have commenced joint development of automotive components using gallium nitride (GaN) power semiconductors, which are expected to be the next-generation semiconductors.  (Left) Ichiro Hirose, Director, Senior Managing Executive Officer and CTO of MAZDA / (Right) Katsumi Azuma, Member of the Board and Senior Managing Executive Officer of ROHM  Since 2022, Mazda and ROHM have been advancing the joint development of inverters using silicon carbide (SiC) power semiconductors under a collaborative framework for the development and production of electric drive units. Now, they have also embarked on the development of automotive components using GaN power semiconductors, aiming to create innovative automotive components for next-generation electric vehicles.  GaN is attracting attention as a next-generation material for power semiconductors. Compared to conventional silicon (Si) power semiconductors, GaN can reduce power conversion losses and contribute to the miniaturization of components through high-frequency operation.  Both companies will collaborate to transform these strengths into a package that considers the entire vehicle, and into solutions that innovate in weight reduction and design. Mazda and ROHM aim to materialize the concept and unveil a demonstration model within FY2025, with practical implementation targeted for FY2027.  “As the shift towards electrification accelerates in pursuit of carbon neutrality, we are delighted to collaborate with ROHM, which aims to create a sustainable mobility society with its outstanding semiconductor technology and advanced system solution capabilities, in the development and production of automotive components for electric vehicles” said Ichiro Hirose, Director, Senior Managing Executive Officer and CTO of Mazda. “We are excited to work together to create a new value chain that directly connects semiconductor devices and cars. Through collaboration with partners who share our vision, Mazda will continue to deliver products filled with the 'joy of driving' that allows customers to truly enjoy driving, even in electric vehicles.”  “We are very pleased to collaborate with Mazda, which pursues the 'joy of driving,' in the development of automotive components for electric vehicles” said Katsumi Azuma, Member of the board and Senior Managing Executive Officer of ROHM. “ROHM's EcoGaN™, capable of high-frequency operation, and the control IC that maximizes its performance are key to miniaturization and energy-saving. To implement this in society, collaboration with a wide range of companies is essential, and we have established various partnerships for the development and mass production of GaN. By collaborating with Mazda, which aims to create 'cars that coexist sustainably with the earth and society,' we will understand the requirements for GaN from the perspective of application and final product development, contributing to the spread of GaN power semiconductors and the creation of a sustainable mobility society.”  EcoGaN™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-03-31 15:46 reading:416 Continue reading>>

Turn to

/ 8

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code