ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

发布时间:2025-09-12 17:23
作者:AMEYA360
来源:ROHM
阅读量:230

  ROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current. This IC is optimized to be applied as a measurement sensing amplifier in size-constrained applications such as handheld measurement instruments, wearable devices, and indoor motion detectors.

ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

  As the demand continues to grow for more sophisticated control in battery-driven devices, the importance of sensors that detect parameters such as temperature, humidity, vibration, pressure, and flow rate – along with the op amps used to amplify these sensor signals – continues to rise. At the same time, greater miniaturization and energy savings in applications is a necessary step to realizing a sustainable society –placing similar demands on individual devices as well.

  In response to these evolving market needs, ROHM has advanced its process, packaging, and proprietary Nano Energy™ circuit technologies to develop an op amp that addresses three key requirements: lower power consumption, higher accuracy, and compact size. The newly developed TLR1901GXZ achieves an ultra-compact footprint of less than 1mm2 by adopting a WLCSP (Wafer Level Chip Scale Package) with a fine ball pitch of 0.35mm while delivering an industry-leading low operating current of 160nA (typ.). This not only contributes to high-density mounting in space-constrained applications, but also to a significantly extended battery life.

  Moreover, the TLR1901GXZ features an exceptionally low input offset voltage of just 0.55mV (max.), one of the best among ultra-low current op amps. This represents an approximate 45% reduction compared to typical products on the market. A maximum input offset voltage temperature drift of 7uV/°C ensures high accuracy operation over the operating temperature range.

  Design flexibility can be further enhanced by pairing the op amp with ROHM’s ultra-compact general-purpose resistors, such as the MCR004 (0402 metric / 01005 inch) and MCR006 (0603 metric / 0201 inch), for applications like gain adjustment. The MCR004 series lineup includes the MCR004E –an environmentally friendly, fully lead-free option designed to support sustainable designs. Adapter boards featuring SSOP5 package ICs are offered as well to support initial evaluation and replacement assessments.

  Going forward, ROHM will continue to pursue further power savings in op amps by advancing both miniaturization and original ultra-low power technologies. At the same time, we are committed to improving device performance by reducing noise and offset, expanding power supply voltage ranges, and contributing to solving social issues through more precise application control.

ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

  Key Product Characteristics

ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

  Application Examples

  • Consumer devices: wearables, smart devices, motion sensors, etc.

  • Industrial equipment: gas detectors, fire alarms, handheld measurement instruments, environmental sensors for IoT, etc.

  Online Sales Information

  Sales Launch Date: Now

  Pricing: $2.1/unit (samples, excluding tax)

  Online Distributors: AMEYA360

  • Applicable Part No: TLR1901GXZ-E2

  • IC-Mounted Adapter Board: TLR1901GXZ-EVK-001

ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

  What is Nano Energy™ Technology?

  Nano Energy™ refers to proprietary ultra-low current consumption technology that achieves a current consumption on the order of nano ampere (nA) by combining advanced analog technologies covering circuit design, layout, and processes utilizing ROHM’s vertically integrated production system.

  This contributes not only to extending operating time of battery operated IoT and mobile devices, but also improving efficiency in industrial and automotive equipment where increased power consumption is problematic.

  https://www.rohm.com/support/nano

ROHM has Developed Ultra-Compact CMOS Op Amp: Delivering Industry-Leading* Ultra-Low Circuit Current

  Nano Energy™ is a trademark or registered trademark of ROHM Co., Ltd.

  Terminology

  WLCSP (Wafer Level Chip Scale Package)

  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from wafers and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.

  Input Offset Voltage

  The small voltage difference that must be applied between the inverting and non-inverting inputs of the operational amplifier to make the output voltage exactly zero.

  Input Offset Voltage Temperature Drift

  Refers to how much an op amp's input offset voltage changes as the temperature changes.


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM’s SiC MOSFETs Adopted in Schaeffler’s Inverter Brick, Now in Mass Production
  ROHM and Schaeffler, a leading German automotive supplier, have started mass production of a new high-voltage inverter brick equipped with ROHM’s SiC (silicon carbide) MOSFET bare chips as part of their strategic partnership. The inverter brick is intended for a major Chinese car manufacturer.High voltage inverter brickSiC MOS Wafer  The Schaeffler inverter subassembly is the essential power device building block (brick) to control the electric drive via logic signals. This is where the high-frequency current pulses are produced that set the vehicle’s electric motor in motion. The performance characteristics of the inverter brick now being produced are impressive: Schaeffler increased the output of the brick by increasing the maximum possible battery voltage to much more than the usual 800 V – and with RMS currents of up to 650 A, which turn the sub-module into a compact power pack.  “Through our strategic approach of incorporating scalability and modularity into our e-mobility solutions – from individual components to a highly integrated electric axle – we developed the readily integrated inverter brick. Based on our generic platform development, it took us just one year to bring this optimal product for the popular X-in-1 architectures to volume production readiness,” says Thomas Stierle, CEO of the E-Mobility Division at Schaeffler.  Modularity and scalability as the key to easy integration  As a core component of an inverter, a brick has to meet strict requirements. The characteristics of the sub-module are indicative of the factors behind the current sales success and start of volume production: ROHM’s silicon carbide (SiC) power semiconductors enable the frame-mounted sub-module with high power density to be compact, efficient, and readily integrated into various inverters through its modular and scalable design. The sub-module incorporates the power module for pulse width modulation (PWM) of the current pulses, the DC link capacitor, a DC link and a cooler. Moreover, the brick has a DC boost function, thanks to which a vehicle with 800 V architecture can also be charged at a 400 V charging station at a charging speed of 800 V.  “We are glad about the launch of volume production for Schaeffler’s inverter brick with our 4th generation SiC MOSFET,” says Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM. “With our SiC technology we are making a substantial contribution to increasing the efficiency and performance of electric cars. Working with Schaeffler as our partner, we are thus fostering innovation and sustainability in the automotive industry,” Dr. Ino adds.  The strategic partnership of Schaeffler (originally initiated under Vitesco Technologies) with ROHM has existed since 2020 and serves to secure capacity for energy-efficient SiC power semiconductors.Thomas Stierle, CEO E-Mobility Division at Schaeffler (left) and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  About Schaeffler Group  The Schaeffler Group has been driving forward groundbreaking inventions and developments in the field of motion technology for more than 75 years. With innovative technologies, products and services for electric mobility, CO₂-efficient drives, chassis solutions and renewable energies, the company is a reliable partner for making motion more efficient, intelligent and sustainable – over the entire life cycle. Schaeffler describes its comprehensive range of products and services in the mobility ecosystem by means of eight product families, from bearing solutions and linear guidance systems of all kinds to repair and monitoring services. With around 120,000 employees at more than 250 locations in 55 countries, Schaeffler is one of the world’s largest family-owned companies and ranks among Germany’s most innovative companies.
2025-09-05 16:57 阅读量:336
ROHM at electronica India 2025: Power and Analog Devices Contributing to the Evolution of Industrial and E-Mobility applications
  From September 17th to 19th, ROHM will exhibit at electronica India 2025, South Asia's leading trade fair for electronic components, systems, applications, and solutions, taking place at the Bangalore International Exhibition Centre (BIEC). At booth H3-E25, ROHM will showcase its latest SiC and GaN technologies, featuring reference designs and evaluation systems that address today’s power and thermal challenges in both industrial equipment and automotive drive systems. Additionally, we will also showcase analog solutions such as power ICs for industrial equipment and automotive LED drivers.  "electronica India 2025 will be the right place to explore real-world applications powered by ROHM’s advanced power semiconductors. With our local design expertise and close cooperation with key players in the Indian market, we are uniquely positioned to support the country’s shift toward more sustainable and efficient electronics," says Makoto Terada, Managing Director, ROHM Semiconductor India.  Highlights of ROHM’s presence at electronica India 2025 include:  For Industrial Applications  ・Locally co-developed reference designs, as part of ROHM’s 'Made in India' initiative, emphasizing faster prototyping and region-specific design optimization, which will be unveiled for the first time.  ・A full lineup of GaN reference designs ranging from 45W to 5.5kW, including compact AC adapters, Totem Pole PFC designs, and server power supplies.  ・ROHM’s 2kV SiC MOSFETs, adopted in SEMITRANS® 20 modules by Semikron Danfoss, powering SMA Solar Technology’s Sunny Central FLEX for utility-scale PV and battery systems.  * SEMITRANS® is a trademark or registered trademark of Semikron Danfoss Elektronik GmbH  For Automotive and E-Mobility  ・TRCDRIVE pack™, a molded SiC module designed for the traction inverter of EVs.  ・New 2-in-1, 4-in-1 and 6-in-1 molded SiC modules for compact and cost-optimized drive solutions.  ・TO-247 discrete SiC MOSFETs shown through practical 3-phase inverter boards for affordable traction systems.  More Information  For additional highlights of ROHM at electronica India 2025, please visit:  www.rohm.com/electronica-india  ROHM’s Power Eco Family: Reliable Solutions Across a Wide range of Applications  ROHM will also feature its Power Eco Family, a branding concept that unites its key power device lines: Each product line will be represented through live demonstrations, adoption cases, and hands-on evaluation tools available at the booth.
2025-09-01 15:11 阅读量:387
ROHM Releases a New Compact PFC + Flyback Control Reference Design for Power
  ROHM’s new reference design (REF67004) is capable of controlling two commonly used power converter types in consumer and industrial power supply applications by using a single MCU :critical conduction mode PFC (Power Factor Correction) and quasi-resonant flyback. This is part of ROHM’s LogiCoA™ Power Supply Solution, that leverages analog-digital hybrid control technology. It combines an analog-controlled power stage circuit featuring ROHM’s superior silicon MOSFETs and gate driver ICs with a digitally managed power supply circuit built around the low-power LogiCoA™ MCU.  Analog-controlled power supplies are widely used in small- to medium-power industrial applications, such as industrial robots and semiconductor manufacturing equipment. However, growing demands for higher reliability and more precise control have made it increasingly difficult for analog-only configurations to meet market expectations. On the other hand, while fully digital power supplies offer fine control and greater flexibility, their adoption in the small to medium power range has been limited due to the high cost and power consumption of digital controllers.  To overcome these challenges, ROHM has developed the LogiCoA™ Power Supply Solution, a hybrid approach that integrates the advantages of both analog and digital control. Combined with ROHM’s high-performance, the low power LogiCoA™ MCUs enable easy control of various power topologies. As the first step, ROHM has released the REF66009 evaluation reference design, allowing users to explore the LogiCoA™ Power Supply Solution using a non-isolated buck converter circuit. This was followed by the launch of the REF67004, a reference design incorporating both PFC and flyback converters – topologies commonly used in consumer and industrial equipment.  The newly introduced REF67004 is a reference design that boosts AC input using a Critical Conduction Mode PFC converter, followed by a Quasi-Resonant Flyback converter to deliver a regulated DC 24V output. Features include a calibration function that compensates for variations in the external component characteristics, enabling the LogiCoA™ MCU to perform high-precision voltage configuration and overcurrent protection. This allows for reduced design margins, making it possible to select more compact (low power) power devices and inductors, ultimately helping to minimize PCB area and lower overall system costs.  The REF67004 also includes a logging function that allows the LogiCoA™ MCU to store operational data, such as input/output voltage, current, temperature, pre-shutdown system status, and cumulative operating time, in its built-in non-volatile memory. This data can be analyzed to easily identify the root cause of power supply failures. On top, various power control parameters and operational history can be easily configured and retrieved from a PC via UART (with a signal conversion device) using sample programs, including the RMOS (Real-time Micro Operating System) power control OS, available on ROHM's website. Practical evaluation is possible through the use of the reference design board LogiCoA003-EVK-001. Going forward, ROHM will continue to provide a variety of power supply reference designs to support and accelerate customer power supply development.  LogiCoA™ Brand  LogiCoA™ is a brand that embodies a design philosophy of fusing digital elements to maximize the performance of analog circuits. By combining the advantages of analog circuitry with those of digital control, it is possible to maximize the potential of circuit topologies, contributing to more efficient power utilization. As LogiCoA™ is a design concept that can be applied not only to the power supply field, but also to power solutions as a whole, ROHM is considering its application in future products and solutions.  ・LogiCoA™ is a trademark or registered trademark of ROHM Co., Ltd.  LogiCoA™ Power Supply Solution Page  The basic architecture and key features of the LogiCoA™ Power Supply Solution are available on ROHM’s website.  https://www.rohm.com/support/logicoa  LogiCoA™ Power Supply Solution Reference Design Lineup  In addition to sample software, a variety of tools necessary for evaluation, such as circuit diagrams, PCB layouts, parts lists, and support documents are available on ROHM’s website, while actual device evaluation is also possible using the reference design board. Going forward, ROHM will continue to expand its lineup of reference designs to support a wide range of power topologies.  ● Reference Design Part No.  • PFC + Flyback Converter: REF67004  • Buck Converter: REF66009  LogiCoA™ MCU  Lineup  Key features include a built-in 3ch analog comparator that can be synchronized with timers, along with a D/A converter that enables digital control of various parameters to support different power supply topologies.  LogiCoA™ MCU Development Support System  Built on a ROHM’s proprietary 16bit RISC CPU core, LogiCoA™ MCUs are fully supported by a dedicated integrated development environment and emulator tools.  For more information on the LogiCoA™ development support system and a product overviews, please visit ROHM’s LogiCoA™ MCU development system support page (link below).  https://www.rohm.com/lapis-tech/product/micon/logicoa-software  Online Sales Information  Reference design boards, reference board and LogiCoA™ MCUs are available for purchase through online distributors such as AMEYA360.  • Reference Design Board P/N:  LogiCoA003-EVK-001*, LogiCoA001-EVK-001  • Reference Board P/N:  RB-D62Q2035TD20, RB-D62Q2045GD24  • LogiCoA™ MCU P/N:  ML62Q2035-NNNTDZWATZ, ML62Q2045-NNNGDZW5BY  Pricing : $677/unit (samples for LogiCoA003- EVK-001, excluding tax)  Application Examples  • Industrial robots • Semiconductor manufacturing equipment • Gaming devices  The LogiCoA™ Power Supply Solution is also suitable for integration into general industrial equipment and consumer devices with power requirements ranging from approximately 50W to 1kW.  Terminology  Critical Conduction Mode PFC (Power Factor Correction) Converter  A configuration used in AC-DC converters within switching power supplies, Critical Conduction Mode PFC offers a high-power factor (indicating efficient utilization of supplied power) while generating less noise compared to Continuous Conduction Mode PFC. A power factor of ‘1’ signifies that all supplied power is being effectively used without waste.  Quasi-Resonant Flyback Converter  A DC-DC converter topology commonly used in isolated power supply designs, these converters leverage a quasi-resonant control technique to minimize switching losses and noise. Ideal for applications up to 100W, it offers advantages in terms of reduced component count and cost. While other forward-type topologies exist, advancements in the components used in these designs have led to smaller, more efficient isolated power supply solutions.  Analog Control Power Supply  A power supply configuration built with analog components, commonly used for applications up to 1kW due to its simplicity and low power consumption. However, implementing advanced features such as customizable parameter settings and data logging is challenging with analog control alone, often requiring fully digital solutions that tend to increase both cost and power consumption.  Digital Control Power Supply  A power supply is managed using digital technology. High-speed CPUs and DSPs are used to precisely monitor and control key parameters such as voltage and current, improving power supply efficiency and reliability. Digital control also enables advanced functions, such as operation log data acquisition, that are difficult to implement with analog control alone. However, CPUs and DSPs tend to be expensive and consume significant power, posing challenges in terms of cost effectiveness and energy efficiency.  • CPU (Central Processing Unit): The core processor responsible for executing programs and performing data processing.  • DSP (Digital Signal Processor): A processor that converts analog signals into digital form and performs operations such as filtering and amplification.  Topology  Refers to the circuit configuration. Power topology defines how electrical energy is transformed and managed within a circuit. The specific configuration depends on factors such as input and output voltage levels, power requirements, and whether electrical isolation is necessary.
2025-08-25 14:24 阅读量:422
ROHM Releases New Level 3 SPICE Models Featuring Enhanced Simulation Speed
  ROHM has announced the release of new Level 3 (L3) SPICE models that deliver significantly improved convergence and faster simulation performance.  Since power semiconductor losses greatly impact overall system efficiency, simulation accuracy during the design phase is critical. ROHM’s earlier Level 1 SPICE models for SiC MOSFETs addressed this need by precisely replicating key device characteristics. However, challenges such as simulation convergence issues and prolonged computation times revealed the need for further refinement.  The new L3 models utilize a simplified approach that maintains both computational stability and accurate switching waveforms while reducing simulation time by approximately 50% compared to the L1 models. This allows for high-accuracy transient analysis of the entire circuits at significantly faster speed, streamlining device evaluation and loss assessment in the application design phase.  As of April 2025, ROHM has released 37 L3 models for its 4th Generation SiC MOSFETs, available for download directly from the Models & Tools section of each product page. The L1 models will continue to be offered alongside the new versions. A comprehensive white paper is also provided that facilitates model adoption.  The models can be downloaded from the Models & Tools section on individual 4th Generation SiC MOSFET product pages  Related Information  • White Papers  • Design Model Support Page  • SiC MOSFET Technical Documentation  Looking ahead, ROHM remains committed to advancing simulation technology to enable the design for higher-performance and more efficient applications, driving continued innovation in power conversion systems.
2025-07-10 13:36 阅读量:437
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码