从运动到感知,纳芯微磁传感器为人形机器人赋能

发布时间:2025-05-23 11:36
作者:AMEYA360
来源:纳芯微
阅读量:874

  纳芯微磁传感器技术为人形机器人运动控制提供了关键解决方案,其高精度磁角度编码器可精准检测关节位置和运动轨迹,赋予机器人更灵敏的感知能力和更流畅的运动表现。相关技术突破将推动人形机器人在通用关节和执行器等核心部件上的性能提升,为智能机器人产业发展注入新动能。

  随着人形机器人技术的快速发展和市场化进程加速,其应用场景正从工业领域向消费级市场拓展。纳芯微凭借广泛的产品线布局,在这一新兴市场中占据了重要地位,其产品涵盖MCU、传感器(电流、电压、温度、位置)、栅极驱动、缓冲器、电池管理,以及通信、功放、监控和基准等芯片解决方案,能够为机器人系统提供完整的信号链支持。

  纳芯微技术市场经理陈旭骅在2025CAIMRS AI+人形机器人研讨会上介绍,从当前主流人形机器人的结构来看,单台设备平均需配备71个磁编码器和90个电流传感器,具体需求拆解如下:

  机械臂(自由臂):以七自由度机械臂为例,其7个关节每个关节的减速机前后均需1个编码器,单臂需14个磁角度传感器来实现电机运行及末端位置检测,双臂合计28个。同时需配套14个驱动器和28个电流传感器。

  腿部和腰部关节:按四自由度保守计算,各需16个磁编码器;若包含腰部旋转和弯腰动作,则要额外增加4个磁编码器,总计20个。部分高端设计采用六自由度方案,进一步推升了传感器需求。

  膝关节:针对爆发力要求高的跑跳动作,定制化膝关节动力电机通常配备4个磁编码器(每膝2个)。

  灵巧手:目前国内外方案差异较大,海外有些灵巧手能实现十六、二十二自由度。国内市场比较常见的是6个空心杯为主的结构。拇指关节是一个二自由度结构,需要3个角度编码器(1个/空心杯电机+末端检测);四指关节基本上以4个空心杯电机为主,每指2关节配备2个末端位置检测编码器,总计12个。手腕类似腰部旋转结构,需额外的编码器支持。

  电池管理方面:主流200A电池组需配置2个高精度电流传感器。视觉执行机构方案多样,通常需2-4个磁编码器实现精准定位。

  纳芯微高精度与高可靠性传感方案

  在角度传感领域,编码器技术经历了从电位器到光电、磁角度及电感式编码器的演进。目前,纳芯微聚焦于磁角度编码器和电感式编码器的研发与量产,其中磁角度编码器已广泛应用于工业及消费领域,而电感式编码器则在汽车EPS(电动助力转向系统)、扭矩传感等场景中展现优势。

  纳芯微磁角度编码器采用非接触式设计,具备高可靠性、抗震、抗污染等特性,尤其适合动态环境。传统光电编码器对环境洁净度要求高,而人形机器人的跌落、碰撞等动作易导致其失效。相比之下,磁角度编码器不仅适应性强,还可实现17bit分辨率(精度达0.002°),且仅需单芯片+磁铁的简洁方案即可完成高精度检测,大幅降低系统复杂度。

  纳芯微的磁编码器主要有三种不同的技术路线,可以覆盖全场景需求。首先是低成本的霍尔式磁编码器方案,适用于空心杯电机等对性价比敏感的场景。第二是AMR磁阻式编码器,具有高灵敏度,分辨率可达21bit,主要用于工控市场和机器人中的伺服电机,以及配合机器人行星减速机的多颗协同控制方案。第三是新兴的电感式编码器方案,适合中空走线或大电流场景(避免磁场干扰),目前已进入小批量阶段,未来将拓展至人形机器人关节等应用。

  总之,纳芯微通过多技术路径布局,为不同精度、成本及环境要求的场景提供定制化解决方案,持续推动编码器技术在机器人领域的创新应用。

  纳芯微磁编码器安装方式详解

  磁编码器的安装方式主要分为在轴安装和离轴安装两大类。在轴安装是指电机轴、磁铁轴心和芯片轴心三轴同心的安装方式,它具有结构简单、精度稳定的特点。而离轴安装则是当前行业研究的热点,特别适用于需要中空结构的减速器应用场景,为人形机器人等新兴领域提供了更为灵活的解决方案。针对这两种安装方式,纳芯微开发了不同的产品系列,以满足多样化需求。

  目前纳芯微有三款在轴安装磁编码器产品:MT6835(±0.02°)、MT6826S(±0.1°)和MT6701(±1.0°)。这三款产品的年出货量已达到500-600万片,广泛应用于步进电机和伺服电机领域。其中MT6701主要应用于空心杯电机等对成本敏感的场景;MT6826S和MT6835基于磁阻技术,凭借更高精度被用于伺服电机和行星减速机的多颗协同控制方案。

从运动到感知,纳芯微磁传感器为人形机器人赋能

  关于安装技术细节,在轴安装又可分为径向充磁和轴向充磁两种方案。径向充磁方案磁场发散较远,对安装距离要求较低;轴向充磁方案磁力线更为集中,适合1mm以内的精密安装场景,是纳芯微主推的方案。

  离轴安装是一种创新方案,针对机器人行业对中空结构的需求,纳芯微提供三种离轴解决方案。一是集成磁头方案(MT6620),优势是集成度高,挑战是对磁铁的磁间距和安装位置要求较高;二是低成本方案(MT6709QC),其特点是通过外接磁传感器解码,通过自校准可将精度提升至±0.1°(匀速自校准)或±0.2°(简洁校准)。

  第三种是电感式编码器方案(MT6901),其创新性在于,采用电感技术解决了中空走线干扰问题,能够有效规避EMC等信号干扰。这种双码道游标方案是当前市场主流的绝对值编码器,可广泛应用在机器人关节侧。

  为了满足绝对位置的监测需求,纳芯微还推出了两种创新方案——单码道增量控制和M序列方案。单码道增量控制采用单磁环设计,通过中间的回零信号实现位置识别。该方案采用增量控制方式,虽然存在上电时存在噪声问题,但在工业场景中仍有广泛应用。

  M序列方案则更为先进,融合光编理论创新而成。其工作原理是通过伪随机序列精确定位外圈对极位置,结合增量控制实现360°绝对角度测量。具体流程为:上电时读取内码道信号确定初始位置,然后通过增量方式进行机械控制,由芯片内部解析获得绝对角度信息。

  上述两种方案各有特点:传统方案结构简单但存在噪声;M序列方案精度更高但增加了复杂度。两者均能有效满足绝对位置监测需求,可为不同应用场景提供灵活选择。

  为满足不同精度需求,纳芯微开发了多种复合安装方案。其中,基础复合方案采用中间轴向充磁的在轴安装,外圈采用4颗传感器解码,特点是平衡成本与性能。高精度复合方案增加了中间磁铁屏蔽罩,能够有效隔离外部磁场干扰,提升测量精度。

  纳芯微还在两个方案基础上开发了两种全中空离轴方案。其外部磁环随外转子旋转,内部磁环连接减速器电机端,采用8颗线性霍尔输出信号至解码芯片。通过增加磁屏蔽设计,其外圈精度可达0.2-0.3°,内圈精度可达0.8-1°。该方案的可靠性已在行业实际应用中得到了验证,完美解决了中空结构下的高精度测量需求。

  纳芯微即将推出的MT6901电感式编码器将成为人形机器人关节的核心解决方案。该产品采用创新的三层电感技术,在定子两侧各配置一个转子,通过电磁感应实现双面信号采集,从根本上消除传统方案单侧感应的局限性。

  虽然三块PCB的精密平衡存在技术挑战,但这一设计实现了内环套外环的感应方案,能够显著提升测量精度,完美解决中空走线的EMC干扰问题,特别适合需要高可靠性的机器人关节应用,从而推动整个机器人行业的技术升级。

  纳芯微将持续拓展智能化边界

  纳芯微通过持续技术创新,建立了完整的磁编码器解决方案体系,从传统在轴安装到创新离轴方案,从单一测量到复合安装,为工业自动化、人形机器人等领域提供了多样化的选择。特别是正在开发的MT6901电感式编码器,有望解决行业长期存在的中空走线的干扰难题,推动磁编码器技术进入新的发展阶段。

  纳芯微的传感器产品已成功导入多家客户的人形机器人项目,在空心杯电机和通用关节领域实现了批量出货。与此同时,在四足机器人市场也取得了突破,多个项目进入量产阶段。作为国产传感器供应商,纳芯微将持续为机器人行业提供高可靠性解决方案,助力国产人形机器人把握市场机遇,实现技术突破。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微中报全面解析
  2025年8月19日,纳芯微公布半年报:2025年H1实现营业收入15.2亿元,同比增长79.5%。2025年Q2单季营业收入8.07亿元,环比增长12.5%,同比增长65.8%。  自2024年Q2,纳芯微已经连续5个季度单季收入创历史新高,持续的业绩爆发,着实让人惊叹!图:纳芯微单季度营收  从下游应用来看,2025年H1,汽车电子业务营收同比增长82%,泛能源营收同比增长79%,消费电子营收同比增长75%。三个终端应用领域均保持同频的高速增长,得益于:  汽车电子领域需求持续旺盛,且新产品不断推出并放量,车规级产品已广泛应用于三电系统,并逐步拓展至智能座舱、自动驾驶、车身控制、智能照明等智能化应用场景;  泛能源市场,聚焦工业控制、光伏/储能和电力电子等细分领域。其中工业控制的市场需求自去年末起呈现复苏态势;光储领域的部分客户需求在二季度也有恢复的迹象;AI服务器电源模块的需求显著提升,已成为公司电源模块业务的重要增长动力;  消费电子领域,随着上半年消费电子需求的复苏,公司推出多款应用于消费电子领域的温湿度传感器和传感器信号调理芯片,并实现大规模发货。  2025年上半年,消费电子领域占公司整体营收占比不高,约13%。公司主要聚焦的汽车电子和泛能源市场营收占约87%,其中汽车营收占比34%,泛能源营收占比53%。  从产品结构看,2025年H1,电源管理产品营收同比增长73%,信号链产品营收同比增长29%,传感器营收同比增长350%。三大产品方向收入占比更加均衡,由于去年收购了麦歌恩,麦歌恩并表丰富了传感器产品布局,传感器营收占比提升至27.1%;信号链产品占比有所下降,约38.5%;电源管理产品占比保持稳定,占比约34.1%。  值得一提的是,2025年Q2,纳芯微的磁传感器、隔离器以及栅极驱动产品环比增长显著,其中,磁传感器在二季度环比增长约28%,增量一方面来源于磁电流传感器在主要汽车客户的导入量产,另一方面来源于麦歌恩磁传感器在3D打印、扫地机器人等应用领域的销量增长。  毛利率已经连续两个季度回升,从2024年Q4的31.53%,提升至2025年Q2的35.97%。  纳芯微在投资者关系活动中表示,2025年Q1毛利率环比企稳回升主要是成本下降及产品结构变化,2025年Q2下游客户结构及产品销售结构亦有所变化,使得公司当期综合毛利率继续提升。图:纳芯微单季度毛利率  具体来看,传感器产品的毛利率从2024年H2的41.5%,提升至2025年H1的47%,且得益于麦歌恩并表,高毛利率的传感器产品营收占比提高,对公司2025年H1综合毛利率提升的影响权重最大;其次,电源管理产品的毛利率从2024年H2的21.5%,提升至2025年H1的24.7%,也给公司整体毛利率水平的提升带来正面影响;而信号链产品毛利率相比前期仍处于下滑态势,但由于信号链产品的营收占比由2024年H1的53.6%,大幅缩至2025年H1的38.5%,对公司整体毛利率影响权重大幅变小。  截至2025年6月末,纳芯微已能提供3600余款可供销售的产品型号,相比2024年末的3300,半年增长300余款,增速保持稳定。(2024年末可供销售3300余款产品型号,包括并表的麦歌恩可供销售的产品型号为1000余款。)  传感器产品方面  在磁传感器方向:首代基于垂直霍尔技术的3D线性霍尔芯片,完成产品流片;第三代微功耗霍尔开关,成功实现全国产供应链落地;首颗支持PSI 5接口、达到ASIL-C功能安全等级的差分霍尔汽车级角度传感器芯片已推出;“双码道+可离轴设计”的磁性角度编码器芯片研发进展顺利,可应用于机械臂、人形机器人关节等精密角度反馈场景。  在压力传感器方向:推出的小尺寸NSPAD1N绝压系列已量产,为汽车座舱舒适性提供高性价比解决方案。  在温湿度传感器方向:温湿度产品已在车载与工业领域实现批量出货;带防尘保护膜和防水透气膜的湿度传感器已在客户进行规模出货,下一代超小尺寸、高精度系列正在稳步推进中。  信号链产品方面  在隔离产品方向:新一代数字隔离器在大幅降低成本的同时,其EMI性能达到汽车级最高EMC等级,已广泛应用于新能源汽车;“小型化+密脚宽体”三通道数字隔离器、新一代隔离CAN芯片及宽压隔离电压采样芯片,覆盖从紧凑空间到高压采样的全部场景。  在接口方向:发布首款Mini SBC、成本优化的新一代LIN芯片以及高速车载视频 SerDes接口芯片,其中SerDes芯片采用全国产化产业链,符合国标HSMT协议,传输速率高达6.4 Gbps,可广泛应用于车载 ADAS 与智能座舱系统。  此外,应用于汽车电子执行器市场的MCU+产品已累计出货超过400万颗,成功导入多家主流车厂。  值得关注的是,通用信号链产品自2024年第三季度量产以来,累计获得百家以上客户订单,正逐步形成新的业绩增长点。  电源管理产品方面  在栅极驱动产品方向:第二代隔离栅极驱动产品市场份额持续提升;应用于汽车主驱的功能安全栅极驱动,开始大批量装车。  在非隔离栅极驱动方向:激光雷达 GaN驱动及AI服务器电源高压GaN驱动,均开始批量量产。  在电机驱动产品方向:第一代多路集成半桥驱动、多路直流有刷预驱,市场份额持续提升;同时第二代多路集成半桥驱动、多路可配置高低边驱动,已进入客户送样阶段。  在音频功放产品方向:首款4通道75W ClassD音频放大器已完成多家汽车大客户单体及设计验证,4通道150WClassD音频放大器开始客户送样。  在LED驱动方向:应用于汽车前灯照明解决方案的Boost升压、恒流源降压及矩阵控制芯片已开始送样。  在供电电源方向:首款为ECU系统MCU供电的SBC及首颗专为车载摄像头设计的PMIC均已启动送样。  在功率路径保护方向:高边开关系列持续扩品,相关产品已规模量产并导入多家头部车企。  结尾  综上,2025年上半年纳芯微不管是经营维度还是财务维度都取得了不错的成绩,各业务板块均保持强劲增长势头,产品结构更加均衡,综合毛利率连续回升,产品款数保持高速增长。  笔者看到很多半导体上市公司的由于高市值与低/负利润的反差,被投资者诟病。  私以为,在当前市场环境下,国产芯片厂商的首要策略应是:填补国产空白,在国产替代的背景下提升市场份额,通过提供可靠的产品和不断提升的销量来巩固客户关系,推动技术的持续迭代。  至于“利润”,当竞争格局再稳定后,自然会水到渠成。
2025-08-27 11:45 阅读量:226
纳芯微:为什么超声波雷达是车载感知的近距离守护者?
  在工程师的世界里,常说:“毫米波雷达负责看远,超声波雷达负责看清。”随着汽车智能化的发展,那些“贴地而行”的场景越来越关键,比如进出地库、过减速带、挪车、泊车,每一个微小动作都依赖超声波雷达的高频精细感知。  目前市场上,乘用车普遍配备具有APA功能的超声波雷达。泊车时,侧向雷达判断车位边界,前后角雷达配合测算进深,并结合速度和转角信息,快速构建完整的泊车模型。典型中型SUV通常搭载12颗雷达,通过TDM轮询采集数据,最终汇入主控芯片进行多源融合判断。  本文将从泊车辅助的技术演进、测距原理、多雷达协同机制到超声探头技术,全面解析超声波雷达在车辆近距离感知中的关键作用。  01、从蜂鸣器到全自动  UPA与APA的技术演进  超声波雷达技术在车载泊车辅助中的应用经历了从最初的UPA(Ultrasonic Parking Assist)到更高级的APA(Automated Parking Assist)的发展阶段。二者虽然在雷达结构上具有一定相似性,但在系统架构、功能逻辑、传感融合和智能控制等方面存在本质差异。  UPA系统特征  APA系统特征  通常配置 4 至 8 颗超声波雷达,安装于前后保险杠区域  一般配置 12 颗雷达,布置于车辆四周,实现 360° 近场覆盖  主要功能为检测障碍物,并通过蜂鸣提示向驾驶员发出距离预警  支持车位识别、泊车路径规划、方向盘控制、自动换挡等操作  不具备路径规划或车辆控制能力  需要将雷达数据与摄像头、转向角、速度等车辆状态信息融合  雷达信号多为独立处理,未进行传感器融合  对系统延迟、雷达同步性、信噪比及冗余机制提出更高要求  从架构上来看,APA系统通过中央控制器对所有雷达进行统一调度,采集的数据不再孤立处理,而是参与整车路径规划与控制决策。这种集中式架构使系统能够识别标准与非标准车位,自动生成泊车路径,并在狭窄环境中完成自动泊车任务。为了确保APA系统在各种车位环境下正常运行,如斜列、窄位、障碍靠边,系统需有较强的鲁棒性和抗干扰能力,这涉及动态阈值调整、干扰波识别、历史轨迹回溯等算法模块。  02、测距不仅仅是“听声音”  还原超声波雷达的工作全过程  “发射声波一接收回波”听起来像是简单的定位原理,但实际上超声波雷达测距系统远比这复杂。它涉及高频信号调制、精密时间采样、滤波算法、多目标识别以及环境补偿等多个环节。  原理概述:超声波雷达通过发射一组周期性声波(一般为44kHz)向外传播,遇到障碍物后发生反射,由接收端捕捉反射波。系统通过计算声波传播的往返时间(Time of Flight,ToF)来确定目标距离。  v ≈ 331+0.6 × T (单位为m/s,随温度而变)  t为超声波发出至接收到的时间间隔(秒)  举例:当ToF测得为2.0ms,环境温度为25℃,则v≈ 331 + 0.6×25= 346 m/s,d=(346×0.002)/2=0.346 米  信号处理流程:在典型的AK2标准超声波雷达平台中,测距流程大致包括以下几个步骤:  发射端信号设计  使用44kHz固定频率正弦波或调幅脉冲,脉冲长度通常为8~16周期。为提高方向性和功率,一些系统还会设计压电阵列或宽束锥;  接收信号链路  声波被接收后,信号经过带通滤波(去除低频电磁干扰)、低噪放大(提升微弱回波)、ADC采样(通常为12~16位精度,采样率高于200kHz);  温度补偿与距离输出  系统读取片上或外接温度传感器数据,修正声波传播速度;最终输出测距结果,并传递至主控芯片或泊车控制器。  超声波雷达测距系统  多目标与噪声场景处理:在多障碍物场景中,系统通过提取多个回波峰值,实现多目标识别。  信号重叠或噪声干扰  若出现信号重叠或噪声干扰,系统可采用多帧均值滤波、一致性判断等方法排除虚警;  低反射目标  对于低反射目标(如毛绒玩具、布面材质),可通过提升发射功率或使用冗余探头,提高探测概率。  03、雷达不独行  12颗雷达的“交响乐队”  如何精密协同?  在成熟的 APA 自动泊车系统中,通常配备 12 颗超声波雷达。它们的合理布置与高效协同,是实现精准泊车和障碍规避的前提。  以一辆中型SUV为例,12颗雷达一般按以下方式布局:  前保险杠:4颗(中部2颗 + 两角各1颗)  后保险杠:4颗(中部2颗 + 两角各1颗)  左右两侧裙边:各2颗  12颗雷达布局  这种布置确保车辆四周360°全方位覆盖,既能监测前后距离,也能识别车位边界、斜向障碍物和动态目标。  一个完整的12颗雷达调度周期为大约24~40ms,主控芯片通过高速调度器控制轮转,同时保证接收窗口与回波延迟重叠时间匹配,避免漏检或虚检。例如,当车辆以2km/h速度缓慢倒入车位时:  后角雷达  主要负责识别车尾左右空间,判断是否偏离泊车线;  后中雷达  实时测量尾部至墙体或障碍物的最小距离,控制是否刹车;  侧边雷达  动态判断是否临近隔壁车辆,防止侧擦;  数据融合  所有数据经主控融合后,生成泊车曲线控制命令,并控制方向盘自动回正。  这种高频轮询与数据融合机制,确保即使在复杂、多目标、多反射环境下,系统也能保持流畅、精准的实时感知。  04、下一代超声波雷达  还需要突破哪些技术瓶颈?  当前超声波雷达可实现 30~250cm 高精度探测,但为了满足 L2+ 及以上智能辅助驾驶对安全性和自适应性的要求,未来研发重点之一是探头包络数据融合技术。  超声波雷达正从单一测距工具演变为车辆近场感知核心,与摄像头和毫米波雷达协同构建“近场大脑”,同时面临串扰干扰、软材质反射衰减及复杂障碍识别等挑战。  针对这些痛点,纳芯微可提供NSUC1800 超声雷达探头芯片(Slave)。该芯片基于全国产供应链,兼容标准 DSI3 协议,实现主从设备跨品牌互联。  NSUC1800 支持灵活编码与抗干扰机制,近场盲区压缩至 10 cm,远距可达 6–7 m,并已通过 ISO26262 ASIL B 与 AEC-Q100 车规认证,为 UPA、APA、AVP 等低速智驾场景提供精准可靠的感知能力,加速国产超声雷达系统规模化落地。  结论与建议  超声波雷达凭借高性价比、低功耗和紧凑结构,已成为智能泊车的核心感知模块。它已从单一测距传感器演进为整车感知网络的关键节点,正迈向“预测性感知”,通过算法与软硬件协同提升近场智能判断力。  基于双芯架构和OTA可拓展设计的AK2平台,不仅满足主流APA需求,也具备面向高阶代客泊车(AVP)和自主移动系统的演进空间。随着E/E架构走向集中域控发展,超声波雷达将成为本地环境建图与低速控制的重要来源,其持续演进将直接决定未来泊车系统的稳定性、安全性与用户体验。
2025-08-27 09:15 阅读量:162
纳芯微正式推出超声雷达探头芯片NSUC1800:全国产供应链,DSI3协议兼容
  纳芯微正式推出NSUC1800——基于全国产供应链、兼容标准DSI3协议的超声雷达探头芯片(Slave),为辅助泊车(UPA)、自动泊车(APA)、代客泊车(AVP)等智驾场景提供更精准、更可靠的感知能力。该芯片通过功能安全与车规认证,助力国产超声雷达系统加速量产落地。  全国产供应链+DSI3兼容,主从设备跨品牌互联互通  NSUC1800助力实现主从设备跨品牌互联互通的系统方案,在通信协议上全面兼容DSI3总线,缩短验证周期,加快项目导入。同时,产品在芯片设计、晶圆生产、测试与封装环节实现全链路国产化,帮助客户在Slave与Master选型上兼顾交付与成本控制,构建更具韧性的国产供应链。  编码与探测性能全面提升  NSUC1800满足AK2超声雷达协议标准,覆盖UPA、APA、AVP等全场景。其频点任意可配置的编码方式可以支持多种Chirp和FSK+Chirp方案,扫描速度和抗干扰能力显著增强,可在两个周期内完成保险杠扫描。NSUC1800编码方式  在测距性能上,硬件增益设置配合优化的NFD算法精准识别近距事件,近场盲区压缩至10 cm以内;芯片接收通路具备18-bit分辨率、低噪声特性,可以支持远距探测延伸至6~7 m,为低速AEB提供可靠数据支撑。  功能安全与车规认证  NSUC1800通过ISO26262 ASIL B功能安全认证及AEC-Q100车规级认证,支持-40°C~150°C工作温度,并具备多重电压、过流、过温诊断功能。产品采用QFN20(4mm×4mm)封装,内置Cortex-M3 MCU和多类型存储器,MCU主频达到44MHz,提供高达32kB nvm和10kB 片上SRAM,为数据压缩等算法提供了充分的可扩展空间,进一步降低系统BOM成本。QFN20(4mm×4mm)  超声探头市场前景  随着L2+ ADAS在中高端及大众车型加速普及,AK2超声雷达在泊车等低速场景渗透迅速。以一辆中型SUV为例,全车12颗超声探头可搭载NSUC1800芯片,而智驾系统凭借此类核心组件的支撑,正形成百亿级市场空间*。来源:Mordor Intelligence   全车12颗超声探头可搭载NSUC1800  纳芯微将继续依托在SoC和系统级设计方面的经验,推动国产超声雷达方案从“单点替代”迈向“系统领先”,为智能驾驶的感知与网联升级提供可靠保障。
2025-08-26 14:19 阅读量:223
纳芯微发布NS800RT737x高性能实时控制MCU(DSP),赋能工业与能源核心控制
  在实时性要求极高的电力电子与电力拖动领域,如新能源逆变器、工业伺服控制及车载电机驱动中,系统必须在毫秒甚至微秒级完成数据处理与响应。纳芯微全新推出的NS800RT737x系列MCU(DSP):NS800RT7374/7377/7379,以高性能实时控制内核为核心,集成丰富外设与保护功能,能够显著提升控制精度和系统稳定性,缩短开发周期,提供高可靠国产选择。  高性能内核与存储架构,赋能实时运算  NS800RT737x系列采用单/双Cortex®-M7内核@400MHz内核,每个内核配备自研eMath/mMath加速核,支持数学函数、FFT及矩阵运算加速,大幅提升实时运算效率。产品集成1MB eFlash+13KB DFlash,搭配高达768KB RAM(含256KB TCM*2+256KB SRAM),为复杂算法和多任务处理提供充足空间。NS800RT737x系列详细规格  多通道高速采样与超高精度控制  NS800RT737x系列内置4个12位ADC模块(4.375MSPS),最高支持25路ADC,8对比较器以及2路DAC,可同时采集多路信号,适配高动态响应需求。36路PWM(其中32路高精度PWM)具备124ps最小细分,实现超精细的功率控制,满足光伏储能逆变器、数字电源、电机控制等对控制精度极高的应用。  丰富可编程与信号处理外设,提升系统集成度  NS800RT737x系列最高支持6个CLB可配置逻辑模块,可通过编程实现各种灵活的功能;16路SDFM(Sigma-Delta Filter Module)提供多路高精度数字输入,适配隔离式电流/电压采样场景;四线QSPI实现高速外部通信;双32通道DMA提升数据传输效率,减轻CPU负载。  完善通信接口,护航信息安全  NS800RT737x系列最高支持2路CAN-FD、1路CAN 2.0、4路SPI、6路UART、2路I²C、1路PMBus及一路EMIF外扩总线,确保在车载、工业等多总线环境下的稳定通信。  同时,芯片内置CRC、BGCRC、TRNG、HASH-AES等硬件加密引擎,加持信息安全。  生态友好,降低开发门槛  NS800RT737x系列兼容ARM常用IDE(Keil、IAR)并支持纳芯微自主开发的NovoStudio工具链,帮助客户快速迁移和部署,缩短产品上市周期。NS800RT737x系列评估板
2025-08-19 09:42 阅读量:281
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码