特朗普准备取消AI芯片出口限制

发布时间:2025-05-08 13:15
作者:AMEYA360
来源:网络
阅读量:438

  美国商务部发言人周三(5月7日)表示,美国总统唐纳德·特朗普的政府计划撤销和修改拜登时代限制复杂人工智能(AI)芯片出口的规定。

特朗普准备取消AI芯片出口限制

  拜登政府时期,为阻止中国获取可能增强其军事实力的先进芯片,维持美国在人工智能领域的领先地位,于今年1月,即前总统乔·拜登政府任期结束前一周,发布了《人工智能扩散框架》。该框架标志着拜登政府四年来在此方面努力的阶段性成果。

  其中,拜登政府制定的AI芯片出口规则将世界划分为三个等级:第一等级涵盖17个国家及台湾,这些地区可获得无限量的芯片;第二等级约有120个国家,获得芯片数量受到限制;第三等级则包括中国、俄罗斯、伊朗和朝鲜等受关注的国家,这些国家被禁止获得芯片。

  该法规原定于5月15日生效,其目的在于进一步限制人工智能芯片和技术的出口,将先进的计算能力留在美国及其盟友手中,同时寻找更多方法阻止中国获取这些技术。

  然而,特朗普政府对此持不同看法。上周,路透社报道称,特朗普政府正在研究修改限制全球获取人工智能芯片的规定,包括可能取消将世界划分为多个层级以确定一个国家可以获得多少先进半导体的规定。消息人士也向路透社表示,特朗普政府官员正在考虑放弃该规则中的分级准入方式,代之以政府间协议的全球许可制度。

  “拜登的人工智能规则过于复杂,官僚主义严重,会阻碍美国的创新,”商务部发言人表示。“我们将用一项更简单的规则取而代之,以释放美国的创新能力,并确保美国在人工智能领域的主导地位。”

  据美国商务部发言人称,官员们“不喜欢这种分级制度”,并表示该规定“无法执行”。发言人尚未确定新规定的实施时间表。她表示,关于最佳行动方案的辩论仍在进行中。拜登的规定原定于5月15日生效。

  知情人士表示,美国商务部将在制定新规的同时继续严格执行芯片出口限制。其中一位知情人士表示,废除扩散规则的举措之一,是对已将芯片转移到中国的国家(包括马来西亚和泰国)实施芯片管制。

  总而言之,拟议的人工智能扩散规则修改可能标志着美国关于先进技术出口的贸易政策发生重大转变。随着英伟达和AMD等公司应对这些变化,其对半导体行业和全球市场的影响将受到密切关注。

  国家分级制度和相关的芯片出口限制并非人工智能扩散规则中唯一的新政策。该框架还设立了人工智能模型权重的出口管制,这些权重是软件用于处理数据并进行预测或决策的数值参数。特朗普政府针对这些限制的计划正在讨论中。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
美国芯片,35%的税收减免!
  美国参议院于周二 (7月1日) 通过了一项全面的税收法案,此前设定为25%的半导体设施税收抵免率已从25%扩大至35%。该法案将降低半导体制造商在美国建厂的成本,为芯片制造商带来利益,并增强美国在国内扩张该产业的努力。  英特尔、台积电和美光科技等公司如果在现有的2026年截止日期之前动工兴建新工厂,将有资格获得35%的投资税收抵免。这一比例比现有的25%有所提升,也高于提案草案中设想的30%。  这项半导体制造条款被纳入一份近900页的法案,该法案代表了美国总统唐纳德·特朗普经济议程的核心。众议院议员目前已准备好审议该法案,目标是在7月4日之前将其提交给特朗普签署。  增加税收抵免额度将增强《2022年芯片与科学法案》规定的一项关键激励措施。该法案是美国总统乔·拜登签署的一项跨党派法案。该计划还包括390亿美元的拨款和高达750亿美元的制造业项目贷款,旨在在数十年来生产转移到亚洲之后,提振美国半导体产业。  这项税收抵免没有上限,其成本很可能已经高于其他形式的补贴——这取决于《芯片法案》刺激的投资规模。几乎在所有情况下,这项税收抵免都将占到任何一家公司(包括那些未获得拨款的公司)获得激励的最大份额。该拨款计划的主要受益者包括英特尔、台积电、美光科技和三星电子。  特朗普今年早些时候呼吁废除《芯片法案》,但两党议员都不愿取消这些补贴,因为这些补贴为各自选区提供了高薪工作,而芯片行业被视为对国家安全至关重要。与此同时,美国商务部继续实施这项拨款计划,同时敦促加大投资力度,并修改了耗时数月谈判的奖励条款。  到目前为止,特朗普政府已获得台积电、美光科技和格芯科技承诺的投资增加,白宫将此视为特朗普政策奏效的证据。但这些投资中,没有一项涵盖已最终确定或提议的《芯片法案》拨款之外的额外拨款。  不过,公司在项目上的支出增加很可能意味着政府以税收抵免的形式损失更多的收入,如果参议院法案成为法律,这个数字还将继续增加。  明年年底前开工建设项目的公司可以继续申请该日期之后的持续建设补贴。这项政策旨在促进项目开工,同时也承认芯片工厂的建设需要数年时间。
2025-07-03 13:52 阅读量:226
一文了解高温天气对芯片的影响
  随着科技的不断发展,芯片已成为现代电子设备的核心部分,无论是智能手机、电脑,还是各种工业设备,都离不开芯片的支持。然而,在高温天气下,芯片的工作性能和寿命可能受到严重影响。  1. 性能下降  高温环境会导致芯片内部的电子元件过度发热,从而增加其电阻,降低信号传输速度。这可能导致芯片运行不稳定,处理能力下降,甚至出现系统崩溃的情况。  2. 加速老化  芯片在高温条件下会加快材料的老化过程,尤其是封装材料和半导体材料。长时间暴露在高温中,可能导致芯片内部的导线、绝缘层等发生老化失效,缩短芯片的使用寿命。  3. 增加热故障风险  过高的温度可能引发芯片过热保护失效,甚至引起短路、烧毁等热故障。一旦芯片过热,可能导致硬件损坏,严重时会引发设备整体失效。  4. 影响散热效率  高温环境下,散热成为一大难题。芯片散热不及时会导致温度继续上升,形成恶性循环,进一步影响运行稳定性。  5. 降低能效  芯片在高温环境下工作时,为了保持稳定运行,可能需要增加冷却措施(如风扇、散热片等),这会带来能耗增加,降低整体能效。  高温天气对芯片的影响不可忽视。在设计电子设备时,应采取有效的散热措施,如使用散热片、风扇,甚至液冷系统。同时,在使用过程中应避免设备长时间处于高温环境中,以延长芯片的使用寿命和保证设备的稳定性。只有合理应对高温天气,才能充分发挥芯片的性能,确保电子设备的安全与可靠。
2025-06-25 16:35 阅读量:277
芯片清洗剂中加成膜剂的作用
  在芯片清洗剂中,成膜剂的作用是通过在芯片表面形成一层均匀的保护膜,提升清洗效果并防止二次污染。以下是其核心功能及技术原理:  1. 核心作用  (1)防腐蚀保护  金属层防护:在清洗后,芯片表面的金属(如Al、Cu)暴露于空气中可能氧化或腐蚀。成膜剂(如硅烷偶联剂、苯并三氮唑)可形成惰性薄膜,隔绝氧气和水分,抑制金属腐蚀。  示例:BTA(苯并三氮唑)用于铜互连结构的防变色处理,形成致密有机膜。  (2)抗颗粒附着  降低表面能:成膜剂通过化学键合(如硅烷与Si-OH反应)或物理吸附,改变芯片表面性质,使其从亲水性转为疏水性,减少颗粒(如SiO₂、光刻胶残留)的吸附力。  示例:氟硅烷(如FDTS)在氢氟酸清洗后形成低表面能膜,防止颗粒再沉积。  (3)增强润滑性  减少摩擦损伤:在化学机械抛光(CMP)后,成膜剂可修复表面微观划痕,降低后续工艺(如测试、封装)中的机械磨损风险。  示例:长链硅烷(如十八烷基三氯硅烷)形成分子级润滑层。  (4)稳定清洗效果  延长清洁时效:成膜剂可延缓清洗后污染物的二次吸附,例如在RCA清洗后,硅烷膜可维持表面洁净度数小时,避免存储时污染。  2. 技术原理  化学键合机制:  硅烷类成膜剂:通过水解生成Si-OH,与芯片表面羟基(Si-OH)缩合形成Si-O-Si共价键,实现化学吸附。  反应式:Si-CH2CH2CH2Si(OH)3→Si-O-Si(芯片表面)+H2OSi-CH2CH2CH2Si(OH)3→Si-O-Si(芯片表面)+H2O。  磷酸类成膜剂:与金属氧化物(如Al₂O₃)配位络合,形成稳定螯合膜。  物理阻隔机制:  聚合物成膜剂(如聚二甲基硅氧烷):通过范德华力铺展成连续薄膜,填补表面微孔隙,阻止污染物渗透。  3. 应用场景  湿法清洗后处理:如SC1/SC2清洗后,使用硅烷成膜剂(如HMDS)防止水分残留导致氧化。  蚀刻/抛光后保护:在CMP后喷涂氟硅烷膜,避免划片液污染。  临时存储防护:在晶圆转运或测试阶段,成膜剂可提供短期(数小时至数天)防污保护。  4. 注意事项  兼容性:需与清洗剂(如氢氟酸、臭氧水)无副反应,例如避免碱性条件下硅烷水解失效。  厚度控制:膜厚通常为纳米级(如1-5 nm),过厚可能导致光刻对准误差或电学性能下降。  去除性:在后续制程(如键合、金属沉积)前需可轻易去除,常用紫外线分解或溶剂清洗。
2025-06-24 11:18 阅读量:219
芯片防电江湖:HBM、CDM、MM 竟是三大“防雷门派”?
  一、你以为芯片最怕摔?错!真正的“芯片终结者”是隐形杀手“静电”!  像脱毛衣的火花、指尖触碰的瞬间,都可能让芯片 “罢工”。—— 如果这股能量怼到芯片上,直接让它“当场去世”!  这是因为静电放电超快(纳秒级)、电压超高(几千伏),会直接击穿芯片内部精细电路。  冷知识:芯片内部电路比头发丝细100倍,静电放电瞬间(比眨眼快10万倍!)能产生几千伏高压,会直接把晶体管“炸成渣”!  二、江湖传言,芯片界有三大“防雷门派”,用生活场景类比,秒懂!  1.HBM(人体模型)—— 防 “人摸电”  模拟场景:组装工人没戴手环,指尖静电碰到芯片引脚。  测试条件:电容100pF + 电阻1.5kΩ,脉冲宽度约200ns,电流峰值0.67A/kV。  失效阈值:分为Class 1A(<250V)到Class 3B(≥8kV),工业级芯片通常需满足≥2kV。  2.CDM(器件充电模型)—— 防 “自放电”  模拟场景:芯片在运输中摩擦带电,突然放电。  测试特点:脉冲极短(<20ns)、电流峰值大(数十安培)。  失效阈值:按125V~1000V分级,车规芯片要求≥500V。  3.MM(机器模型)—— 防 “机器电”  模拟场景:金属工具(如机械臂)碰到芯片引发的放电。  测试条件:电容200pF + 电阻0Ω,脉冲能量更高失效阈值:通常低于HBM,工业级要求≥200V。(比 HBM 要求低但更“狠”)。  三、一张表看懂三大模型差异  四、防电避坑指南,给芯片“穿防弹衣”的绝招  HBM:引脚别挤太近,多装“避雷针”(TVS管)  CDM:减少芯片内部寄生电容,采用多层ESD保护结构  HBM:遵循IEC 61000-4-2标准,整机需通过±8kv空气/±4kv接触放电测试  结语  ESD防护是芯片可靠性的根本,选择正确的模型并进行适当的测试,才能确保产品的“抗静电”能力达到最佳水平!
2025-06-17 09:46 阅读量:404
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码