村田电子:更适合薄型设计应用场景的3.3V输入、12A输出的DCDC转换IC

发布时间:2024-09-19 17:20
作者:AMEYA360
来源:村田电子
阅读量:1116

  株式会社村田制作所面向1.2mm以下的低矮应用,开发了可以3.3输入电压输出上限12A的高效率DC-DC转换器IC“FlexiBK系列(PE24110)”。本产品以4.0×3.2mm的QFN(Quad Flat No leaded package)封装提供,适合1.2mm以下的薄型应用。

村田电子:更适合薄型设计应用场景的3.3V输入、12A输出的DCDC转换IC

  近年来,在通信基础设施市场,ASIC/DSP的消耗电流持续增加,而核心电压呈下降的趋势。传统方式的DC-DC转换器的占空比(1)变窄,转换效率显著降低,因此要求不依赖于输入输出电位差,便可实现高效转换的DC-DC转换器。

  为此,在薄型POL(2)稳压器及要求高密度安装的光传输模块、核心电源、ASIC/FGPA等对安装面积和高度进行限制的应用中,村田开发了大幅降低对电感器尺寸的依赖并实现高效率的本产品。除融合了自主研发的电荷泵技术(3)与传统DC-DC转换器电路的两级架构创新电路方式外,通过构成2相交错方式(4),实现了89%的高效率。输入电压范围为3.0V至3.45V,可提供每台设备12A的输出电流。可根据外部反馈电阻在0.35 V至0.7 V之间调整输出电压。

  主要特点

  输出电流上限12A

  峰值转换效率89%(使用3.3V输入、0.5V输出、高度1.2mm电感器时)

  采用交错方式,实现了极低的输入输出波纹和噪声特性

  经由外部DAC的自适应电压调节(AVS)功能

  至多可并列运行4台设备

  内置FET开关

  电源模块事业部 低功率商品部 部长 三上修司的评论:“为了解决客户面临的电力相关问题,我们开发了薄型高效率降压型DC-DC转换器。PE24110在峰值效率、输出电流和输出电压等方面都有非常出色的表现,为低输出电压应用提供了理想的电源解决方案。”

  注释:

  占空比:通电时间相对于总循环时间所占的比例。当为直流-直流(DC-DC)转换器时,由输入电压与输出电压比决定。

  POL:Point of Load的缩写。作为专用电源电路配置在FPGA及ASIC等电子设备附近的DC-DC转换器。

  电荷泵技术:由电容器和半导体开关构成的电压转换电路。

  交错方式:让并联配置的相同电路网依次工作而不会重复的电路方式。

  本产品以4.0×3.2 mm的QFN(Quad Flat No leaded package)封装提供。该产品现在还可获取样品,有关评估套件和量产部件,请咨询地区的销售负责人。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
村田电子:无线通信的新动向:由HAPS和人造卫星组成的非地面网络(NTN)
  非地面网络(NTN,Non-Terrestrial Network(s) )是包括移动通信在内的无线通信网络的一种,指的是将包括地面基站、海上船舶、高空无人机(HAPS)及配置在太空中的通信卫星连接而成的多层网络。  NTNs将在克服地面网络的弱点的同时,飞跃性地扩大包括山区和海洋在内的全球通信基础设施的覆盖范围。  在平流层和太空部署非地面网络的计划已经开始为迎接下一代通信标准——Beyond 5G(第5代通信系统的下一代,简称B5G)/6G(第6代移动通信系统)时代的到来而开始进行研究开发、测试平台创建和演示。  本文重点对高度在非地面网络当中比陆地或海洋更高的无线通信网络进行解说。  非地面网络的配置和特点  在空中部署非地面网络,高度从平流层到太空。通信设备所处的高度越高,覆盖的通信区域就越大(如图1所示)。  当然,距离地球表面越远,通信延迟就会越大,可以根据目的使用从太空到平流层再到地面的多种通信设备。由此可以实现覆盖范围比以前更广的通信基础设施,甚至有人说“地球上将没有任何超出通信范围的区域”。  图1、非地面网络中各通信设备的高度和通信区域  构成图1所示非地面网络,涉及使用人造卫星(GEO/LEO)和无人机(HAPS)等通信设施/设备,有哪些主要特征?  图2、非地面网络使用的三种主要通信手段:GEO、LEO、HAPS  静止轨道卫星(GEO)  静止轨道卫星或静止卫星(GEO:Geostationary Earth Orbit satellite)是一种在面向B5G/6G时代的非地面网络中高度很高、位于赤道上空约3万6千km的太空中的人造卫星。它以与地球自转速度相同的速度沿轨道绕行,因此从地面上看它好像是静止的。一般来说,根据广范围的气象条件预计天气的气象卫星也属于此类。  通信网络中的GEO高度较高,因此通信范围也较大,据说大约3到4个就可以覆盖几乎整个地球表面。但由于距离地面较远,与其他通信设备相比,数据传输存在延迟,据说其通信速度据说一般为大约数Mbps。此外,向地面传送线电波需要大功率,因此卫星的尺寸比接下来介绍的低轨道卫星(LEO)更大,这对发射所用火箭的尺寸也有影响。  低轨道卫星(LEO)  静止轨道卫星或静止卫星(GEO:低轨道卫星(LEO:Low Earth Orbit satellite)是配置在数百至2,000km高度(其中包括在太空中距离地球较近的绕地轨道)的人造卫星。与静止轨道卫星(GEO)不同,它们与地球的自转不同步。  绕地轨道的定义因国家和团体而异。例如,ESA(欧洲航天局)将绕地轨道定义为1,000km或更低,日本JAXA(宇宙航空研究开发机构)将绕地轨道定义为2,000km或更低。哈勃望远镜和国际空间站(ISS)的高度都在400km左右,即使在低轨道当中也是较低的,但NTN的LEO据说配置在1千几百km左右的高度。  LEO的高度比GEO低,因此能以低延迟、低功率传输数据,并且可以减小卫星的尺寸。据说LEO与地面之间的通信速度可达数百Mbps左右,因此可用于从智能手机终端直接与卫星进行通信的服务。  另一方面,由于高度比GEO低,因此一颗卫星所能覆盖的通信区域更小,低轨道卫星的绕行速度更快。为了在这些条件下进行稳定的通信,有时会使用一种称为“卫星星座”的方法,将多个小型LEO联合运行。星座指的是配置多个LEO的联合系统。  高空平台站(HAPS)  HAPS(High Altitude Platform Station)称为高空平台站、高空基站或平流层通信平台等。指的是飞行在高度约20km的平流层、起到空中通信基站作用的无人机(除了飞机型之外,还有气球型和飞艇型等)。  一般的喷气式客机的飞行高度约为10km,因此HAPS飞行的平流层大约是该高度的2倍。  在这个高度,气流和天气都比较稳定,空气阻力很小,无人机获得升力所需的空气密度也不会太低,因此,据说使用HAPS上配备的太阳能电池板和电池可以连续运行几个星期。  一般的地面基站的通信区域半径为从几公里到十几公里左右,而一个HAPS覆盖的通信区域半径据说为100km左右。  此外,它比太空中的人造卫星更接近地面,通信延迟也就更小,因此作为B5G/6G时代的新型通信基础设施而备受期待。但是,与太空不同,平流层是各国的领空,因此可以说在HAPS国际实用化和提供通信服务方面,各国完善相应的法律非常重要。  非地面网络的好处与动向  进入B5G/6G时代,非地面网络(NTN)通信技术有哪些好处以及技术发展动向?  与地面网络不同,配置在平流层或太空中的非地面网络的主要好处是作为通信基础设施能够抵御地震和海啸等自然灾害。  此外,通信区域急剧扩大,据说地球上将没有任何超出通信范围的区域,从而可以在以前通信困难的山区(如下图)和海洋通过智能手机等设备在紧急情况下进行通信。  图3、在山区使用智能手机进行通信  这样,无论在哪里发生灾害和事故等紧急情况,都可以确保通信基础设施能使用,也能通过确保移动通信网络在大范围内保持通信不间断,做到在进入山区或海上航行时阻止问题发生。  非地面网络的一大特点和显著动向是私营企业的积极参与。  过去很多航天项目都由国家主导,但现在除了硬件之外,世界各地的各个企业在通信服务领域等也进行合作,从事包括非地面网络业务在内的航空航天业务。  图4、世界各地许多私营企业参与太空业务  例如,大批企业开始参与人造卫星和HAPS,以及构成它们的元件和搭载它们的通信设备(有偿搭载)的开发和制造,直到将人造卫星发射到太空的火箭,涉及的范围非常宽广。特别是正在以下一代移动通信B5G/6G为起点迅速成长为拥有全球规模市场的大规模业务。  总 结  村田制作所开发和制造多种无线通信模块。作为其中的一环,我们正在开发也能支持非地面网络(NTN)的通信模块等满足需求变化的产品。点击这里了解村田新近推出的支持NTN的通信模块:村田Type 1SC-NTN模块:确保偏远地区和灾区的稳定通信。
2025-05-08 13:13 阅读量:237
村田Type 1SC-NTN模块:确保偏远地区和灾区的稳定通信
  株式会社村田制作所已将“Type 1SC-NTN”通信模块商品化。该新产品可用于在蜂窝通信难以使用的偏远地区和灾区确保稳定的通信。这也是村田初次*在非地面网络(NTN)和蜂窝LPWA双方都取得了NTN提供商Skylo Technologies公司认证的通信模块(*根据村田截至2025年3月5日的调查结果)。  Type 1SC-NTN预定于2025年4月开始量产。由于本产品已通过认证,因此能减少配备本产品的物联网设备取得认证所需的成本,有助于产品尽早投入市场。  通信基础设施对于通过物联网技术实现数字化进步而言不可或缺。但在偏远地区,由于建设成本高等原因,地面通信基础设施往往不够完善,一旦发生灾害,地面通信基础设施可能会遭到破坏而无法运行。因此,在难以使用蜂窝通信的偏远地区以及发生灾害时需要确保有效的通信手段,利用卫星等不依赖地面通信基础设施的非地面网络因此而受到关注。  非地面网络(NTN,Non-Terrestrial Network)是指不依赖于地面通信基础设施,主要使用由高高度无人机(HAPS)和配备在太空的通信卫星组成的多层网络来进行数据通信的系统。Type 1SC-NTN采用3GPP Rel-17的NTN标准,而且通过与Skylo Technologies公司的NTN服务相组合,覆盖了未曾有过的宽广通信范围,即使在偏远地区和灾区等通信基础设施不完善的地方也能提供稳定的通信。  3GPP Rel-17是以提高5G系统的性能和支持新用例为目的而发布的包含一系列技术规格和功能强化在内的标准。村田在非地面网络和蜂窝LPWA双方都取得了Skylo Technologies公司的认证。  该新产品尺寸小,适合用于贴装面积有限的可穿戴设备和跟踪设备等。而且,本产品已经取得认证,因此可以降低配备本产品的物联网设备取得认证所需的成本,有助于将产品尽早投入市场。   Skylo Technologies公司Vice President of Strategic Partnerships, Vijay Krishnan先生的点评:“很高兴能将Type 1SC的Skylo认证扩大到全球规模。此次的认证扩大将使资产跟踪、农业、智能电表甚至民用设备等全部领域受益。此外,这也体现了Skylo Technologies公司在将无缝、易于访问且经济实惠的卫星连接引进到全部场所方面所做的持续努力。”  “Type 1SC-NTN”通信模块可主要用于可穿戴设备、跟踪设备、医疗监控设备和智能电表等物联网通信设备。主要特长有:  初次在非地面网络和蜂窝LPWA双方都取得了Skylo Technologies公司认证;  通过NTN通信覆盖了未曾有过的宽广通信范围;  尺寸小(11.1 × 11.4 × 1.5 mm (max)),因此在有限的空间也能贴装;  已取得认证,因此有助于尽早投入市场。  村田今后将继续致力于开发满足市场需求的产品并扩大产品阵容,为改良人们的生活和工作环境做贡献。
2025-03-26 13:32 阅读量:340
村田:考虑大规模并购!
  全球最大电容生产商日本村田制作所社长中岛规巨表示,公司正在考虑进行超过 1000 亿日元 (约 6.65 亿美元) 的并购,以推动公司成长。目标是在截至 2027 财年的中期计划期间内完成。  村田过去的并购主要集中在技术层面,但未来三年将寻求透过收购业务来扩大规模。  中岛规巨指出,村田将考虑与在信息系统和服务等领域有稳固业务的公司合作或并购,以提高在新市场的影响力和市占率。潜在目标包括电感器、高频组件和传感器等领域,也可能考虑海外企业。  据悉,村田制作所在截至2028年3月的3年经营计划中,将以2200亿日元的收购合并等战略投资为目标。但该公司在截至本财年的中期计划中未能实现战略投资目标。  另外,村田制作所还计划在未来三年投资6800亿日元扩大日本和泰国工厂的产能。  村田制作所的组件几乎出现在所有电子产品中,从苹果公司和三星电子的智能手机到英伟达公司的服务器和索尼集团的游戏机。目前,该公司几乎60%的多层陶瓷电容器在日本生产,但这一比例在未来几年可能会降至接近50%  中岛社长认为,由于公司已采取供应链多元化措施,美国总统川普的关税政策对公司的影响轻微。但他同时表示,最担忧的是通货膨胀导致产品销售不佳。  据村田制作所公布的上季(2024年10-12月)财报,合并营收较去年同期成长2.0%至4,480亿日元,合并营益因稼动率下滑而微减0.3%至760亿日元,合并纯益暴增43.8%至710亿日元。  村田维持2024年度财测预估不变,合并营收预计将年增3.6%至1.7万亿日元、合并营益将大增39.2%至3,000亿日元、合并纯益将大增30.0%至2,350亿日元,获利(营益、纯益)将3年来首度呈现增长。  村田制作所表示,「预估截至2025年度为止、AI服务器相关需求将成长1倍以上」。中岛规巨指出,AI服务器搭载的MLCC数量增加至传统服务器的8倍水平。
2025-02-28 14:51 阅读量:583
村田电子:应对传感器噪声的对策和推荐电路
  传感器是“IoT (Internet of things)”和“自动驾驶”的重要元件,今后也将广泛地搭载于各种机器设备上。各种传感器的性能提升显著,能够将信息更多更精细地传送。另一方面,我们也看到一些由于传感器感知到的信息没有被正确地传送出去而造成了严重的事故。  为了避免噪声导致的误操作,各种传感器的静噪对策非常重要不可或缺。  随着MEMS技术的发展,现在One chip传感器已经成为主流。为此,本文将以One chip传感器(数字输出型)为例,探讨误操作发生的原理和静噪对策方法。  02、噪音如何导致传感器误操作?  One chip传感器主要由信号、电源、GND三种线构成。而信号线是用了时钟和数据等多根线进行通信的。考虑各根线在施加了噪声后的影响。  向数字信号线施加噪声时,噪声引起的超过高/低阈值而被误判断时,无法正常通信从而发生误操作(下图)。实际为加速度传感器的数字信号线加入噪声做评估,确认通信会发生停止。  模拟前端包含增幅电路和A/D转换电路,当这些电路的电源变动没有正常工作时,会输出异常值从而发生误操作(下图)。实际为加速度传感器的电源线加入噪声做评估,确认输出会出现紊乱。  从上面两种情况可以看出,One chip传感器的信号线或电源线施加噪声时,会发生通信停止或输出值紊乱的误操作。  本文即为您介绍一种使用EMI滤波器抑制噪声传播的有效方法。  03、静噪对策:要点及推荐电路  用于传感器静噪对策的滤波器要求满足以下条件:  通过设备工作所需的电源或信号线;  屏蔽造成误操作的噪声。  One Chip传感器有许多种类和型号,针对造成误操作的噪声所需的滤波器也各有不同。这是因为对滤波器所要求的2个条件,与传感器是相通的:  通过设备工作所需的电源或信号线:  →One Chip传感器的接口(IC引线)统一化;  屏蔽造成误操作的噪声:  →施加的噪声是抗扰性测试规格内的。  此外,滤波器的贴装位置在传感器附近效果较好。  电源线的静噪对策,适合从低频到高频的宽幅带宽下插入损耗较大的滤波器。  仅使用电容器的情况下,需要低频端的大容量电容器和为获得高频端插入损耗的低ESL电容器。  使用电容器和电感器组合的情况下,可使插入损耗显著增加。传感器比电感器配置足够的容量,构成多段结构,可形成有效的静噪滤波器。  信号线的静噪对策:作为信号线(数据/时钟)的静噪对策,通过的信号频率需要插入损耗小的滤波器。  噪声级别小或信号和噪声的频率相差大的情况下,可以只用电容器进行降噪,但如果信号频率和噪声频率相近时,需要电感器和电容器组合来构成插入损耗陡峭的滤波器。  信号线的静噪对策  需要注意的是,将电感器插入特定线时,线路变得不平衡而转换成普通模式(电位差),误操作可能进一步恶化。插入电感器时很重要的一点是,全线使用同一型号。铁氧体磁珠是电感型滤波器,不仅具有高阻抗可以阻止噪声,铁氧体还能够吸收噪声能量,可以得到更好的静噪效果。  推荐电路  用于数字One chip传感器的接口一般有I2C和SPI两种。这里,我们针对One chip传感器,推荐静噪对策滤波器和相应电路。  I2C对象接口:  其信号频率为100kbps(50kHz)、400kbps(200kHz)、3.4Mbps(1.7MHz)等等,最大約为2MHz;  其截止频率(信号频率×5)为10MHz。  I2C接口推荐电路  I2C接口信号线插入损耗  I2C接口电源线插入损耗  SPI对象接口:  其信号频率信号频率1~2Mbps(1MHz)、20Mbps(10MHz)等等,最大 10MHz;  其截止频率(信号频率×5)50MHz。  SPI接口推荐电路  SPI接口信号线插入损耗  SPI接口电源线插入损耗  用于数字One chip传感器的接口,无论是I2C还是SPI,信号频率并不是一定的,如果滤波器需要对应的截止频率I2C为10MHz,SPI为50MHz,适合使用上述滤波器。  04、应用事例  下面,我们以“车载设备用的传导抗扰度规定BCI测试”为设想来介绍防止传感器误操作的对策。  以车载设备为例研究传感器误操作发生的情况对电源线和信号线的噪声影响。  电源线的静噪对策  传感器的电源线受噪声影响,会发生传感器输出值的异常(输出误差)。将注入电源线的噪声级固定,对对策前后的输出误差的大小进行调查。传感器输出值发生误操作的起因是“电源线的常态噪声”,在传感器附近插入0.1uF的低ESL电容器。这样一来,传感器的输出误差降到了1%以下。  电源线的静噪对策事例  需要进一步静噪对策时,像前文介绍的,可运用电感器和电容器组合成π型滤波器进行对策。  信号线的静噪对策事例  传感器的信号线收到噪声影响,传感器的通信会发生停止。提高注入的噪声水平,调查能够正常工作(不发生误操作)的水平极限。  初期:误操作耐性根据频率不同而明显不同。(此事例为100MHz和250MHz,耐性较低。)  对策①,追加电容器改善100/250MHz的耐性  对策②,用铁氧体磁珠和电容器构成滤波器改善200/250MHz的耐性  对策③,为了取得平衡,将π型滤波器加在电源线,GND线上追加铁氧体磁珠,从而改善全频率范围的耐性  可看到使用对策③(推荐电路),全频带的噪声耐性良好(下图):  信号线的静噪对策事例对比  05、总 结  本文介绍了传感器噪声对策的必要性和推荐电路,以及可能的难点。村田制作所能够为您提供上述“噪声造成传感器误操作的原理”和“对策事例”中介绍的产品。
2024-12-17 14:51 阅读量:553
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码