纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

发布时间:2024-08-01 09:05
作者:AMEYA360
来源:纳芯微电子
阅读量:1207

  随着现代汽车电子技术的快速发展,步进电机作为一种精确且可靠的执行元件,在汽车电子系统中的应用日益广泛。为了实现车载步进电机应用的精确控制,纳芯微推出了集成LIN和MOSFET功率级的单芯片车用小电机驱动SoC——NSUC1610,可以帮助客户实现安全可靠的车载电机控制。

  本文将结合步进电机的结构与驱动方法,重点介绍基于NSUC1610的步进电机控制原理及其实际应用

  步进电机结构及其驱动方法

  与人们熟知的大部分电机一样,步进电机的结构也是由定子和转子组成。转子由轴承、铁芯、磁钢等构成。转子铁芯带有齿轮,是步进电机单部步距的行程;定子是由铁芯、定子绕组和支撑结构构成。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机结构

  根据绕组方式,步进电机主要分为两大类:一类是单极性步进电机,它是由带中心抽头(公共线)的单绕组组成,其电流均由1、2、3、4四根线的相线流入中心抽头公共线,因此电流方向是单向的。另一类是双极性步进电机,由没有中心抽头的绕组构成,其电流方向是双向的。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机的分类

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  单极性步进全步运转示意图

  单极性步进电机和双极性步进电机的驱动方式不尽相同,上图中单极性步进电机的A、B、C、D分别是两相四线,5为抽头的公共线。在驱动电机全步运行时,步骤如下:

  第一步:

  A相通电,B、C、D相不通电,A相产生磁场,且磁极是S极,吸引转子的N极;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极磁场矢量合成,吸引转子向A、B相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场,且磁极是S极,吸引转子的N极;

  第四步:

  B、C相通电且电流相等产生相同的磁性,两个S极磁场矢量合成,即可吸引转子向BC相之间旋转。

  依次类推五六七八步,使整个步进电机旋转起来。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  双极性步进全步运转示意图

  双极性步进电机的驱动是直接驱动A+、A-、B+、B-两相四根线来实现运转的。步骤如下:

  第一步:

  A相通电,B相不通电,A相产生磁场且A+磁极是S极,A-磁极是N极,吸引转子的N极至A+,S极至A-;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极的N极磁场矢量合成,吸引转子N极向A+、B+相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场且磁极是S极,吸引转子的N极至B+;

  第四步:

  B相通电,A相断电且电流相等,产生相同磁性,两个S极磁场矢量合成,吸引转子N极,向B+、A-相之间旋转。

  依此类推五六七八步,整个步进电机便旋转起来。

  基于NSUC1610的步进电机控制

  纳芯微NSUC1610采用数字恒流控制技术,由PWM 100%控制每个周期的电流输出,实现对输出电流的精确调节。这意味着,在输出电流未达到设定电流值之前,PWM输出on,一旦达到设定电流值便输出off;如果在输出off之后的输出电流低于设定值,就会在下一个周期重新输出高电平,继续增加输出电流,以便在PWM输出off时使电流及时衰减至设定值。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  硬件电流控制

  NSUC1610的电流控制采用三种衰减方式,以适应不同类型和需求的步进电机。第一种是慢衰减(slow decay)方式,打开电流输出时,上桥臂输出PWM波,下桥臂输出常高;关闭电流时,关闭上桥臂,下桥臂保持常高,通过MOSFET的体二极管实现泄放。这种方式是将电流的电能转化为热能,但泄放能力有限。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  异步慢衰减

  第二种是快衰减(fast decay)方式,打开电流输出时,上下桥臂均输出PWM波;关闭电流输出时,通过打开反向的上下桥臂,直接将能量泄放至电源充电,此时泄放能力较大。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  同步快速衰减

  第三种是混合衰减(mix decay)方式,它结合了前两种方式,一段时间采用慢衰减方式,一段时间采用快衰减方式,并调控两者的时间比例。

  至于具体采用哪一种衰减方式来衰减电流,需要根据电机的电感参数及电机的转速等合理选择。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  混合衰减

  在采用NSUC1610驱动双极性步进电机时,只需将电机的A+、A-、B+、B-四根线直接与MOUT0、MOUT1、MOUT2、MOUT3相连,VSS、ISNS管脚直接接地,外围电路只需加一些必要的电容、电阻及二极管等被动元件,即可实现用单芯片控制双极性步进电机,同时还可以实现与LIN主机的通信,大大地提高系统的集成度和可靠性。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  基于NSUC1610的步进电机图

  从步进电机的驱动原理来看,通过给电机的两相通上交流电流即可使电机旋转。实际上,这是比较粗糙的步进电机控制方式,这种控制方式产生的电流突变点较多,转距不恒定,旋转也就不太平顺。

  为了让电机较为平顺丝滑地旋转,通常采用微步驱动方式。微步驱动方式不同于全步驱动方式,它是在8步全步中去掉了4步,插入了中间点临界电流,即0电流。通过不断类推,不断插入中间电流,即可减小电流突变,细化电机的电流变化,使之接近正弦,从而实现微步。微步的目标是产生A、B相位差90°的正弦电流。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  微步原理

  NSUC1610利用数字恒流控制实现了微步正弦电流控制,具体实现原理是采用比较器恒流控制。方法是在正端接入一个桥臂电流采样信号,负端接入一个DAC输出电压信号,在每一个微步控制期间触发固定的DAC输出。

  如果桥臂电流信号大于DAC,则打开相应的桥臂输出;如果桥臂电流小于DAC值,则关闭相应的桥臂输出,这样即可实现每一个微步期间的闭环恒流控制。在整个步进区间中,根据正弦公式改变DAC输出,即可实现电流信号的正弦输出,从而实现步进电机的微步控制。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机微步电流控制

  在电机旋转过程中,会出现一定概率的堵转而导致电机失步。为了检测电机是否出现堵转失步,可以通过测量电机的反电动势来判定。由于电机的反电动势与其转速成正比,因此需要为测量到的反电动势设定一个合理的阈值,小于设定阈值即可认为电机出现了失步。

  在整个电流控制区间,电机的反电动势大部分是不可测量的。只有当电流为0,桥臂没有导通驱动电机时,测量的两个桥臂电压才是真实反电动势。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机失速检测

  电机的启动和停止时速度为0,如果直接满速启动或停止,那么电机的启停就会很突然,出现不平顺。为了实现较为平缓的速度控制,可以采用梯形加减速的方式实现位置控制。由于速度控制的曲线是梯形,位移曲线就是S型。从图中可以看到,电流波形在加速减速阶段较为稀疏,而在匀速阶段较为密集。一般步进电机停止前,会有一段大的稳定电流,旨在防止电机转到目标位置时出现过冲;接着进入hold状态,利用一个小的hold电流可使扭矩保持不变。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机位置控制

  更高效智能的车载步进电机控制

  通过采用数字恒流控制技术,NSUC1610实现了对步进电机电流的精确调节,以适应不同类型和需求的步进电机。NSUC1610还支持微步驱动方式,使步进电机的旋转更加平顺丝滑。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微携手联合动力打造新一代汽车电驱平台芯片方案
  近日,纳芯微宣布与领先的智能电动汽车部件及解决方案提供商——联合动力(Inovance Automotive)深度合作的两颗高集成度芯片——隔离采样及逻辑ASC集成芯片已在联合动力新一代电驱平台正式量产,定制的解决方案以更高的芯片集成度和更优化的性能,支持新能源汽车电驱系统的集成化演进并助力满足更高等级的功能安全设计。  传统分立式电驱系统部件分散、线束冗余,普遍存在体积大、损耗高、响应慢及可靠性受限等问题,已难以适配新能源汽车电驱系统的持续升级需求。基于市场对长续航与强动力的核心诉求,电驱系统正加速向多合一、高集成方向演进。在此趋势下,芯片不仅需要实现更高程度的功能集成,更需在有限空间内兼顾精度、可靠性和功能安全冗余,同时为系统设计保留足够的灵活度。  基于对电机控制器产品系统架构和功能安全技术十余年的深刻理解,联合动力前瞻性地定义了隔离采样及逻辑ASC集成芯片功能与性能需求。在此次定制合作中,纳芯微创新性地将高压 LDO、隔离采样放大器、隔离比较器集成在单颗隔离采样芯片中,大大减少了外围器件数量,支持电驱系统实现高精度隔离电压采样、快速过欠压保护及小型化设计。此外,该方案中由纳芯微定制的逻辑 ASC 芯片集成有多个逻辑器件,并支持频率检测功能,可满足接口相关逻辑的集中处理,从而简化了接口设计,在提高系统集成度,实现小型化的同时,降低了BOM成本,助力实现电驱/主驱系统功能安全相关架构的优化。  从“分立”到“集成”,将成熟的分立电路“芯片化”,能够带来极简架构的价值跃迁:  质量跃升:架构的简化和元器件数量的大幅减少,直接降低了硬件的潜在失效率,使产品质量水平迈上新台阶。  尺寸优化:高度集成化显著降低了PCB占用面积,为电控产品的小型化和功率密度提升创造了更大空间。  加速开发:标准化的芯片方案取代了复杂的分立电路设计和调试,极大地提升了开发效率,缩短了产品上市周期。  联合动力研发中心总监郑超表示:“电驱正迈入高集成时代,每一颗芯片的技术升级,都能为我们带来体系化创新价值。本次与纳芯微的合作,深度融合了双方在电驱系统与汽车芯片领域的优势,更标志着联合动力的能力实现了关键进阶:我们不仅能够开发性能领先的电控产品,更具备了在源头参与并共同定义产品架构与核心芯片的技术实力。我们期待与纳芯微携手,共同定义下一代电驱技术平台,为车厂提供更具竞争力的系统解决方案。”  纳芯微产品线总监叶健表示:“纳芯微与联合动力具备扎实的合作基础。本次合作的深化,既是客户对纳芯微产品与技术实力的认可,也是我们围绕应用创新战略的生动实践。纳芯微将充分依托在隔离和接口芯片领域的技术专长和长期耕耘,提供高精度、高性能、高可靠的芯片方案,助力联合动力打造全新电驱平台。”  纳芯微“隔离+”体系已形成覆盖数字隔离器、隔离采样、隔离驱动、隔离电源及隔离接口的完整产品布局,截至2025年10月,“隔离+”芯片累计出货量达 20 亿颗。此外,纳芯微还可提供覆盖 CAN,LIN,SerDes,逻辑IC,电平转换等完整的汽车接口芯片,为客户提供一站式的汽车级隔离和接口解决方案。纳芯微在新能源汽车三电系统领域,已与近数百家零部件供应商建立合作关系,为主驱逆变器、车载充电机(OBC)、电池管理系统(BMS)等应用提供包括传感器、信号链、电源管理、MCU在内的芯片解决方案。
2026-01-16 15:31 阅读量:274
纳芯微推出MT932x线性位置传感器,700μA超低功耗与5kHz高带宽
  今日,纳芯微宣布推出低压线性位置传感器MT932x系列。作为公司在线性位置传感器低压平台的重要补充,该系列在实现700μA超低功耗的同时,提供最高5kHz的采样带宽,在保持高精度位置检测的前提下,为智能交互与运动控制类设备提供兼顾能效与性能的解决方案。  低功耗与高带宽并存,提升系统能效  在正常工作状态下,MT932x系列工作电流低至700μA,显著低于行业主流方案,尤其适用于无线游戏手柄、VR 手柄等电池供电的消费类终端设备,可有效延长待机与使用时间,降低充电频次,并提升整体便携性与续航表现。在超低功耗设计的基础上,MT932x系列仍可提供5kHz采样带宽,能够对微小位移变化进行实时、连续捕捉,确保动态控制过程中的响应速度与稳定性。这一特性使其在云台控制、摇杆输入、实时运动跟踪等应用中,可实现更加自然、流畅且一致的交互体验。  高精度与一致性设计,保障长期稳定运行  MT932x系列具备±1.5% 的线性度,以及 ±20mV 的失调电压性能,有助于提升位置反馈计算精度,增强系统整体控制稳定性。同时,其良好的一致性表现可降低终端产品的校准复杂度,确保输出结果可预测、低漂移、低误差,适用于对位置精度和长期稳定性要求较高的应用场景,如 3D 打印设备、液位检测系统等。  小型封装与多灵敏度配置,增强设计灵活性  MT932x系列提供DFN1616、SOT23等小型封装选项,便于在空间受限的终端产品中实现高性能集成,符合消费电子产品小型化的发展趋势。同时,系列产品支持多种灵敏度配置,客户可根据不同机械结构、磁场间距及工作条件灵活选型,降低设计约束,加快产品开发进程。
2025-12-26 14:30 阅读量:392
纳芯微推出NSI1611系列隔离电压采样芯片
  纳芯微今日宣布正式推出全新一代隔离电压采样芯片NSI1611系列。作为纳芯微经典产品NSI1311系列的全面升级,NSI1611系列基于其领先的电容隔离技术,在性能与适配性上实现双重突破。  其核心创新在于支持0~4V宽压输入的同时,能够保持1Gohm的高阻输入,可显著提升电压采样的精度与抗干扰能力;同时部分料号亦兼容传统0~2V输入,为客户提供更灵活的器件选择。  NSI1611系列包含差分输出的NSI1611D和单端输出的NSI1611S。其中,差分输出均为固定增益,单端输出则提供固定增益和可调比例增益两类选项,进一步满足不同系统架构与设计需求。  在新能源汽车与工业自动化领域,对高压系统采样提出了“高精度、高灵活度”的严苛要求,隔离电压采样芯片的性能迭代与场景适配能力已成为行业竞争关键。全新NSI1611系列通过创新的宽压+高阻输入与灵活输出配置两大特点,能够同时支持新项目设计与存量平台升级,为新能源汽车主驱逆变器、车载充电机(OBC)等汽车应用,以及伺服、变频器、电机驱动等工业应用带来更优的器件选择。  创新宽压+高阻输入  精度抗扰双重提升  以新能源汽车主驱系统为例,随着其母线电压进一步提升至800V,以及SiC/GaN器件的应用,控制系统对电压采样的精度及抗干扰能力有了更高的要求。  市面上多数隔离电压采样芯片的输入范围为0~2V,而NSI1611创新性地在保持1Gohm高阻输入的同时,将其拓展至0~4V,突破前代及行业同类产品的输入范围限制,带来精度和抗干扰的双重升级,在适配更高母线电压的同时,降低了设计复杂度和开发周期。  抗干扰能力增强:NSI1611采用宽压输入时,参考地的噪声对输入信号的干扰比例直接减半。结合NSI1611内部的电路优化,其芯片EOS能力大幅提升,且EMI可通过CISPR 25 Class 5等级测试,CMTI高达150kV/μs。在新能源汽车主驱、工业变频器等高开关频率的复杂电磁环境中,宽压输入能够保证采样信号更纯净,大大提升了系统运行的稳定性,降低终端应用的失效风险。  采样精度再升级:0~4V的宽压输入范围可扩大分压比,结合优化的信号调理设计,在保持高阻输入的同时显著降低输入误差,让测量数据更接近真实电压值,为系统的精准控制提供可靠数据;在采样误差测试中,相比前代产品NSI1311系列,NSI1611系列凭借更宽的输入范围在系统的低压区域取得了较大的精度优势,在满量程800V母线电压系统中,当输入电压100V时,NSI1611的采样误差相比NSI1311降低超30%,误差低于1.2%。  NSI1611和NSI1311的采样误差随输入电压变化曲线  单端/差分输出灵活选择  简化设计更高效  凭借深刻的系统级理解,NSI1611系列基于前代产品的应用痛点,全新加入单端输出版本,并且提供“固定增益/比例增益”双版本选择,适配多元化的系统配置需求,可帮助客户简化选型和设计:  简化设计、降低BOM成本:NSI1611的单端输出信号可直接接入MCU的ADC接口,彻底省去了传统差分输出方案所必需的后级运放及调理电路,不仅直接降低了BOM成本,还简化了PCB布局与器件选型复杂度,为紧凑型和高功率密度应用提供了更优的解决方案。  增益自适应适配多元需求:比例增益版本(NSI1611S33/NSI1611S50)可通过REFIN引脚进行配置,使输出增益匹配后端ADC的满量程输入范围,最大化利用ADC的动态范围,提升了整体信号链的有效位数与采样精度,进一步满足多元化的高精度测量需求。  同时,NSI1611系列亦保留差分输出版本NSI1611D02,与纳芯微NSI1311完全引脚兼容,客户无需修改PCB即可实现无缝升级或跨品牌替换,显著降低迁移成本。  多项参数优化  性能全面升级  随着系统功率密度的提升,对器件耐压能力、采样精度、EMI性能等提出了更高的要求。NSI1611针对相关关键参数进行了优化,在全面升级器件可靠性和性能的同时,亦优化了器件成本,为客户提供“性能-成本-可靠性”兼得的选择。  车规级可靠性保障:NSI1611系列的车规版本满足AEC-Q100 Grade 1要求,工作温度覆盖-40℃~125℃,隔离耐压高达5700Vrms,最大浪涌隔离耐压Viosm达10kV,适配汽车高温高压严苛环境,可在极端场景下确保隔离的可靠性。  精度参数全面进阶:NSI1611系列的输入偏置电压Vos(Offset Voltage)指标优化至±0.8mV,相较于前代NSI1311同规格产品的±1.5mV,精度表现实现巨大提升;此外,增益温漂(Gain Drift)从前代的45ppm/℃优化至40ppm/℃,全温区精度稳定性进一步提升;非线性误差、温漂(Offset Drift)维持在行业优异水平,有效加快了系统开发的标定流程;同时,NSI1611系列的采样带宽达到330kHz,适配SiC和GaN等新一代高频开关器件控制,满足高动态响应需求。  功耗优化更节能:相比前代产品,NSI1611系列功耗表现进一步优化,助力终端产品降低能耗。对比前代,NSI1611的Idd1由11.4mA降低至7.2mA,Idd2由6.3mA降低至4.7mA(均为典型值Typ.),NSI1611系列的整体综合功耗下降约33%,可助力客户打造更节能的汽车电子系统,提高新能源汽车的续航里程。  EMI表现更优异:NSI1611基于时钟信号隔离通道复用技术,大幅优化了EMI表现。在200MHz到1000MHz频段的EMI测试中,NSI1611的辐射发射(RE)指标在水平方向和垂直方向均保持10dB以上裕度(3dB~6dB裕度即可满足工程需求),可轻松通过CISPR 25 Class 5认证。面对汽车主驱、OBC等复杂电磁环境,可以减小对系统其他部件的电磁干扰,有效减少系统电磁兼容整改工作量,加快产品上市进度。  封装和选型  NSI1611系列选型表  丰富的“隔离+”产品  满足多元化应用需求  凭借在隔离技术方面的积累和领先优势,纳芯微提供涵盖数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等一系列 “隔离+”产品。纳芯微正以全生态“隔离+”产品矩阵,为高压系统筑造安全可靠的防线:  “+”代表增强安全:纳芯微“隔离+”产品提供超越基本隔离标准的安全等级,为客户系统构筑更坚固的高低压安全边界。  “+”代表全产品生态:纳芯微以成熟的电容隔离技术IP为核心,拓展出包括数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等完整产品组合,为客户提供隔离器件的一站式解决方案。  “+”代表深度赋能应用:纳芯微“隔离+”产品可满足电动汽车高压平台、大功率光储充系统,以及高集成、高效率AI服务器电源等场景的核心需求,实现系统级安全、可靠与高效。
2025-12-17 16:06 阅读量:467
纳芯微“隔离+”再获权威认可|两款车规芯片斩获中国汽车芯片创新成果奖
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码