ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

发布时间:2024-02-21 13:13
作者:AMEYA360
来源:ROHM
阅读量:1989

  Powering Industrial Innovations ~半导体助推工业设备创新~先进的半导体功率元器件和模拟IC助力工业用能源设备节能

  随着向无碳社会的推进以及能源的短缺,全球对可再生能源寄予厚望,对不断提高能源利用效率并改进逆变器技术(节能的关键)提出了更高要求。而功率元器件和模拟IC在很大程度上决定了逆变器的节能性能和效率。通过在适合的应用中使用功率元器件和模拟IC,可以进一步提高逆变器的功率转换效率,降低工业设备的功耗,从而实现节能。本文将为您介绍在新型逆变器中应用日益广泛的先进功率元器件和模拟IC的特性及特点。

  目录

  什么是具有节能效果的逆变器?

  为什么必须要使逆变器更加节能?

  功率元器件是提高逆变器节能效果的关键所在

  解决不同课题和困扰的各种半导体产品的特点及优势

  希望优先提高转换效率

  希望既能提高转换效率,又能降低成本

  希望有助于设备的小型化和轻量化

  模拟IC

  电源IC

  栅极驱动器IC

  分流电阻器

  总结

  产品介绍、详细信息、其他链接等

  什么是具有节能效果的逆变器?

  逆变器是用来将直流电(DC)转换为交流电(AC)并有效地提供所需电力的设备。使用效率高的逆变器,可以更大程度地提高设施和设备的性能并降低能耗。

  提到逆变器,很多人通常可能会认为它是在FA应用中用来控制电机的技术,或者用来使电泵、风门、风扇、鼓风机、空调等平稳运行的技术。其实,有效地转换电能也是逆变器的一个主要用途,是使工业设备更节能的关键技术。特别是在追求无碳社会和碳中和的进程中,太阳能发电设施中使用的光伏逆变器市场和充电桩市场不断增长,从而对具有出色能量转换效率的逆变器的需求也日益高涨。接下来将围绕逆变器的功率转换进行具体说明。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  逆变器及其相关的功率元器件解决方案在促进包括太阳能发电系统在内的各种工业设施和设备的节能和效率提升方面发挥着核心作用。

  另外,逆变器的高效运作高度依赖于半导体技术的进步。通过使用先进的半导体,可以使逆变器更高效、更稳定地工作。此外,还可以延长设备的使用寿命,先进半导体产品能够带来诸多好处。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  为什么必须要使逆变器更加节能?

  世界上第一台逆变器诞生于1958年。日本的第一款逆变器产品诞生于1966年。逆变器本身已经不是一项新技术,大家所用的设施和电气设备中都有可能配有逆变器。然而,如今对使用中的设施和设备中的逆变器进行改进的需求越来越多。

  其主要原因之一是制造现场的用电量增加。目前,很多生产设施的自动化和智能化程度都越来越高。尽管单台设备都更加节能,但从设施整体看,用电量却在增加,这种情况屡见不鲜。要想更大程度地发挥出设施的节能性能,逆变器也需要具备相应的性能。

  另一个主要原因是设备电压提升以及对设备小型化、轻量化的要求提高。例如,在太阳能发电设施中,电压越来越高,功率调节器却越来越小、越来越轻,这就要求作为功率转换设备的逆变器能够满足这些需求。

  功率元器件

  提高逆变器节能效果的关键所在

  使用逆变器进行功率转换时,大约有90%的功率损耗是由功率元器件造成的。因此,可以毫不夸张地说,功率元器件的性能决定了逆变器的性能。在工业设备领域,以往主流的Si功率元器件正在被SiC功率元器件和GaN功率器件快速取代。在逆变器领域也呈现同样的趋势。

  那么,应该如何为逆变器选择合适的功率元器件呢?事实上,并不是仅仅更换为新的SiC元器件或GaN器件即可解决问题。这是因为设施的规模和需求不同,相应的解决方案也会不同。根据设施需求和用途选择合适的功率元器件解决方案,就可以实现性价比更高和能量转换效率更出色的逆变器,从而通过逆变器实现节能。

  例如,ROHM的功率元器件产品群具有以下特点:

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  解决不同课题和困扰的

  各种半导体产品的特点及优势

  理想的功率元器件解决方案会因逆变器的用途和需要解决的问题和困扰而有所不同。那么,具体而言,哪些需求更多呢?如果分得太细,涵盖的范围将非常广,所以在这里仅介绍具有代表性的需求以及相应的理想功率元器件解决方案。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  1. 希望优先提高转换效率

  当希望优先提高转换效率、提高发电量时,建议采用SiC MOSFET和SiC SBD等SiC器件。SiC器件具有耐压高、导通电阻低和开关速度快的优异特性,因此用SiC器件替代Si器件可以提升转换效率,有助于提高发电量。

  例如,当要通过家用光伏逆变器提高平均照度下的发电量时,用SiC器件替代Si器件可将发电量提高3.4%左右,即1kW~2kW时的发电能力预计可改善约45W(全年210kWh)*。另外,对于支持高电压和大电流的逆变器的需求也与日俱增。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  *发电5kW时约为130W(全年570kWh)。

  2. 希望既能提高转换效率,又能降低成本

  既希望提高转换效率,又希望降低成本。Hybrid-IGBT可以满足这样的需求。Hybrid-IGBT是在传统IGBT的反馈单元(续流二极管)中使用了ROHM低损耗SiC SBD的Hybrid型IGBT,与传统的IGBT相比,可以大大降低导通时的开关损耗。

  该系列产品非常适用于诸如电动汽车(xEV)中的车载充电器和DC-DC转换器、太阳能发电系统中的光伏逆变器等处理大功率的工业设备和汽车电子设备,具有功率损耗低于Si器件、成本效益优于SiC器件的优点。

  另外,对于太阳能发电设施中使用的逆变电路、图腾柱PFC电路和LLC电路,建议使用融入了Super Junction技术的PrestoMOS™。PrestoMOS™通过采用ROHM专利技术,同时实现了业界超快反向恢复时间和原本难以同时实现的低导通电阻,与同等的普通产品相比,更有助于逆变器节能。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  3. 希望有助于设备的小型化和轻量化

  不仅要求设备的节能性能出色,还希望设备的体积更小。尤其是在太阳能发电设施中,分布式系统的普及要求减轻设备重量以降低安装成本,因此相应的产品呈现小型化趋势。针对此类需求,建议采用GaN器件,这种器件在现有的集中式光伏逆变器中作为替代品已经开始普及,是非常适用于微型逆变器的器件。

  GaN器件具有出色的开关特性和高频特性,因而在市场上的应用日益广泛。不仅如此,其导通电阻也低于Si器件,在助力众多应用实现更低功耗和小型化方面被寄予厚望。在太阳能发电设施所用的光伏逆变器中,在其MPPT(Maximum Power Point Tracking)和蓄电单元采用GaN器件,与采用SiC器件时相比,可以进一步降低构成电路的线圈部件的电感值(L),从而能够减少绕线匝数、或使用尺寸更细的芯材,因此有助于大大缩小线圈的体积。另外,还可以减少电解电容器的数量,与Si器件(IGBT)相比,所需安装面积更小。

  ROHM将有助于应用产品的节能和小型化的GaN器件命名为“EcoGaN™系列”,并一直致力于进一步提高器件的性能。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  * EcoGaN™是ROHM Co., Ltd.的商标或注册商标。

  另一种推荐方法是利用上述第1节中介绍的SiC MOSFET在高温环境下优异的工作特性优势。由于这种器件的容许损耗低,发热量少,因此可通过与合适的外围元器件相结合来减小散热器件的数量和尺寸,从而减轻逆变器的重量。

  模拟IC

  与功率元器件一样,电源IC和栅极驱动器等模拟IC对逆变器的性能影响也很大。电源IC可以控制设备运行所需的电压,是相当于电气设备心脏的重要器件,起到将电压转换为合适的电压并稳定供电的作用。

  栅极驱动器可以控制MOSFET和IGBT的驱动,通过控制栅极电压来执行ON/OFF开关动作。由于大部分功率损耗发生在开关过程中,因此栅极驱动器对于提高节能性能而言是非常重要的器件。栅极驱动器不仅适用于使用大电流的工业设备,还适用于要求高耐压的应用。

  电源IC

  对于逆变器用的电源IC,推荐采用内置SiC MOSFET的电源IC。这种产品已经将SiC MOSFET内置于电源IC中,应用产品无需进行SiC MOSFET驱动电路设计,因此可以大大减少元器件数量,并且可以利用保护电路实现安全的栅极驱动。

ROHM:可以提高工业逆变器功率转换效率并具有节能效果的半导体

  栅极驱动器IC

  虽然SiC MOSFET和GaN器件的性能很高,但它们的开关控制较难,因此离不开高性能的栅极驱动器IC。

  ROHM拥有可以更好地驱动上述各种功率器件的丰富的栅极驱动器IC产品群。例如,ROHM开发的GaN用栅极驱动器IC,可以更大程度地激发出GaN的高速开关性能,助力应用产品实现节能和小型化。

  分流电阻器

  在电流检测用途中使用的分流电阻器也是有助于大功率应用产品小型化的重要元件。随着应用产品的功率越来越高,对于能够处理大功率且阻值低的分流电阻器的需求也不断增长。分流电阻器的亮点在于其优异的散热性能和出色的温度特性。

  ROHM的产品阵容中包括支持高达4W~10W级额定功率的低阻值分流电阻器GMR系列,使用该系列产品,即使在大功率条件下工作也能实现高精度的电流检测,有助于设备的安全运行以及节能和小型化。

  总结

  为提高能源利用率,逆变器技术正在突飞猛进地发展,并已成为包括工业应用在内的各种能源设备不可或缺的组成部分。利用这项技术,可以通过将直流电转换为交流电并根据需要优化供电,来减少能源浪费并延长设施和设备的使用寿命。另外,通过使用符合应用需求和目的的理想半导体解决方案,可以进一步提高逆变器的功率转换效率。ROHM通过推动先进功率元器件和模拟IC在逆变器中的应用,来促进各种设备的节能,从而为实现可持续发展社会贡献力量。

  • IGBT

  • 功率晶体管

  • 功率元器件

  • SiC功率元器件

  • SiC MOSFET

  • SiC肖特基势垒二极管

  • GaN功率器件

  • 模拟IC

  • 电源管理/电源IC

  • 栅极驱动器

  • GaN用栅极驱动器

  • BD2311NVX-LB

  • Super Junction MOSFET

  • 内置1700V耐压SiC MOS的AC-DC转换器IC

  • 电流检测用 贴片电阻器(分流电阻器)

  • 大功率 分流电阻器/低阻值 金属板(GMR系列)

  • ROHM开发出内置SiC二极管的IGBT(Hybrid IGBT)“RGWxx65C系列”

  • ROHM开发出EcoGaN™ Power Stage IC“BM3G0xxMUV-LB”,助力减少服务器和AC适配器等的损耗和体积!

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM发布新SPICE模型“ROHM Level 3(L3)”   功率半导体的仿真速度实现质的飞跃
  全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出新SPICE模型“ROHM Level 3(L3)”,该模型提升了收敛性和仿真速度。  功率半导体的损耗对系统整体效率有重大影响,因此在设计阶段的仿真验证中,模型的精度至关重要。ROHM以往提供的SiC MOSFET用SPICE模型“ROHM Level 1(L1)”,通过提高每种特性的复现性,满足了高精度仿真的需求。然而另一方面,该模型存在仿真收敛性问题和运算时间较长等问题,亟待改进。  新模型“ROHM Level 3(L3)”通过采用简化的模型公式,能够在保持计算稳定性和开关波形精度的同时,将仿真时间较以往L1模型缩短约50%。由此,能够高精度且快速地执行电路整体的瞬态分析,从而有助于提升应用设计阶段的器件评估与损耗确认的效率。  “ROHM Level 3(L3)”的第4代SiC MOSFET模型(共37款机型)已于2025年4月在官网上发布,用户可通过产品页面等渠道下载。新模型L3推出后,以往模型仍将继续提供。另外,ROHM还发布了详细的使用说明白皮书,以帮助用户顺利导入新模型。用户可从第4代SiC MOSFET相应产品页面的“设计模型”中下载  <相关信息>  - 白皮书  - 设计模型支持页面  - SiC MOSFET技术文档  未来,ROHM将继续通过提升仿真技术,助力实现更高性能以及更高效率的应用设计,为电力转换技术的革新贡献力量。
2025-06-10 15:57 阅读量:367
ROHM开发出适用于AI服务器48V电源热插拔电路的100V功率MOSFET
  ~兼具更宽SOA范围和更低导通电阻,被全球知名云平台企业认证为推荐器件~  全球知名半导体制造商ROHM(总部位于日本京都市)于6月3日宣布,开发出100V耐压的功率MOSFET*1“RY7P250BM”,是AI服务器的48V电源热插拔电路*2以及需要电池保护的工业设备电源等应用的理想之选。  RY7P250BM为8×8mm尺寸的MOSFET,预计该尺寸产品未来需求将不断增长,可以轻松替代现有产品。另外, 新产品同时实现了更宽SOA范围*3( 条件:VDS=48V、Pw= 1ms/10ms) 和更低导通电阻(RDS(on))*4,由此既可确保热插拔(电源启动)工作时的更高产品可靠性,又能优化电源效率,降低功耗并减少发热量。  为了兼顾服务器的稳定运行和节能,热插拔电路必须具有较宽的SOA范围,以承受大电流负载。特别是AI服务器的热插拔电路,与传统服务器相比需要更宽的SOA范围。RY7P250BM的SOA在脉宽10ms时可达16A、1ms时也可达50A,实现业界超优性能,能够应对以往MOSFET难以支持的高负载应用。  RY7P250BM是具有业界超宽SOA范围的MOSFET,并且实现了更低导通电阻,从而大幅降低了通电时的功率损耗和发热量。具有宽SOA范围的普通8×8mm尺寸100V耐压MOSFET的导通电阻绝大多数约为2.28mΩ ,而RY7P250BM 的导通电阻则降低了约18% —— 仅有1.86mΩ ( 条件: VGS=10V 、ID=50A 、 Tj=25℃)。这种低导通电阻有助于提升服务器电源的效率、减轻冷却负荷并降低电力成本。  与此同时,RY7P250BM还被全球知名云平台企业认证为推荐器件,预计未来将在AI服务器领域得到更广泛的应用。在注重可靠性与节能的服务器领域中,RY7P250BM更宽SOA范围与更低导通电阻的平衡在云应用中得到了高度好评。  新产品已经暂以月产100万个的规模投入量产(样品价格800日元/个,不含税)。前道工序的生产基地为ROHM Co., Ltd.(日本滋贺工厂),后道工序的生产基地为OSAT(泰国)。另外,新产品已经开始通过电商进行销售,通过电商平台均可购买。  未来,ROHM将继续扩大适用于服务器和工业设备48V电源的产品阵容,通过提供效率高且可靠性高的解决方案,为建设可持续ICT基础设施和节能贡献力量。  <开发背景>  随着AI技术的飞速发展,数据中心的负载急剧增加,服务器功耗也逐年攀升。特别是随着配备生成式AI和高性能GPU的服务器日益普及,如何兼顾进一步提升电力效率和支持大电流这两个相互冲突的需求,一直是个难题。在此背景下,相较传统12V电源系统具有更高转换效率的48V电源系统正在加速扩大应用。另外, 在服务器运行状态下实现模块更换的热插拔电路中, 需要兼具更宽SOA范围和更低导通电阻的 MOSFET,以防止浪涌电流*5和过载时造成损坏。新产品“RY7P250BM”在8×8mm尺寸中同时具备业界超宽SOA范围和超低导通电阻,有助于降低数据中心的功率损耗、减轻冷却负荷,从而提升服务器的可靠性并实现节能。  <产品主要特性>  <应用示例>  ・AI(人工智能)服务器和数据中心的48V系统电源热插拔电路  ・工业设备48V系统电源(叉车、电动工具、机器人、风扇电机等)  ・AGV(自动导引车)等电池驱动的工业设备  ・UPS、应急电源系统(电池备份单元)  <电商销售信息>  发售时间:2025年5月起  新产品在其他电商平台也将逐步发售。  产品型号:RY7P250BM  <关于EcoMOS™品牌>  EcoMOS™是ROHM开发的Si功率MOSFET品牌,非常适用于功率元器件领域对节能要求高的应用。 EcoMOS™产品阵容丰富,已被广泛用于家用电器、工业设备和车载等领域。客户可根据应用需求,通过噪声性能和开关性能等各种参数从产品阵容中选择产品。  ・EcoMOS™是ROHM Co., Ltd.的商标或注册商标。  <术语解说>  *1)功率MOSFET  适用于功率转换和开关应用的一种MOSFET。目前,通过给栅极施加相对于源极的正电压而导通的Nch MOSFET是主流产品,相比Pch MOSFET,具有导通电阻小、效率高的特点。因其可实现低损耗和高速开关而被广泛用于电源电路、电机驱动电路和逆变器等应用。  *2)热插拔电路  可在设备电源运转状态下实现元器件插入或拆卸的、支持热插拔功能的整个电路。由MOSFET、保护元件和接插件等组成,负责抑制元器件插入时产生的浪涌电流并提供过流保护,从而确保系统和所连接元器件的安全工作。  *3)SOA(Safe Operating Area)范围  元器件不损坏且可安全工作的电压和电流范围。超出该安全工作区工作可能会导致热失控或损坏,特别是在会发生浪涌电流和过电流的应用中,需要考虑SOA范围。  *4)导通电阻(RDS(on))  MOSFET工作(导通)时漏极与源极间的电阻值。该值越小,工作时的损耗(功率损耗)越少。  *5)浪涌电流(Inrush Current)  在电子设备接通电源时,瞬间流过的超过额定电流值的大电流。因其会给电源电路中的元器件造成负荷,所以通过控制浪涌电流,可防止设备损坏并提高系统稳定性。
2025-06-04 09:42 阅读量:365
ROHM首款面向高耐压GaN器件驱动的隔离型栅极驱动器IC开始量产
  5月27日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,推出一款适用于600V级高耐压GaN HEMT驱动的隔离型栅极驱动器IC“BM6GD11BFJ-LB”。通过与本产品组合使用,可使GaN器件在高频、高速开关过程中实现更稳定的驱动,有助于电机和服务器电源等大电流应用进一步缩减体积并提高效率。  新产品是ROHM首款面向高耐压GaN HEMT的隔离型栅极驱动器IC。在电压反复急剧升降的开关工作中,使用本产品可将器件与控制电路隔离,从而确保信号的安全传输。  新产品通过采用ROHM自主开发的片上隔离技术,有效降低寄生电容,实现高达2MHz的高频驱动。通过充分发挥GaN器件的高速开关特性,不仅有助于应用产品更加节能和实现更高性能,还可通过助力外围元器件的小型化来削减安装面积。  另外,隔离型栅极驱动器IC的抗扰度指标——共模瞬态抗扰度(CMTI)*¹达到150V/ns(纳秒),是以往产品的1.5倍,可有效防止GaN HEMT开关时令人困扰的高转换速率引发的误动作,从而有助于系统实现稳定的控制。最小脉冲宽度较以往产品缩减33%,导通时间缩短至仅65ns。因此,虽然频率更高却仍可确保最小占空比,从而可将损耗控制在更低程度。  GaN器件的栅极驱动电压范围为4.5V~6.0V,绝缘耐压为2500Vrms,新产品可充分激发出各种高耐压 GaN器件(包括ROHM EcoGaN™系列产品阵容中新增的650V耐压GaN HEMT“GNP2070TD-Z”)的性能潜力。输出端的消耗电流仅0.5mA(最大值),达到业界超低功耗水平,另外还可有效降低待机功耗。  新产品已于2025年3月开始量产(样品价格:600日元/个,不含税)。另外,新产品也已开始网售,通过电商平台均可购买。  EcoGaN™是ROHM Co.,Ltd.的商标或注册商标。  <开发背景>  在全球能源消耗逐年攀升的背景下,节能对策已成为世界各国共同面临的课题。尤其值得注意的是,据调查“电机”和“电源”消耗的电量约占全球总用电量的97%。改善“电机”和“电源”效率的关键在于采用碳化硅(SiC)和氮化镓(GaN)等新材料制造的、负责功率控制和转换的新一代功率器件。  ROHM充分发挥其在硅半导体和SiC隔离型栅极驱动器IC开发过程中积累的技术优势,成功开发出第一波产品——专为GaN器件驱动而优化的隔离型栅极驱动器IC。未来,ROHM将配套提供GaN器件驱动用的栅极驱动器IC与GaN器件,为应用产品的设计提供更多便利。  <应用示例>  ◇ 工业设备:光伏逆变器、ESS(储能系统)、通信基站、服务器、工业电机等的电源  ◇ 消费电子:白色家电、AC适配器(USB充电器)、电脑、电视、冰箱、空调  <术语解说>  *1) 共模瞬态抗扰度(CMTI)  隔离型栅极驱动器的主要参数之一,指产品对短时间内发生的电压急剧变化的耐受能力。特别是驱动GaN HEMT等转换速率较高的器件时,容易产生急剧的电压变化,通过采用CMTI性能优异的栅极驱动器,可有效防止器件损坏,并降低电路的短路风险。
2025-05-28 09:04 阅读量:348
ROHM推出实现业界超低导通电阻的小型MOSFET,助力快速充电应用
  全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出30V耐压共源Nch MOSFET*1新产品“AW2K21”,其封装尺寸仅为2.0mm×2.0mm,导通电阻*2低至2.0mΩ(Typ.),达到业界先进水平。  新产品采用ROHM自有结构,不仅提高器件集成度,还降低单位芯片面积的导通电阻。另外,通过在一个器件中内置双MOSFET的结构设计,仅需1枚新产品即可满足双向供电电路所需的双向保护等应用需求。  新产品中的ROHM自有结构能够将通常垂直沟槽MOS结构中位于背面的漏极引脚置于器件表面,并采用了WLCSP*3封装。WLCSP能够增加器件内部芯片面积的比例,从而降低新产品的单位面积导通电阻。导通电阻的降低不仅减少了功率损耗,还有助于支持大电流,使新产品能够以超小体积支持大功率快速充电。例如,对小型设备的双向供电电路进行比较后发现,使用普通产品需要2枚3.3mm×3.3mm的产品,而使用新产品仅需1枚2.0mm×2.0mm的产品即可,器件面积可减少约81%,导通电阻可降低约33%。即使与通常被认为导通电阻较低的同等尺寸GaN HEMT*4相比,新产品的导通电阻也降低了约50%。因此,这款兼具低导通电阻和超小体积的“AW2K21”产品有助于降低应用产品的功耗并节省空间。  另外,新产品还可作为负载开关应用中的单向保护MOSFET使用,在这种情况下也实现了业界超低导通电阻。  新产品已于2025年4月开始暂以月产50万个的规模投入量产(样品价格500日元/个,不含税)。新产品在电商平台将逐步销售。  ROHM还在开发更小体积的1.2mm×1.2mm产品。未来,ROHM将继续致力于提供更加节省空间并进一步提升效率的产品,助力应用产品的小型化和节能化发展,为实现可持续发展社会贡献力量。  <开发背景>  近年来,为缩短充电时间,智能手机等配备大容量电池的小型设备中,配备快速充电功能的产品日益增多。这类设备需要具备双向保护功能以防止在非供电状态时电流反向流入外围IC等器件。此外,为了在快速充电时支持大电流,智能手机等制造商对MOSFET有严格的规格要求,如最大电流为20A、击穿电压*5为28V至30V、导通电阻为5mΩ以下等。然而,普通MOSFET产品若要满足这些要求,就需要使用2枚导通电阻较低的大体积MOSFET,而这会导致安装面积增加。为了解决这个问题,ROHM开发出采用超小型封装并具备低导通电阻的MOSFET“AW2K21”,非常适用于大功率快速充电应用。  <产品主要特性>  <应用示例>      ・智能手机・VR(Virtual Reality)眼镜・小型打印机      ・平板电脑・可穿戴设备・液晶显示器      ・笔记本电脑・掌上游戏机・无人机  此外,新产品还适用于其他配备快速充电功能的小型设备等众多应用。  <电商销售信息>  发售时间:2025年4月起  新产品在电商平台将逐步发售。  产品型号:AW2K21  <术语解说>  *1)MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor的缩写)  一种采用金属-氧化物-半导体结构的场效应晶体管,是FET中最常用的类型。  通常由“栅极”、“漏极”和“源极”三个引脚组成。其工作原理是通过向控制用的栅极施加电压,增加漏极流向源极的电流。  Nch MOSFET是一种通过向栅极施加相对于源极为正的电压而导通的MOSFET。  共源结构的MOSFET内置两个MOSFET器件,它们共享源极引脚。  *2)导通电阻  MOSFET工作(导通)时漏极与源极间的电阻值。数值越小,工作时的损耗(功率损耗)越小。  *3)WLCSP(Wafer Level Chip Scale Package)  在晶圆状态下完成引脚成型和布线,随后切割成芯片的超小型封装。与将晶圆切割成芯片后通过树脂模塑形成引脚等的普通封装形式不同,这种封装可以做到与内部的半导体芯片相同大小,因此可以缩减封装的尺寸。  *4)GaN HEMT  GaN(氮化镓)是一种用于新一代功率元器件的化合物半导体材料,与普通的半导体材料Si(硅)相比,其物性更优异,开关速度更快,支持高频率工作。  HEMT是High Electron Mobility Transistor(高电子迁移率晶体管)的英文首字母缩写。  *5)击穿电压  MOSFET漏极和源极之间可施加的最大电压。如果超过该电压,会发生绝缘击穿,导致器件无法正常工作。
2025-05-16 10:52 阅读量:510
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码