纳芯微全新推出120V半桥驱动NSD1224系列

发布时间:2023-06-27 13:14
作者:AMEYA360
来源:网络
阅读量:2009

  纳芯微全新推出120V半桥驱动NSD1224系列产品,该系列产品具备3A/-4A的峰值驱动电流能力,集成高压自举二极管,提供使能、互锁、欠压保护不同版本,有SOP8、HSOP8、DFN10、DFN8多种封装可选,广泛适用于微逆、功率优化器、电源模块、新能源汽车等应用场景。

纳芯微全新推出120V半桥驱动NSD1224系列

  NSD1224产品特性

  · VDD供电耐压:20V

  · HS桥臂中点耐压:-10V~115V

  · 输入引脚耐受负压:-10V

  · HS耐共模瞬变:50V/ns

  · 峰值驱动电流:3A/-4A

  · 兼容CMOS/TTL电平输入

  · 输入互锁功能

  · 高低侧输出独立UVLO保护

  · 集成高压自举二极管

  · 输入输出延时小于16ns

  · 高低边传输延时匹配小于1ns

  · DFN10封装有使能引脚,待机时静态功耗低至7uA

  · SOP8、HSOP8、DFN10、DFN8封装

  · 结温范围-40°C~150°C

  纳芯微NSD1224半桥驱动性能优异,具备互锁功能、输入耐负压和HS耐负压能力

  01、互锁功能

  NSD1224具备互锁功能,能有效避免因输入干扰造成的功率管桥臂直通问题。

  在电源应用中,受高频开关噪声的影响,半桥驱动芯片的输入引脚容易受到干扰,可能会出现高低边输入被同时拉高的情况,导致驱动芯片的高低边输出同时为高,引发功率管桥臂直通,造成电源设备损坏。

  NSD1224在两个输入同时为高电平时,会触发互锁模式,此时高低边输出被同时拉低,只有当任一输入变为低电平,输出才会恢复至跟随输入的正常状态。NSD1224的互锁功能,有效避免了因输入信号干扰造成的桥臂直通问题,提高了系统可靠性。

  02、输入耐负压能力

  NSD1224的输入引脚耐受-10V负压,解决了驱动芯片输入的负压尖峰问题。

  在电源应用中,受MOSFET高频开关影响会在GND回路上产生瞬态电流,由于控制器和驱动器之间的PCB走线会存在寄生电感,瞬态电流和寄生电感的相互作用在会在驱动芯片的输入引脚产生负压尖峰,造成驱动芯片逻辑错误甚至损坏。NSD1224输入引脚增强了耐负压设计,可以承受-10V的负压(推荐工作值-5V),从而提高了芯片的可靠性,也降低了对系统设计的要求。

  03、HS耐负压和共模瞬变

  NSD1224的HS引脚耐受-10V负压与50V/ns共模瞬变,适用于高频、高效开关电源应用。

  随着电源效率要求的不断提高,为减小开关损耗,MOSFET的开关速度也越来越快。高速开关导致的di/dt与寄生电感会在HS引脚产生瞬态负压,容易造成驱动芯片发生闩锁甚至损坏,NSD1224的HS引脚可以耐受-10V的负压(推荐工作值-8V),有效解决了高频、高效开关电源的应用难题。此外,NSD1224的HS引脚可以承受50V/ns共模瞬变,具有很强的抗共模干扰能力。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微:从隔离电流采样ADC NSI1306 实战看如何解决 Shunt 电阻引发的伺服电流采样误差
  在伺服驱动器的相电流采样中,速度波动是影响控制精度的关键问题,其根源往往与 Shunt 电阻的热电偶效应相关。本文以纳芯微 NSI1306 隔离 ΣΔADC 的应用为例,首先剖析 Shunt 电阻误差如何引发速度波动,再深入解析金属热电偶效应的形成机理;随后对比几字型与贴片封装等不同 Shunt 电阻的表现差异,以及探讨采样电路对热电偶效应的放大或抑制作用;最后提出减小该效应的实用设计建议,为提升相电流采样精度提供参考。  01 Shunt 电阻误差的影响  速度波动是伺服驱动器性能的重要指标,它反映的是转矩波动,而转矩波动会导致控制精度下降。  伺服驱动器通过角度编码器读取速度和角度,并通过相电流检测读取电流,采样信息的准确性决定了控制的效果。以下分析侧重电流采样。图1. NSI1306 电路示意  相线电流采样可以真实反映电机的电流,而低边采样存在窗口期,需要重构相电流,容易引入误差。NSI1306 作为隔离 ΣΔADC,输出码流,适用于相线电流采样;同时 MCU 可根据控制需求灵活配置抽取率,在精度与响应速度之间取得平衡。  相电流采样的误差主要来自 Shunt 电阻和 NSI1306,下文将重点讨论 Shunt 电阻带来的误差。  通过电阻的规格书,电阻的精度和温漂属于增益误差;此外,还存在由热电偶效应引起的偏置(offset)误差。增益误差主要影响的是转矩控制精度,电流的 offset 误差会引入一个电周期一次的速度波动。  在零电流时会校准一次相电流的 offset,运行过程中会计算每一相电流的 offset(一个周期的值相加)并且补偿掉,如果是采样数据不准,引入了 offset,那么经过软件的补偿,反而会导致真正的相电流 offset,破坏电流波形的对称性,引入谐波分量,改变磁场分布,从而导致电机转矩输出不均匀,进而产生转矩波动,导致速度波动。相电流偏移的软件补偿是一个电周期补偿一次,所以速度波动也是一个电周期一次。  02 金属的热电偶效应  在实际场景中,伺服驱动工作一段时间后速度波动变大,FFT 分析显示为一个电周期一次的速度波动,这是相电流的 offset 偏移造成的。  对 PCB 加热,速度波动加剧,以此推测该 offset 和温度强相关。经测试,更换 2512 贴片封装 Shunt 电阻后恢复正常,排查出是几字型 Shunt 电阻的问题。  加热对比测试,几字型 Shunt 电阻和贴片封装 Shunt 电阻的偏差都很小,并且电阻温漂改变的是增益,并不是 offset 。  加上焊锡后,如图2,再加热测试,几字型 Shunt 电阻的偏差变得很大。交换电桥的正负极,偏差呈现相反方向的变化,贴片封装 Shunt 电阻偏差还是很小。图2. 几字型 Shunt 加上焊锡  根据实验结果,温度升高后,并不是电阻自身的阻值发生了较大的变化,而是存在比较大的热电偶效应。  热电偶效应如图3所示,不同的金属的自由电子的密度不同,在 AB 两金属的接触处,会发生自由电子的扩散现象。电子将从密度大的金属(A)移向密度小的金属(B),使 A 带正电, B 带负电,直至 AB 之前形成足够大的电场阻止电子扩散,达到动态平衡。图3. 热电偶效应  从公式可以看出,热电偶效应产生的电压源大小和温度有关,和金属的材质有关。  在电路中,Shunt 电阻的热电偶等效示意如图4,对于几字型 Shunt 电阻和贴片封装 Shunt 电阻, V3、V4的位置是一样的,V1、V2位置略有不同,但很近。因此可以认为温度都是相等的。对热电偶效应有影响的只有金属材质,两者对比如表 1 所示。  图4. Shunt电阻的热电偶等效示意表1. 几字型 Shunt 电阻和贴片封装 Shunt 电阻  03 电路对热电偶效应的影响  如图4,热电偶效应是两端对称的, NSI306 是差分采样,理论上可以抵消热电偶产生的信号源,但实测可以看到明显的热电偶效应。  分析采样电路,如图5所示,可以看到 RSENSE (检测电阻)的两端共模阻抗并不相同,接 INP 这一端的共模阻抗是大于 INN 端共模阻抗的,当上管导通的时候 INP 端的热电偶通过电感连接到 BUS+,上管关断的时候悬空;当上管导通的时候 INN 端的热电偶直接连接到 BUS+,下管导通的时候直接接到 BUS-。NSI1306 的 INN 端看到的热电偶电压明显小于 INP 端看到的热电偶电压。图5. 分析采样电路  结论与建议  Shunt 电阻作为电流采样中的关键器件,其封装结构和焊接方式直接影响系统的偏移误差表现。  本文通过实测与理论分析,指出热电偶效应是高温下造成速度波动的重要干扰源,尤其在几字型封装中更为显著。差分采样虽然理论上可抵消热电偶电压,但在实际电路中由于共模阻抗不一致,仍会引入系统性偏移。因此,在高精度电流采样场景中,推荐优先选用热结构对称性更好、焊接界面更少的贴片封装Shunt电阻,以降低温漂与热电势干扰,提升系统稳定性与控制精度。  NSI1306 作为一款基于纳芯微电容隔离技术的高性能 Σ-Δ 调制器,其差分输入特性与该场景高度适配,能精准对接贴片封装 Shunt 电阻的电流检测需求,通过二阶Σ-Δ调制与同步输出,结合数字滤波可实现高分辨率与信噪比,还具备故障安全功能,进一步保障高精度采样系统的稳定运行。
2025-10-13 09:27 阅读量:207
纳芯微携手联合电子与英诺赛科,共创新能源汽车功率电子新格局
  025年9月29日,苏州纳芯微电子股份有限公司(以下简称:纳芯微)、联合汽车电子有限公司(以下简称:联合电子)与英诺赛科(苏州)科技股份有限公司(以下简称:英诺赛科)共同签署战略合作协议。三方将聚焦新能源汽车功率电子系统,联合研发智能集成氮化镓(GaN)相关产品。全新开发的智能GaN产品将依托三方技术积淀,提供更可靠的驱动及GaN保护集成方案,进一步提升系统功率密度。三方还将协同推动相关解决方案的产业化落地,助力新能源汽车产业的可持续发展与价值提升。签约仪式现场合影  见证代表  图中:联合电子副总经理 郭晓潞博士  图右:英诺赛科首席执行官 吴金刚博士  图左:纳芯微创始人、董事长、CEO 王升杨  签约代表  图中:联合电子电力驱动业务部电力电子业务总监 林霖  图右:英诺赛科销售副总裁 蔡定辉  图左:纳芯微功率与驱动产品线总监 张方文  GaN凭借其优越的材料特性,正在成为重塑新能源汽车功率电子系统的核心力量。相较于传统硅基器件,GaN可显著提升系统效率与功率密度,帮助系统打造体积更紧凑、重量更轻便的优势,满足汽车电气化、轻量化的核心需求。  此次合作,三方将充分发挥各自优势,以联合研发与应用验证为抓手,突破效率、可靠性与成本等关键挑战,为行业客户提供兼具性能与成本优势的创新解决方案。纳芯微在高性能模拟与混合信号芯片领域积累深厚,联合电子拥有丰富的整车及系统集成经验,英诺赛科则专精于GaN等先进功率器件研发。三方将携手构建跨领域协同创新平台,共同应对未来系统应用的发展需求。  联合电子副总经理郭晓潞博士表示:“联合电子深耕汽车电子领域多年,始终以创新回应行业需求。GaN技术是汽车电气化升级的关键突破口,纳芯微与英诺赛科则在芯片设计、器件技术上积淀深厚。三方携手可实现从器件到系统的全链条能力融合,快速推进GaN技术产业化,为行业用户提供高效、可靠且具成本优势的解决方案。”  纳芯微创始人、董事长、CEO王升杨表示:“新能源汽车产业的升级离不开产业链的深度协同,尤其新技术的突破和新产品的落地更需跨领域专长的联动。联合电子的系统集成经验与英诺赛科的GaN技术优势,与纳芯微的芯片设计能力形成完美互补。此次三方以协同之势打通产业链上下游,共建核心竞争力,实现技术突破与市场价值的共赢,为行业协作树立了新标杆。”  英诺赛科首席执行官吴金刚博士表示:“GaN的应用潜力远未达上限,其在汽车功率电子领域的深度落地,亟需器件端与系统端的精准对接。我们非常期待三方携手,以战略合作为契机,持续拓展GaN在汽车电气化场景的应用边界,让先进功率器件的技术优势能够真正赋能产业升级。”  此次战略合作标志着纳芯微、联合电子与英诺赛科在新能源汽车功率电子领域的合作迈出了坚实且关键的一步。作为汽车芯片领域领先的国产供应商,纳芯微以模拟及混合信号芯片技术积淀、近10亿颗汽车芯片出货的市场验证为基础,与联合电子的系统集成经验、英诺赛科的GaN器件优势形成有效互补。未来,三方将以此次战略合作为基石,持续打通技术链条、突破应用瓶颈,推动新能源汽车产业朝着更高效率、更可持续的方向实现创新升级。
2025-09-30 13:47 阅读量:291
纳芯微以高集成度 SoC 技术,破解智驾感知、座舱与热管理核心难题
  纳芯微以高集成度车规级 SoC 技术为核心抓手,聚焦智驾落地过程中的感知痛点、座舱体验升级与整车热管理效率优化,形成覆盖多场景的解决方案矩阵。  一、智驾感知升级:超声波 SoC 破解行业核心痛点  在高阶智驾感知体系中,超声波传感器是辅助泊车(APA)、自主泊车(AVP)等低速场景的关键硬件,但当前行业普遍面临扫描效率与多发多收能力低、抗干扰能力薄弱、探测边界有限、原始数据支持不足、主机与机端互联互通壁垒等挑战,且客户定制化难度高。针对这些痛点,纳芯微推出 NovoGenius® 系列超声波 SoC 解决方案——超声雷达探头芯片 NSUC1800,实现技术突破:  1. 编码升级:解决多传感器干扰,提升扫描效率  传统超声波传感器因 “同频信号叠加” 易产生干扰,纳芯微通过多模式编码技术(支持定频、线性 Chirp、非线性 Chirp、FSK+Chirp 等),让不同传感器差异化发波,避免信号冲突。该技术可实现 2 个周期内完成保杠扫描,大幅提升传感器刷新率,满足智驾车辆运动中实时刷新数据的需求。  2. 探测边界突破:近场 10cm 内无盲区,远场延伸至 6-7 米  为适配复杂泊车与低速安全场景,纳芯微超声波 SoC通过模拟前端时变增益控制和近场门限自适应算法,将探测盲区压缩至10cm 以内(最优测试达 4.5cm),可精准识别车身附近低矮障碍(如路沿、墙角),避免泊车剐蹭;远场探测则通过低噪声信号链路(LNA 噪声 < 4nV/sqrt (Hz))和18 位高精度 ADC(市场现有方案14bit),将有效距离延伸至6-7 米,为低速自动紧急制动(AEB)提供更早的障碍物预警数据。  3. 原始数据回传:赋能智驾算法迭代  针对智驾“端到端决策”需求,纳芯微超声波 SoC 支持全链路原始数据上传—— 包括事件数据、包络数据、ADC 采样原始数据,并提供 1-16 倍数据抽取与压缩算法,匹配 DSI3 总线带宽。芯片内置10K SRAM(行业平均 4K),保障数据传输效率,帮助智驾系统更精准分辨障碍物类型(高低、大小),减少误判与漏判。  4. 功能安全与国产化:ASIL-B 认证+灵活定制  纳芯微超声波 SoC 满足 ISO26262 ASIL-B 功能安全等级,集成电源过欠压检测、内存 ECC 纠错、通信 CRC 校验等诊断功能。同时,纳芯微可快速响应客户对功能、性能的定制化需求。  邀您前往!SENSOR CHINA期间  超声雷达探头芯片专题演讲  二、座舱与热管理:高集成 SoC 赋能场景体验  除智驾感知外,纳芯微 NovoGenius® 系列 SoC 还覆盖座舱舒适性与热管理系统,通过 “单芯片集成多功能” 降低硬件复杂度,提升系统可靠性:  1. 座舱场景:氛围灯驱动 SoC 点亮座舱新体验  针对座舱个性化需求,纳芯微推出氛围灯驱动 SoC NSUC1500(4 通道),集成 Cortex-M3 内核、LIN 收发器、高压 LDO 与 LED 驱动,支持 64mA / 通道电流输出,且通过 ADC 采集 RGB 差分电压,实现温度补偿与长期漂移校准,保障灯光一致性。  2. 热管理系统:电机驱动 SoC 覆盖全场景需求  汽车热管理(电池、空调、电驱)依赖大量电机控制,纳芯微推出全集成嵌入式电机驱动 SoC,覆盖不同功率场景:  • 低功率场景:如 NSUC1612B(空调出风口)、NSUC1612E(主动进气格栅),集成 3-4 路半桥驱动,RMS 电流 0.35A-1.4A;  • 中高功率场景:如 NSUC1610(水泵、座椅通风)、NSUC1602(冷却风扇、鼓风机),支持 BDC/BLDC 电机控制,符合 AEC-Q100 Grade 0 标准(最高结温 175℃)。  三、生态兼容与国产化优势:降低客户开发门槛  为加速方案落地,纳芯微在技术创新外,还从生态兼容与服务支持两方面降低客户门槛:  1. 全兼容现有生态,无需重构硬件  纳芯微超声波 SoC、电机驱动 SoC 等均兼容行业主流协议与架构:如超声波方案支持 DSI3 总线,可与 “现有 DSI Master+纳芯微 Slave(NSUC1800)”或“纳芯微 Master(NSUC1802)+现有 DSI Slave” 混合搭配,无需改动整车硬件架构;LIN 收发器符合 LIN2.2 与 SAE J2602 标准,EMC 性能通过 CISPR-25 Class 5 认证,适配各类整车电气环境。  2. 一站式开发支持,缩短项目周期  纳芯微为客户提供上位机评估软件 + 定制化套件:上位机可直观展示传感器探测距离、信号强度等参数,无需客户自建测试平台;硬件套件则根据客户探头尺寸、结构特性定制,配套调试固件,实现即插即用,帮助客户快速完成方案验证与项目导入。  纳芯微通过 NovoGenius® 系列车规级 SoC,构建了 “智驾感知 - 座舱体验 - 热管理” 全场景芯片解决方案:以超声波 SoC 突破感知痛点,以高集成驱动 SoC 优化系统效率,以国产化服务响应客户定制需求。
2025-09-23 13:53 阅读量:290
纳芯微NSSine™超高性价比新品:NS800RT113x实时控制MCU,开启“M7平权”新时代
  随着行业对算力与实时性的要求不断提升,传统 MCU 平台在运算能力、存储速度与外设性能方面逐渐显现瓶颈。为解决这一挑战,纳芯微推出 NS800RT113x 系列 MCU,该系列基于 Arm® Cortex®-M7 内核,集成自研 mMATH 数学加速核、高速 ADC、精细 PWM 及可编程逻辑模块等创新功能,全面满足电机控制、电力电子等对高性能与高实时性要求严苛的应用需求。此次发布标志着 M7 内核 MCU 进入更广泛的应用场景,为客户带来前所未有的性能平衡与价值体验。  高性能高性价比M7内核,突破算力门槛  NS800RT1135/1137 搭载主频 200MHz 的 Cortex®-M7 内核,支持 ECC 的 128~256KB Flash 与 80KB TCM(CPU核内0等待内存),均支持ECC功能,显著提升实时计算性能。配合纳芯微自研的 mMATH 数学加速核,可高效处理三角函数、超越函数与浮点运算,全面增强控制类应用的算力支持。  在 MCU 市场中,Cortex®-M4 内核是最常见的主流选择,而 NS800RT113x 系列率先将 Cortex®-M7 内核引入更广泛应用。相较于M4 内核,M7 内核在 DMIPS/Hz 与 CoreMark/Hz 上分别提升 83% 与 49%,并原生支持核内 TCM,实现 CPU 同频 0 等待访问。  当前“算力单价”日益受到行业关注,许多应用创新与成本优化都面临算力瓶颈的制约。NS800RT113x 系列高性价比 MCU 的推出,将推动 M7 内核在电机驱动、电力电子及工业控制等场景实现更广泛应用,让客户能够以合理成本获得高性能计算能力,突破算力限制,释放更多创新潜能。  先进的控制外设,轻松驾驭复杂场景  该系列集成 14 路 PWM,由专用事件管理器控制,并支持多达 8 个比较点的配置,实现高精度 PWM 输出和快速波形响应。其中 2 路高精度 PWM 更可达 80ps 分辨率。高速 ADC 最高采样率达 4.375Msps,支持双模组 21 通道采集,满足复杂信号实时监测需求。片上独创的 2 个 CLB 可编程逻辑模块,可灵活实现复杂时序控制与保护电路,减少外部器件依赖,降低系统成本。  多样接口与封装,灵活适配设计需求  NS800RT113x 系列配备 3 路 UART、2 路 SPI、2 路 I2C 及 1 路 CAN 2.0 接口,适配多样化系统需求,并提供 LQFP64、LQFP48、QFN48 与 QFN32 多种封装,兼顾高性能与灵活设计。NS800RT113x系列选型表  供货和价格信息  NS800RT113x系列现已正式发布并可送样。其中,量产后 NS800RT1135-DQNGY2(封装:QFN32)在1千片采购数量的基础上,含税单价仅需5元人民币起。如需了解更多供货及价格详情,欢迎垂询。
2025-09-09 13:50 阅读量:327
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码