ROHM开始量产具有业界高性能的650V耐压GaN HEMT

发布时间:2023-05-18 16:22
作者:AMEYA360
来源:网络
阅读量:2692

  全球知名半导体制造商ROHM(以下简称“ROHM”)将650V耐压的GaN(Gallium Nitride:氮化镓)HEMT*1“GNP1070TC-Z”、“GNP1150TCA-Z”投入量产,这两款产品非常适用于服务器和AC适配器等各种电源系统。

ROHM开始量产具有业界高性能的650V耐压GaN HEMT

  据悉,电源和电机的用电量占全世界用电量的一大半,为实现无碳社会,如何提高它们的效率已成为全球性的社会问题。而功率元器件是提高它们效率的关键,SiC(Silicon Carbide:碳化硅)和GaN等新材料在进一步提升各种电源效率方面被寄予厚望。2022年,ROHM将栅极耐压高达8V的150V耐压GaN HEMT投入量产;2023年3月,又确立了能够更大程度地发挥出GaN性能的控制IC技术。此次,为了助力各种电源系统的效率提升和小型化,ROHM又推出器件性能达到业界超高水平的650V耐压GaN HEMT。

  新产品是ROHM与Delta Electronics, Inc.(以下简称“台达电子”)的子公司——专注于GaN元器件开发的Ancora Semiconductors Inc.(以下简称“碇基半导体”)联合开发而成的,在650V GaN HEMT的器件性能指数(RDS(ON)×Ciss / RDS(ON)×Coss*2)方面,达到了业界超高水平。因此,新产品可以大大降低开关损耗,从而能够进一步提高电源系统的效率。另外,新产品还内置ESD*3保护器件,将抗静电能力提高至3.5kV,这将有助于提高应用产品的可靠性。不仅如此,新产品还具有GaN HEMT器件的优势——高速开关工作,从而有助于外围元器件的小型化。

  新产品已于2023年4月起投入量产(样品价格 5,000日元/个,不含税),并已开始网售,通过Ameya360等电商平台可购买。

  ROHM将有助于应用产品的节能和小型化的GaN器件命名为“EcoGaN™系列”,并不断致力于进一步提高器件的性能。另外,除了元器件的开发,ROHM还积极与业内相关企业建立战略合作伙伴关系并推动联合开发,通过助力应用产品的效率提升和小型化,持续为解决社会问题贡献力量。

  <什么是EcoGaN™>

  EcoGaN™是通过更大程度地发挥GaN的性能,助力应用产品进一步节能和小型化的ROHM GaN器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。

      <应用示例>包括服务器和AC适配器在内的各种工业设备和消费电子领域的电源系统

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM适用于高功率密度车载充电器的紧凑型SiC模块
  引言  要实现零碳社会的目标,交通工具的电动化至关重要。更轻、更高效的电子元器件在这一进程中发挥着重要作用。车载充电器(OBC)便是其中一例。紧凑型传递模塑功率模块如何满足当前车载充电器(OBC)的需求?  正文  电动交通领域的发展日新月异:为提高车辆的自主性和续航里程,电驱动力总成系统变得越来越 高效和紧凑。车载充电器(OBC)作为这一发展进程中的关键组成部分,必须在保持高效效率的同时,尽可能小型轻量化。这一技术挑战还必须确保成本控制在限定范围内。  OBC 用于交流充电, 需要由电网( 充电桩) 提供单相或三相电压。单相充电功率范围为 3.6kW~7.5kW,而三相充电功率则支持11kW~22kW。目前,为兼顾成本和效率,市场上的主流OBC 产品以中等功率范围(11kW)为主。22kW的OBC则主要用于高端市场。然而,所有OBC必须支持单相充电,以便在功率受限的情况下仍可为车辆充电。为实现车辆到电网(V2G)和车辆到车辆(V2V)的充电解决方案,越来越需要OBC具备双向充电功能。  迄今为止,传统OBC的设计主要采用市场上的标准分立器件(THD或SMD封装)进行。尤其对于 SMD器件而言,由于需要通过PCB散热或使用合适的热界面材料将每个独立封装精密地固定在散热器上进行散热,因此存在诸多挑战。这种方案在功率密度提升和系统紧凑性方面已接近极限,而功率模块在新一代产品中则展现出显著的优势。  图1:OBC的模块化(顶部)架构和集中式(底部)架构  架构与拓扑  OBC架构主要有两种(图1):一种是基于三个相同单相模块的模块化架构;另一种是基于一个三相AC/DC转换器(该转换器也支持单相运行)的集中式架构。这两种架构均可通过单向和双向拓扑实现。  模块化架构需要更多元器件,从而导致直流链路整体上对储能容量要求提高,进而推高体积和成本。另外,模块化架构还需要额外配置栅极驱动器和电压、电流检测功能。相比之下,集中式架构所需的元器件更少,因此可实现更具成本效益的OBC,这使其已成为高功率密度OBC的首选架构。  SiC模块可实现更高效率和功率密度  SiC凭借其卓越的特性,成为非常适用于OBC的功率半导体材料。ROHM的第4代SiC MOSFET采用沟槽结构,实现了超低导通电阻。另外,其非常低的米勒电容可实现超快的开关速度,从而可降低开关损耗。这些特性使得其总损耗更低,进而可减少散热设计负担。  ROHM已推出专为OBC应用进行了优化的新产品——HSDIP20模块,进一步扩展了EcoSiC™系列的SiC MOSFET产品阵容。该系列模块在全桥电路中集成了4个或6个SiC MOSFET,与采用相同芯片技术的分立器件相比具有诸多优势。  该系列模块采用氮化铝(AlN)陶瓷将散热焊盘与MOSFET的漏极隔离。这使得其结壳热阻(Rth)非常低,从而无需使用热界面材料(TIM)对散热焊盘与散热器之间进行电气隔离。  得益于模具材料的应用,功率模块中的各芯片之间实现了电气隔离。这意味着芯片可以比分立器件方案布置得更加紧密(在分立器件方案中则必须考虑PCB上的爬电距离)。这种设计减小了PCB占用面积,同时提升了OBC解决方案的功率密度。  工作量更少,风险更低  除了技术优势外,内部隔离功能还可大大简化开发人员的工作:模块内部已内置电气隔离功能。而对于采用分立器件的解决方案,则需要在外部处理隔离问题。模块在交付前已由ROHM进行了相关测试,因此在OBC开发阶段无需再进行额外的电气隔离测试。可见,该系列模块不仅可缩短开发周期并降低开发成本,同时还能降低出现绝缘问题的风险。图2:在800V直流链路电压下,HSDIP模块在不同温度下的开通和关断损耗  HSDIP20模块还具有第4代SiC MOSFET带来的附加优势:其0V关断电压可降低PCB布局的复杂性和成本。如图2所示,在800V直流链路电压下,采用第4代SiC MOSFET的HSDIP模块在不同温度条件下均表现出较低的开关损耗。图3:基于第4代SiC MOSFET的HSDIP20功率模块产品阵容  HSDIP20模块的另一个优势在于其可扩展性。ROHM提供丰富的RDS(on)规格和拓扑结构选择,使该系列模块可适用于不同功率范围的OBC应用。目前可提供六款4合1拓扑模块和六款6合1拓扑模块。另外,ROHM还推出一款采用Six-pack拓扑结构的“混合型”模块,该模块通过组合不同RDS(on)的 MOSFET,为图腾柱PFC电路提供低成本解决方案,并可使用同一器件轻松实现单相和三相运行。各种拓扑结构的模块均采用相同封装形式,应用扩展非常便捷。所有功率模块均符合AQG324标准。  热特性与开关特性  为了验证HSDIP模块的优势,研发人员对器件进行了特性仿真和测试。在模块的热性能演示中, 采用的是配备36mΩ、1200V SiC MOSFET的Six-pack模块。仿真基于安装在液冷板上的单个模块进行,设定条件为单芯片损耗在25W至35W之间,Ta=Tw=60°C,TIM厚度为20μm,热导率为4.1W/mK。通过同时给芯片施加功率进行仿真,并根据仿真结果绘制出各器件的耗散功率与结温之间的关系曲线图(图4)。图4:HSDIP模块热性能仿真结果  通过优化内部结构,该系列功率模块实现了非常低的单芯片热阻,在热性能方面具有显著优势。其最高结温远低于SiC MOSFET允许的175°C限值,从而为提升功率密度创造了更大空间,可满足大功率OBC的严苛需求。  在模拟OBC应用中AC/DC变换级的测试板上,评估了采用36mW、1200V SiC MOSFET的6合1模 块的开关损耗特性。图2中已给出通过该测试获得的开关损耗结果。通过对该模块进行双脉冲测试评估得到的开关损耗结果,同样适用于本文所探讨的双向DC/AC变换级的情况。基于该数据,对11kW系统的双向DC/AC变换级进行仿真(图5)。仿真结果表明,基于采用第4代SiC MOSFET(36mΩ,1200V)的6合1模块构建的11 kW AC/DC变换级,在开关频率为48 kHz并使用强制风冷散热器的条件下,效率可达约99%(该效率值仅考虑了半导体损耗)。图5:HSDIP模块在OBC中双向AC/DC级的效率仿真  结论  在电动和混合动力汽车的OBC中,由4个或6个SiC MOSFET构成的模块,相较于分立器件方案具有显著优势。凭借其更高的功率密度,这种模块能够减小OBC的体积和重量,并降低设计的复杂性。 ROHM的HSDIP20模块集成了最新的EcoSiC™ MOSFET,仿真结果表明,将其应用在双向OBC的 AC/DC变换级时,该系列模块不仅展现出优异的热特性,更能实现约99%的效率。  EcoSiC™是ROHM Co., Ltd.的商标或注册商标。  参考文献  [1] M. Jankovic, C. Felgemacher, K. Lenz, A. Mashaly and A. Charkaoui,《车载充电器成本与效率考量》[J]。2022年第24届欧洲电力电子与应用会议(EPE'22 ECCE Europe),德国汉诺威,2022: P.1-P.9。  关于罗姆  罗姆是成立于1958年的半导体电子元器件制造商。通过铺设到全球的开发与销售网络,为汽车和工业设备市场以及消费电子、通信等众多市场提供高品质和高可靠性的IC、分立半导体和电子元器件产品。  在罗姆自身擅长的功率电子领域和模拟领域,罗姆的优势是提供包括碳化硅功率元器件及充分地发挥其性 能的驱动IC、以及晶体管、二极管、电阻器等外围元器件在内的系统整体的优化解决方案。  了解更多信息,请访问罗姆官网:https://www.rohm.com.cn/
2025-08-28 14:34 阅读量:210
研讨会速递!ROHM Nano电源技术精讲
  近年来,电源系统主要面临更高耐压,更低功耗,更小型化等需求。ROHM对应这三种课题,利用集团的垂直统合型生产体制,将电路设计,工艺和布局三大模拟技术相融合,开发出了三种Nano电源技术,从而实现高效稳定的电源控制。另外,通过助力应用产品的进一步节能和小型化,为实现无碳社会贡献力量。更多你想了解的ROHM产品和技术分享及展望,均可在本次线上研讨会上找到答案!  扫描下方海报,报名本次研讨会,共同探讨ROHM Nano技术及相关产品,参与即有机会赢取精美礼品,精彩不容错过!  研讨会提纲  1. ROHM的关键技术  2. "ROHM Nano"技术详解  3. 满足时代需求的Nano系列及其产品  4. ROHM对Nano系列展望  研讨会主题  解决电源IC困扰的ROHM先进电源技术Nano系列  研讨会时间  2025年8月27日上午10点  研讨会讲师朱莎勤 经理  朱莎勤于2014年加入罗姆公司,目前在罗姆上海FAE部门担任经理一职,主要负责与车载产品相关的技术支持。在面向车载领域的电源管理技术方面有着丰富的工作经验和专业知识,拥有从电源设计、选型评估到应用的丰富经验,为客户进行选型指导和技术支持。  关于Nano系列  罗姆的电源技术一直追求小型化和节能化。Nano系列是采用了模拟技术的一种新型电源技术。从开发到制造的全过程都由罗姆自行完成,实现了贯穿始终的生产体制的Nano系列,作为满足市场要求的电源IC将为社会做出贡献。  超高速脉冲控制技术 Nano Pulse Control™  超低消耗电流技术 Nano Energy™  超稳定控制技术 Nano Cap™  更多内容点击前往查看:  https://www.rohm.com.cn/support/nano?utm_medium=social&utm_source=wechat&utm_campaign=WeChat%EF%BC%88infor%EF%BC%89&utm_content=250806&openid=ot4DKs6HygwKJWbVFmco7o-TQNb0  “Nano Pulse Control™”、“Nano Energy™”和“Nano Cap™”是 ROHM Co.,Ltd. 的商标或注册商标。  相关产品新闻  电池耗电量显著减少!ROHM开发出静态电流超低的运算放大器  ROHM开发出可更大程度激发GaN器件性能的超高速栅极驱动器IC  罗姆ROHM开发出内置新电路的车载LDO稳压器BD9xxN1系列  相关产品资料  Nano技术介绍资料:  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250724/47ebe618a8466a5259a98241b2a97a52.pdf  Nano电源技术小册子:  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250317/fae26cd34c8eaaea2daf3c179968da0c.pdf  高精度运算放大器 TLR1901GXZ:  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250714/62c74db72e62928eb7bfe43d8ac53b43.pdf  高精度运算放大器 LMR1901YG-M:  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20240219/fa5d3c46b9c8ccfb8f947a83bc597689.pdf  车载LDO稳压器IC BD9xxN1系列:  https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20230711/24cf0e822b7736099a3965c58effe41f.pdf
2025-08-06 14:16 阅读量:374
ROHM推出实现业界超低电路电流的超小尺寸CMOS运算放大器
  全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出工作时的电路电流可控制在业界超低水平的超小尺寸CMOS运算放大器“TLR1901GXZ”。该产品非常适用于电池或充电电池驱动的便携式测量仪、可穿戴设备和室内探测器等小型应用中的测量放大器。  近年来,随着便携式测量仪和可穿戴设备等由电池驱动的应用对控制精度要求的不断提高,用于 量化温度、湿度、振动、压力、流量等参数的传感器以及用来放大传感器信号的运算放大器的重要性日益凸显。另一方面,在致力于实现可持续发展社会等大背景下,应用产品的小型化和节能化已成为当务之急,对单个器件也提出了同样的要求。在这种背景下,ROHM通过进一步优化多年来积累的 “工艺技术”、“封装技术”和“Nano Energy™电路技术”,开发出满足“小型化”、“低静态电流”和“高精度”三大需求的运算放大器。  新产品通过采用引脚间距缩小至0.35mm的WLCSP*1封装,实现1mm²以下的超小尺寸,同时兼具超低静态电流特性,工作时的电路电流可控制在业界超低的160nA(Typ.)。由此,该新产品不仅能在有限的空间内实现高密度安装,还能大大延长电池寿命和应用产品的续航时间。  另外,新产品的输入失调电压*2在低静态电流运算放大器中表现尤为突出,最大仅为0.55mV,比普通产品减少约45%。输入失调电压温漂*3也能保证最大仅7µV/℃,即使在易受外部温度影响的设备中也能实现高精度工作。  此外,若搭配ROHM的超小型通用电阻器MCR004(0402尺寸)和MCR006(0603尺寸)作为运算放大器的增益调节等外围元件使用,可进一步提升设计的灵活性。0402尺寸还提供环保型无铅电阻产品MCR004E。  新产品已于2025年6月开始暂以2万个/月的规模投入量产。此外,新产品已经开始通过电商进行销售(样品价格300日元/个,不含税)。为便于客户进行初期评估和替换研究,ROHM还提供可支持 SSOP5封装的装有IC的转接板。  未来,ROHM将持续推进产品的小型化,同时利用自有的超低静态电流技术进一步降低运算放大器的功耗。另外,ROHM还将持续致力于提升产品在低噪声、低失调电压和扩大电源电压范围等方面的性能,并通过提升应用产品的控制精度为解决社会课题贡献力量。  <产品主要特性>  <应用示例>  ・消费电子:可穿戴设备、智能设备、人体感应传感器等  ・工业设备:气体探测器、火灾报警器、便携式测量仪、各种物联网设备用的环境传感器等  <电商销售信息>  发售时间:2025年6月起  电商平台:新产品在AMEYA360等电商平台将逐步发售。  ・产品型号:TLR1901GXZ-E2  ・装有IC的转接板:TLR1901GXZ-EVK-001          <关于Nano Energy™>  Nano Energy™是指通过融合ROHM垂直整合型生产体制中的“电路设计”、“布局”和“工艺”三大先进模拟技术,实现了纳安(nA)级电路电流的超低静态电流技术。该技术不仅可以延长电池供电的物联网设备和移动设备的续航时间,还有助于不希望增加功耗的工业设备等实现高效运行。 https://www.rohm.com.cn/support/nano   ・Nano Energy™是ROHM Co., Ltd.的商标或注册商标。  <术语解说>  *1)WLCSP(Wafer Level Chip Scale Package)  在晶圆状态下完成引脚成型和布线,随后切割成芯片的超小型封装。与将晶圆切割成芯片后通过树脂模塑形成引脚等的普通封装形式不同,这种封装可以做到与内部的半导体芯片相同大小,因此可以缩减封装的尺寸。  *2)输入失调电压  运算放大器输入引脚间产生的误差电压。  *3)输入失调电压温漂  温度升降导致输入失调电压的波动。该波动量越小,运算放大器的精度越高。
2025-07-29 14:23 阅读量:469
ROHM推出“PFC+反激控制参考设计”,助力实现更小巧的电源设计!
  2025年7月22日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,推出新的参考设计“REF67004”,该设计可通过单个微控制器控制被广泛应用于消费电子电源和工业设备电源中的两种转换器——电流临界模式PFC(Power Factor Correction)*1和准谐振反激式*2转换器。通过将ROHM的优势——由Si MOSFET等功率器件和栅极驱动器IC组成的模拟控制Power Stage电路,与以低功耗LogiCoA™微控制器为核心的数字控制电源电路相结合,推出基于这种模拟和数字融合控制技术的“LogiCoA™电源解决方案”。  此次发布的参考设计“REF67004”通过电流临界模式PFC转换器对AC输入电压进行升压后,再利用准谐振反激式转换器输出DC 24V电压。其配备的校准功能,可校正外置元器件的特性“偏差”,并由LogiCoA™微控制器高精度地执行各种电压设定和过电流保护。由此,新参考设计可以将电源设计余量估算得更小,从而能够选择体积更小(低功耗)的功率元器件和电感,进而有助于减少电源的安装面积,并降低成本。  另外,“REF67004”通过日志存储功能,可将输入电压、输出电压和电流、温度等工作记录、停止前的工作状态以及累计运行时间保存在LogiCoA™微控制器内置的非易失性存储器中。通过分析这些数据,可以轻松确定电源故障的原因。电源的各种控制参数和工作记录可通过ROHM官网公开的电源控制用OS“RMOS(Real time Micro Operating System)”等示例程序,经由UART(信号转换器)从PC端轻松设置和获取。另外,用户还可以使用参考设计板“LogiCoA003-EVK-001”(样品价格 100,000日元/个,不含税)在实际设备上进行评估。  参考设计板、参考板和LogiCoA™微控制器已经开始通过电商进行销售,通过电商平台均可购买。LogiCoA™微控制器已于2024年6月开始投入量产(样品价格650日元/个,不含税)  <背景>  在以中小功率工作的工业机器人和半导体制造设备等应用中,大多采用模拟控制电源*3。然而近年来,要求这类电源要具备高可靠性和精细控制功能,仅采用模拟控制方式的电源配置已经很难满足市场需求。另一方面,全数字控制电源*4虽然可以进行更精细的控制和设置,但存在所用的数字控制器功耗大、成本高等问题,因此在中小功率电源中很难普及应用。  针对这一课题,ROHM开发出融合了模拟和数字技术各自优势的LogiCoA™电源解决方案,结合高性能且低功耗的LogiCoA™微控制器,可轻松实现对各类电源拓扑*5的灵活控制。作为其第一款参考设计,ROHM推出了评估用的“REF66009”, 用户可以在非隔离式降压转换器电路中体验使用LogiCoA™电源解决方案的效果。目前,ROHM又开始提供其第二款参考设计,即由PFC和反激式两种广泛应用于消费电子和工业设备的转换器构成的电源参考设计“REF67004”。未来,ROHM将不断推出各类电源的参考设计,为客户的电源开发提供大力支持。  <关于“LogiCoA™”品牌>  LogiCoA™是为了更大程度地发挥出ROHM擅长的模拟电路的性能,基于融合了数字元素的设计理念开发而成的品牌。通过融合模拟电路和数字控制的优势,可充分激发出电路拓扑的潜力,从而有助于提高电能利用效率。LogiCoA™设计理念的定位是不仅适用于电源领域,而且还可用于各种电源解决方案,因此,目前正在考虑将其应用于未来的产品和解决方案。  ・“LogiCoA™”是ROHM Co., Ltd.的商标或注册商标。  <LogiCoA™电源解决方案专题页面>  在下面的ROHM官网上,详细介绍了LogiCoA™电源解决方案的基本构成与特点等:  https://www.rohm.com.cn/support/logicoa  <LogiCoA™电源解决方案参考设计的产品阵容>  在ROHM官网上,除了示例软件外,还公开了评估所需的电路图、PCB布局图、零件清单、支持文档等各种工具。同时用户还可以使用参考设计板在实际设备上进行评估。未来,ROHM将持续扩充参考设计阵容以支持多样化的电源拓扑。  参考设计产品型号  ・PFC+反激式转换器:REF67004  ・降压转换器:REF66009  <LogiCoA™微控制器的产品阵容>  该产品配备了可联动定时器的3ch模拟比较器和可对各类参数进行数字控制的D/A转换器等器件,可适配多种电源拓扑。  <LogiCoA™微控制器开发支持系统>  LogiCoA™微控制器采用ROHM自有的16位RISC CPU内核,支持使用ROHM提供的集成开发环境及仿真工具。在下面ROHM官网的LogiCoA™开发支持系统页面中,介绍了LogiCoA™微控制器开发支持系统的配置和各产品概要:https://www.rohm.com.cn/lapis-tech/product/micon/logicoa-software  <电商销售信息>  网售平台:可通过多个渠道购买参考设计板、参考板及LogiCoA™微控制器。  ・参考设计板信息  参考设计板型号:  LogiCoA003-EVK-001  LogiCoA001-EVK-001  ・参考板信息  参考板型号:  RB-D62Q2035TD20  RB-D62Q2045GD24  ・产品信息  LogiCoA™微控制器型号:  ML62Q2035-NNNTDZWATZ  ML62Q2045-NNNGDZW5BY  <应用示例>  ・工业机器人设备 ・半导体制造设备 ・娱乐设备  此外,还适用于一般的工业设备和消费电子设备(50W~1kW)等各种应用。  <术语解说>  *1)电流临界模式PFC(Power Factor Correction)转换器  在开关电源中,将交流电(AC)转换为直流电(DC)时具有出色的功率因数(衡量所供电能中有多少被有效利用的指标),采用AC-DC转换器电路结构,所产生的噪声比电流连续模式PFC的更少。功率因数为“1”时,表示所供电能全部被有效利用。  *2)准谐振反激式转换器  作为DC-DC转换器的一种电路结构,用于构成隔离式电源,通过准谐振方式可降低开关损耗和噪声。适用于100W左右的应用产品,在元器件数量和成本方面有显著优势。此外还有正激式等其他方式的产品,构成这些电路的器件不断更新迭代,使隔离式电源的体积更小、效率更高。  *3)模拟控制电源  由模拟器件组成的简单电源。因其电源结构简单且功耗低而成为目前1kW以下电源中的主流电源。但是,其很难实现任意参数设置、日志数据存储等高级功能,而如果要实现这些功能,就需要考虑成本和功耗较高的全数字控制电源。  *4)全数字控制电源  利用数字技术控制供电的电源。利用高速CPU和DSP等,可以精确监测和控制电压、电流等各种参数,从而可提高电源的效率和可靠性等性能。另外,还可以实现模拟控制电源难以实现的功能,比如采集工作日志数据。然而其CPU和DSP价格较高,功耗也大,在成本和节能方面一直存在瓶颈。  CPU:中央处理器。执行程序并进行数据处理的核心处理器。  DSP:数字信号处理器。将模拟信号转换为数字信号,并进行滤波、放大等处理。  *5)拓扑  指电路结构。电源拓扑是用于转换电力的电路结构,其结构会根据输入电压、输出电压、功率、有无绝缘等规格要求而有所不同。
2025-07-22 16:48 阅读量:532
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码